Abstract

Light absorption in optical elements of Faraday rotators results in a nonuniform cross-sectional temperature distribution that leads to depolarization of laser radiation and, consequently, limits the isolation ratio of optical Faraday isolators. We show experimentally that the influence of the temperature dependence of the Verdet constant on the isolation ratio is negligibly small when compared with the influence of the photoelastic effect. We also present two novel methods of optical isolation that significantly reduce the depolarization caused by the photoelastic effect and increase the isolation ratio by two orders of magnitude in comparison with the conventional method. Our results confirm the possibility of magneto-optical glass-based Faraday isolators with isolation ratios of 30 dB for average laser powers of hundreds of watts.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Shine, A. J. Alfrey, and R. L. Byer, “40-W cw, TEM00-mode, diode-laser-pumped, Nd-YAG miniature-slab laser,” Opt. Lett. 20, 459–461 (1995).
    [CrossRef] [PubMed]
  2. S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
    [CrossRef]
  3. A. N. Malshakov, G. A. Pasmanik, and A. K. Potemkin, “Comparative characteristics of magneto-optical materials,” Appl. Opt. 36, 6403–6410 (1997).
    [CrossRef]
  4. N. P. Barnes and L. P. Petway, “Variation of the Verdet constant with temperature of terbium gallium garnet,” J. Opt. Soc. Am. B 9, 1912–1915 (1992).
    [CrossRef]
  5. J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
    [CrossRef]
  6. E. Khazanov, O. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
    [CrossRef]
  7. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999) [Kvant. Elektron. (Moscow) 26, 59–64 (1999) ].
    [CrossRef]
  8. K. Shiraishi, F. Tajima, and S. Kawakami, