Abstract

The optical properties of Nd3+-doped lead germanate glass of composition (in mol. %) 60GeO225PbO15Nb2O5 have been investigated for several Nd3+ concentrations at various temperatures by steady-state and time-resolved laser spectroscopy. Judd–Ofelt parameters were derived from the absorption spectrum and used to calculate the  4F3/24I11/2 stimulated-emission cross section and the  4F3/2 radiative lifetime. The spectral features of the time-resolved fluorescence line narrowing  4F3/24I9/2 emission spectra obtained under resonant excitation reveal the existence of spectral migration of excitation among the Nd3+ ions. Analysis of the time evolution of the  4F3/24I9/2 narrowed emission showed that the electronic mechanism responsible for the ion–ion interaction can be identified as a dipole–dipole energy-transfer process. Green, orange, and red emissions were observed in this glass under continuous-wave infrared laser excitation and are attributed to transitions from the  4G7/2 level.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. L. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead-germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159, 213–221 (1993).
    [CrossRef]
  2. J. E. Canale, R. A. Condrate, Sr., K. Nassau, and B. C. Cornilsen, “Characterization of various glasses in the binary PbO–GeO2 and Bi2O3–GeO2 systems,” J. Can. Ceram. Soc. 55, 50–56 (1986).
  3. D. Lezal, J. Pedlíková, and J. Horák, “GeO2–PbO Glassy system for infrared fibers for delivery of Er:YAG laser energy,” J. Non-Cryst. Solids 196, 178–182 (1996).
    [CrossRef]
  4. J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
    [CrossRef]
  5. Z. Pan, H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
    [CrossRef]
  6. J. McDougall, D. B. Hollis, and M. J. P. Payne, “The 1.82 μm emission of Tm3+ in germanium-based oxide glass,” Phys. Chem. Glasses 36, 52 (1995).
  7. D. P. Shepherd, D. J. B. Brick, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-μm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19, 954–956 (1994).
    [CrossRef] [PubMed]
  8. M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
    [CrossRef]
  9. L. A. Riseberg, “Laser-induced fluorescence-line-narrowing spectroscopy of glass:Nd,” Phys. Rev. A 7, 671–678 (1973).
    [CrossRef]
  10. M. J. Weber, “Laser excited fluorescence spectroscopy in glass,” in Laser Spectroscopy of Solids, W. M. Yen and P. M. Selzer, eds. (Springer-Verlag, Berlin, 1981), pp. 189–239, and references therein.
  11. R. Balda, J. Fernández, J. L. Adam, and M. A. Arriandiaga, “Time-resolved fluorescence line narrowing and energy-transfer studies in a Eu3+-doped fluorophosphate glass,” Phys. Rev. B 54, 12, 076–12, 086 (1996).
    [CrossRef]
  12. L. D. Merkle, R. C. Powell, and E. E. Freed, “Energy transfer among neodymium ions in glass hosts,” J. Lumin. 24/25, 755–758 (1981).
    [CrossRef]
  13. L. A. Riseberg, “Temperature dependence of ion-ion energy transfer in Nd:glass by laser-induced line-narrowing techniques,” Solid State Commun. 11, 469–471 (1972).
    [CrossRef]
  14. T. T. Basiev, Yu K. Voron’ko, S. B. Mirov, and A. M. Prokhorov, “Frequency selection of Nd3+ ions in glass excited by monochromatic laser radiation at the resonant 4I9/24F3/2 transition,” JETP Lett. 29, 639–642 (1979).
  15. S. A. Brawer and M. J. Weber, “Observation of fluorescence line narrowing, hole burning, and ion–ion energy transfer in neodymium laser glass,” Appl. Phys. Lett. 35, 31–33 (1979).
    [CrossRef]
  16. T. T. Basiev, V. A. Malyshev, and A. K. Prhevuskii, “Spectral migration of excitations in rare-earth activated glasses,” in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), p. 303–341.
  17. W. M. Yen, “Studies of energy transfer in rare-earth ions in crystals,” in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), p. 185–247.
  18. M. M. Broer, D. L. Huber, W. M. Yen, and W. K. Zwicker, “Resonant fluorescence line narrowing in La1−xP5O14:Ndx3+,” Phys. Rev. Lett. 49, 394–398 (1982).
    [CrossRef]
  19. R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
    [CrossRef]
  20. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [CrossRef]
  21. G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  22. R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced-emission cross section for Nd on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
    [CrossRef]
  23. H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
    [CrossRef]
  24. Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
    [CrossRef]
  25. R. Balda, J. Fernández, A. de Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys.: Condens. Matter 11, 7411–7421 (1999).
  26. A. T. Stanley, E. A. Harris, T. M. Searle, and J. M. Parker, “Upconversion in neodymium doped fluoride glasses,” J. Non-Cryst. Solids 161, 235–240 (1993).
    [CrossRef]
  27. T. Tsuneoka, K. Kojima, and S. Bojja, “Upconversion fluorescence and low temperature fluorescence properties in Nd3+-doped ZnCl2-based glass,” J. Non-Cryst. Solids 202, 297–302 (1996).
    [CrossRef]
  28. T. Y. Fan and R. L. Byer, “Two-step excitation and blue fluorescence under continuous-wave pumping in Nd:YLF,” J. Opt. Soc. Am. B 3, 1519–1525 (1986).
    [CrossRef]

2000

R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
[CrossRef]

1999

R. Balda, J. Fernández, A. de Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys.: Condens. Matter 11, 7411–7421 (1999).

1998

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

1996

D. Lezal, J. Pedlíková, and J. Horák, “GeO2–PbO Glassy system for infrared fibers for delivery of Er:YAG laser energy,” J. Non-Cryst. Solids 196, 178–182 (1996).
[CrossRef]

R. Balda, J. Fernández, J. L. Adam, and M. A. Arriandiaga, “Time-resolved fluorescence line narrowing and energy-transfer studies in a Eu3+-doped fluorophosphate glass,” Phys. Rev. B 54, 12, 076–12, 086 (1996).
[CrossRef]

Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

T. Tsuneoka, K. Kojima, and S. Bojja, “Upconversion fluorescence and low temperature fluorescence properties in Nd3+-doped ZnCl2-based glass,” J. Non-Cryst. Solids 202, 297–302 (1996).
[CrossRef]

1995

Z. Pan, H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
[CrossRef]

J. McDougall, D. B. Hollis, and M. J. P. Payne, “The 1.82 μm emission of Tm3+ in germanium-based oxide glass,” Phys. Chem. Glasses 36, 52 (1995).

1994

D. P. Shepherd, D. J. B. Brick, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-μm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19, 954–956 (1994).
[CrossRef] [PubMed]

H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
[CrossRef]

1993

A. T. Stanley, E. A. Harris, T. M. Searle, and J. M. Parker, “Upconversion in neodymium doped fluoride glasses,” J. Non-Cryst. Solids 161, 235–240 (1993).
[CrossRef]

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

S. J. L. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead-germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159, 213–221 (1993).
[CrossRef]

1986

J. E. Canale, R. A. Condrate, Sr., K. Nassau, and B. C. Cornilsen, “Characterization of various glasses in the binary PbO–GeO2 and Bi2O3–GeO2 systems,” J. Can. Ceram. Soc. 55, 50–56 (1986).

T. Y. Fan and R. L. Byer, “Two-step excitation and blue fluorescence under continuous-wave pumping in Nd:YLF,” J. Opt. Soc. Am. B 3, 1519–1525 (1986).
[CrossRef]

1982

M. M. Broer, D. L. Huber, W. M. Yen, and W. K. Zwicker, “Resonant fluorescence line narrowing in La1−xP5O14:Ndx3+,” Phys. Rev. Lett. 49, 394–398 (1982).
[CrossRef]

1981

L. D. Merkle, R. C. Powell, and E. E. Freed, “Energy transfer among neodymium ions in glass hosts,” J. Lumin. 24/25, 755–758 (1981).
[CrossRef]

1979

T. T. Basiev, Yu K. Voron’ko, S. B. Mirov, and A. M. Prokhorov, “Frequency selection of Nd3+ ions in glass excited by monochromatic laser radiation at the resonant 4I9/24F3/2 transition,” JETP Lett. 29, 639–642 (1979).

S. A. Brawer and M. J. Weber, “Observation of fluorescence line narrowing, hole burning, and ion–ion energy transfer in neodymium laser glass,” Appl. Phys. Lett. 35, 31–33 (1979).
[CrossRef]

1976

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced-emission cross section for Nd on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
[CrossRef]

1973

L. A. Riseberg, “Laser-induced fluorescence-line-narrowing spectroscopy of glass:Nd,” Phys. Rev. A 7, 671–678 (1973).
[CrossRef]

1972

L. A. Riseberg, “Temperature dependence of ion-ion energy transfer in Nd:glass by laser-induced line-narrowing techniques,” Solid State Commun. 11, 469–471 (1972).
[CrossRef]

1962

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Adam, J. L.

R. Balda, J. Fernández, J. L. Adam, and M. A. Arriandiaga, “Time-resolved fluorescence line narrowing and energy-transfer studies in a Eu3+-doped fluorophosphate glass,” Phys. Rev. B 54, 12, 076–12, 086 (1996).
[CrossRef]

Ajò, D.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Arriandiaga, M. A.

R. Balda, J. Fernández, J. L. Adam, and M. A. Arriandiaga, “Time-resolved fluorescence line narrowing and energy-transfer studies in a Eu3+-doped fluorophosphate glass,” Phys. Rev. B 54, 12, 076–12, 086 (1996).
[CrossRef]

Balda, R.

R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
[CrossRef]

R. Balda, J. Fernández, A. de Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys.: Condens. Matter 11, 7411–7421 (1999).

R. Balda, J. Fernández, J. L. Adam, and M. A. Arriandiaga, “Time-resolved fluorescence line narrowing and energy-transfer studies in a Eu3+-doped fluorophosphate glass,” Phys. Rev. B 54, 12, 076–12, 086 (1996).
[CrossRef]

Basiev, T. T.

T. T. Basiev, Yu K. Voron’ko, S. B. Mirov, and A. M. Prokhorov, “Frequency selection of Nd3+ ions in glass excited by monochromatic laser radiation at the resonant 4I9/24F3/2 transition,” JETP Lett. 29, 639–642 (1979).

Bettinelli, M.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Bojja, S.

T. Tsuneoka, K. Kojima, and S. Bojja, “Upconversion fluorescence and low temperature fluorescence properties in Nd3+-doped ZnCl2-based glass,” J. Non-Cryst. Solids 202, 297–302 (1996).
[CrossRef]

Brawer, S. A.

S. A. Brawer and M. J. Weber, “Observation of fluorescence line narrowing, hole burning, and ion–ion energy transfer in neodymium laser glass,” Appl. Phys. Lett. 35, 31–33 (1979).
[CrossRef]

Brick, D. J. B.

Brocklesby, W. S.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Broer, M. M.

M. M. Broer, D. L. Huber, W. M. Yen, and W. K. Zwicker, “Resonant fluorescence line narrowing in La1−xP5O14:Ndx3+,” Phys. Rev. Lett. 49, 394–398 (1982).
[CrossRef]

Byer, R. L.

Canale, J. E.

J. E. Canale, R. A. Condrate, Sr., K. Nassau, and B. C. Cornilsen, “Characterization of various glasses in the binary PbO–GeO2 and Bi2O3–GeO2 systems,” J. Can. Ceram. Soc. 55, 50–56 (1986).

Collins, W. E.

Z. Pan, H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
[CrossRef]

Condrate , Sr., R. A.

J. E. Canale, R. A. Condrate, Sr., K. Nassau, and B. C. Cornilsen, “Characterization of various glasses in the binary PbO–GeO2 and Bi2O3–GeO2 systems,” J. Can. Ceram. Soc. 55, 50–56 (1986).

Cornilsen, B. C.

J. E. Canale, R. A. Condrate, Sr., K. Nassau, and B. C. Cornilsen, “Characterization of various glasses in the binary PbO–GeO2 and Bi2O3–GeO2 systems,” J. Can. Ceram. Soc. 55, 50–56 (1986).

de Pablos, A.

R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
[CrossRef]

R. Balda, J. Fernández, A. de Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys.: Condens. Matter 11, 7411–7421 (1999).

Deol, R. S.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Dexpert-Ghys, J.

S. J. L. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead-germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159, 213–221 (1993).
[CrossRef]

Dyer, K.

Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

Fan, T. Y.

Fdez-Navarro, J. M.

R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
[CrossRef]

R. Balda, J. Fernández, A. de Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys.: Condens. Matter 11, 7411–7421 (1999).

Fernández, J.

R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
[CrossRef]

R. Balda, J. Fernández, A. de Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys.: Condens. Matter 11, 7411–7421 (1999).

R. Balda, J. Fernández, J. L. Adam, and M. A. Arriandiaga, “Time-resolved fluorescence line narrowing and energy-transfer studies in a Eu3+-doped fluorophosphate glass,” Phys. Rev. B 54, 12, 076–12, 086 (1996).
[CrossRef]

Freed, E. E.

L. D. Merkle, R. C. Powell, and E. E. Freed, “Energy transfer among neodymium ions in glass hosts,” J. Lumin. 24/25, 755–758 (1981).
[CrossRef]

Fritzer, H. P.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Gatterer, K.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Hanna, D. C.

D. P. Shepherd, D. J. B. Brick, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-μm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19, 954–956 (1994).
[CrossRef] [PubMed]

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Harris, E. A.

A. T. Stanley, E. A. Harris, T. M. Searle, and J. M. Parker, “Upconversion in neodymium doped fluoride glasses,” J. Non-Cryst. Solids 161, 235–240 (1993).
[CrossRef]

Hollis, D. B.

J. McDougall, D. B. Hollis, and M. J. P. Payne, “The 1.82 μm emission of Tm3+ in germanium-based oxide glass,” Phys. Chem. Glasses 36, 52 (1995).

Horák, J.

D. Lezal, J. Pedlíková, and J. Horák, “GeO2–PbO Glassy system for infrared fibers for delivery of Er:YAG laser energy,” J. Non-Cryst. Solids 196, 178–182 (1996).
[CrossRef]

Huber, D. L.

M. M. Broer, D. L. Huber, W. M. Yen, and W. K. Zwicker, “Resonant fluorescence line narrowing in La1−xP5O14:Ndx3+,” Phys. Rev. Lett. 49, 394–398 (1982).
[CrossRef]

Izumitani, T.

H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
[CrossRef]

Jacobs, R. R.

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced-emission cross section for Nd on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Kakarantzas, G.

King, V.

Z. Pan, H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
[CrossRef]

Kojima, K.

T. Tsuneoka, K. Kojima, and S. Bojja, “Upconversion fluorescence and low temperature fluorescence properties in Nd3+-doped ZnCl2-based glass,” J. Non-Cryst. Solids 202, 297–302 (1996).
[CrossRef]

Lezal, D.

D. Lezal, J. Pedlíková, and J. Horák, “GeO2–PbO Glassy system for infrared fibers for delivery of Er:YAG laser energy,” J. Non-Cryst. Solids 196, 178–182 (1996).
[CrossRef]

Lincoln, J. R.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Liu, H.

Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

Long, B. H.

Z. Pan, H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
[CrossRef]

Loper, A.

Z. Pan, H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
[CrossRef]

Mackechnie, C. J.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Mastelaro, V. R.

S. J. L. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead-germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159, 213–221 (1993).
[CrossRef]

McDougall, J.

J. McDougall, D. B. Hollis, and M. J. P. Payne, “The 1.82 μm emission of Tm3+ in germanium-based oxide glass,” Phys. Chem. Glasses 36, 52 (1995).

Merkle, L. D.

L. D. Merkle, R. C. Powell, and E. E. Freed, “Energy transfer among neodymium ions in glass hosts,” J. Lumin. 24/25, 755–758 (1981).
[CrossRef]

Mirov, S. B.

T. T. Basiev, Yu K. Voron’ko, S. B. Mirov, and A. M. Prokhorov, “Frequency selection of Nd3+ ions in glass excited by monochromatic laser radiation at the resonant 4I9/24F3/2 transition,” JETP Lett. 29, 639–642 (1979).

Morgan, H.

Z. Pan, H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
[CrossRef]

Morgan, S. H.

Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

Morinaga, K.

H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
[CrossRef]

Mugnier, J.

R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
[CrossRef]

Nassau, K.

J. E. Canale, R. A. Condrate, Sr., K. Nassau, and B. C. Cornilsen, “Characterization of various glasses in the binary PbO–GeO2 and Bi2O3–GeO2 systems,” J. Can. Ceram. Soc. 55, 50–56 (1986).

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Pan, Z.

Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

Z. Pan, H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
[CrossRef]

Parker, J. M.

A. T. Stanley, E. A. Harris, T. M. Searle, and J. M. Parker, “Upconversion in neodymium doped fluoride glasses,” J. Non-Cryst. Solids 161, 235–240 (1993).
[CrossRef]

Payne, D. N.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Payne, M. J. P.

J. McDougall, D. B. Hollis, and M. J. P. Payne, “The 1.82 μm emission of Tm3+ in germanium-based oxide glass,” Phys. Chem. Glasses 36, 52 (1995).

Pearson, A.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Pedlíková, J.

D. Lezal, J. Pedlíková, and J. Horák, “GeO2–PbO Glassy system for infrared fibers for delivery of Er:YAG laser energy,” J. Non-Cryst. Solids 196, 178–182 (1996).
[CrossRef]

Piriou, B.

S. J. L. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead-germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159, 213–221 (1993).
[CrossRef]

Powell, R. C.

L. D. Merkle, R. C. Powell, and E. E. Freed, “Energy transfer among neodymium ions in glass hosts,” J. Lumin. 24/25, 755–758 (1981).
[CrossRef]

Prokhorov, A. M.

T. T. Basiev, Yu K. Voron’ko, S. B. Mirov, and A. M. Prokhorov, “Frequency selection of Nd3+ ions in glass excited by monochromatic laser radiation at the resonant 4I9/24F3/2 transition,” JETP Lett. 29, 639–642 (1979).

Ribeiro, S. J. L.

S. J. L. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead-germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159, 213–221 (1993).
[CrossRef]

Riseberg, L. A.

L. A. Riseberg, “Laser-induced fluorescence-line-narrowing spectroscopy of glass:Nd,” Phys. Rev. A 7, 671–678 (1973).
[CrossRef]

L. A. Riseberg, “Temperature dependence of ion-ion energy transfer in Nd:glass by laser-induced line-narrowing techniques,” Solid State Commun. 11, 469–471 (1972).
[CrossRef]

Sanz, M.

R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
[CrossRef]

Searle, T. M.

A. T. Stanley, E. A. Harris, T. M. Searle, and J. M. Parker, “Upconversion in neodymium doped fluoride glasses,” J. Non-Cryst. Solids 161, 235–240 (1993).
[CrossRef]

Shepherd, D. P.

Speghini, A.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Stanley, A. T.

A. T. Stanley, E. A. Harris, T. M. Searle, and J. M. Parker, “Upconversion in neodymium doped fluoride glasses,” J. Non-Cryst. Solids 161, 235–240 (1993).
[CrossRef]

Takebe, H.

H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
[CrossRef]

Townsend, P. D.

Tropper, A. C.

D. P. Shepherd, D. J. B. Brick, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-μm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19, 954–956 (1994).
[CrossRef] [PubMed]

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Tsuneoka, T.

T. Tsuneoka, K. Kojima, and S. Bojja, “Upconversion fluorescence and low temperature fluorescence properties in Nd3+-doped ZnCl2-based glass,” J. Non-Cryst. Solids 202, 297–302 (1996).
[CrossRef]

Ueda, A.

Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

Voron’ko, Yu K.

T. T. Basiev, Yu K. Voron’ko, S. B. Mirov, and A. M. Prokhorov, “Frequency selection of Nd3+ ions in glass excited by monochromatic laser radiation at the resonant 4I9/24F3/2 transition,” JETP Lett. 29, 639–642 (1979).

Wachtler, M.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Wang, J.

D. P. Shepherd, D. J. B. Brick, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-μm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19, 954–956 (1994).
[CrossRef] [PubMed]

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Weber, M. J.

S. A. Brawer and M. J. Weber, “Observation of fluorescence line narrowing, hole burning, and ion–ion energy transfer in neodymium laser glass,” Appl. Phys. Lett. 35, 31–33 (1979).
[CrossRef]

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced-emission cross section for Nd on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
[CrossRef]

Yen, W. M.

M. M. Broer, D. L. Huber, W. M. Yen, and W. K. Zwicker, “Resonant fluorescence line narrowing in La1−xP5O14:Ndx3+,” Phys. Rev. Lett. 49, 394–398 (1982).
[CrossRef]

Zwicker, W. K.

M. M. Broer, D. L. Huber, W. M. Yen, and W. K. Zwicker, “Resonant fluorescence line narrowing in La1−xP5O14:Ndx3+,” Phys. Rev. Lett. 49, 394–398 (1982).
[CrossRef]

Appl. Phys. Lett.

S. A. Brawer and M. J. Weber, “Observation of fluorescence line narrowing, hole burning, and ion–ion energy transfer in neodymium laser glass,” Appl. Phys. Lett. 35, 31–33 (1979).
[CrossRef]

IEEE J. Quantum Electron.

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced-emission cross section for Nd on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
[CrossRef]

J. Am. Ceram. Soc.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

J. Appl. Phys.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Z. Pan, H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
[CrossRef]

Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

J. Can. Ceram. Soc.

J. E. Canale, R. A. Condrate, Sr., K. Nassau, and B. C. Cornilsen, “Characterization of various glasses in the binary PbO–GeO2 and Bi2O3–GeO2 systems,” J. Can. Ceram. Soc. 55, 50–56 (1986).

J. Chem. Phys.

G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

J. Lumin.

L. D. Merkle, R. C. Powell, and E. E. Freed, “Energy transfer among neodymium ions in glass hosts,” J. Lumin. 24/25, 755–758 (1981).
[CrossRef]

J. Non-Cryst. Solids

D. Lezal, J. Pedlíková, and J. Horák, “GeO2–PbO Glassy system for infrared fibers for delivery of Er:YAG laser energy,” J. Non-Cryst. Solids 196, 178–182 (1996).
[CrossRef]

S. J. L. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead-germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159, 213–221 (1993).
[CrossRef]

H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
[CrossRef]

A. T. Stanley, E. A. Harris, T. M. Searle, and J. M. Parker, “Upconversion in neodymium doped fluoride glasses,” J. Non-Cryst. Solids 161, 235–240 (1993).
[CrossRef]

T. Tsuneoka, K. Kojima, and S. Bojja, “Upconversion fluorescence and low temperature fluorescence properties in Nd3+-doped ZnCl2-based glass,” J. Non-Cryst. Solids 202, 297–302 (1996).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys.: Condens. Matter

R. Balda, J. Fernández, A. de Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys.: Condens. Matter 11, 7411–7421 (1999).

JETP Lett.

T. T. Basiev, Yu K. Voron’ko, S. B. Mirov, and A. M. Prokhorov, “Frequency selection of Nd3+ ions in glass excited by monochromatic laser radiation at the resonant 4I9/24F3/2 transition,” JETP Lett. 29, 639–642 (1979).

Opt. Lett.

Phys. Chem. Glasses

J. McDougall, D. B. Hollis, and M. J. P. Payne, “The 1.82 μm emission of Tm3+ in germanium-based oxide glass,” Phys. Chem. Glasses 36, 52 (1995).

Phys. Rev.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Phys. Rev. A

L. A. Riseberg, “Laser-induced fluorescence-line-narrowing spectroscopy of glass:Nd,” Phys. Rev. A 7, 671–678 (1973).
[CrossRef]

Phys. Rev. B

R. Balda, J. Fernández, J. L. Adam, and M. A. Arriandiaga, “Time-resolved fluorescence line narrowing and energy-transfer studies in a Eu3+-doped fluorophosphate glass,” Phys. Rev. B 54, 12, 076–12, 086 (1996).
[CrossRef]

R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
[CrossRef]

Phys. Rev. Lett.

M. M. Broer, D. L. Huber, W. M. Yen, and W. K. Zwicker, “Resonant fluorescence line narrowing in La1−xP5O14:Ndx3+,” Phys. Rev. Lett. 49, 394–398 (1982).
[CrossRef]

Solid State Commun.

L. A. Riseberg, “Temperature dependence of ion-ion energy transfer in Nd:glass by laser-induced line-narrowing techniques,” Solid State Commun. 11, 469–471 (1972).
[CrossRef]

Other

T. T. Basiev, V. A. Malyshev, and A. K. Prhevuskii, “Spectral migration of excitations in rare-earth activated glasses,” in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), p. 303–341.

W. M. Yen, “Studies of energy transfer in rare-earth ions in crystals,” in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), p. 185–247.

M. J. Weber, “Laser excited fluorescence spectroscopy in glass,” in Laser Spectroscopy of Solids, W. M. Yen and P. M. Selzer, eds. (Springer-Verlag, Berlin, 1981), pp. 189–239, and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Room-temperature absorption spectrum of Nd3+ (2%) ions in GeO2PbONb2O5 glass.

Fig. 2
Fig. 2

Lifetimes of the  4F3/2 state as a function of excitation wavelength along the  4I9/24G5/2 absorption band for the sample doped with 2 mol. % of Nd3+.

Fig. 3
Fig. 3

Time-resolved fluorescence line-narrowed spectra of the  4F3/24I9/2 transition obtained at 1 and 700 µs after the laser pulse by excitation at 880 nm for the samples doped with 0.5, 1, 2, and 3 mol. % of Nd3+. Measurements were made at 4.2 K.

Fig. 4
Fig. 4

Analysis of the time evolution of the TRFLN  4F3/24I9/2 emission by means of Eq. (1) for three concentrations. Symbols correspond to experimental data; solid lines are fits to Eq. (1).

Fig. 5
Fig. 5

Dependence of the quantity Ln(IB/IN+1) on concentration for Nd3+ ions. Symbols correspond to experimental data; solid lines linear fits. Data were obtained at different time delays after laser pulse excitation at 880 nm.

Fig. 6
Fig. 6

Upconversion emission spectrum for sample doped with 2 mol. % of Nd3+ obtained under cw excitation at 806 nm at 77 K.

Fig. 7
Fig. 7

Logarithmic plot of the integrated intensity of the upconverted orange emission (599 nm) as a function of the pump laser intensity. Data for 77 K and 2 mol. % of Nd3+.

Fig. 8
Fig. 8

Energy-level diagram obtained from the room-temperature absorption spectrum of the sample doped with 2 mol. % of Nd3+. Possible upconversion mechanisms and assignments of the emission bands observed with 806-nm excitation are also indicated.

Fig. 9
Fig. 9

Excitation spectrum of the 599-nm line for the sample doped with 2 mol. % of Nd3+, corrected for the spectral variation of the laser intensity. Measurements were performed at 77 K.

Tables (2)

Tables Icon

Table 1 Room-Temperature Emission Properties of Nd3+ in GeO2PbONb2O5a

Tables Icon

Table 2 Lifetime τ (µs) of the  4F3/2 State As a Function of Nd3+ Concentration at Three Different Temperatures T

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

LnIBIN+1=γ(EL)t1/2.

Metrics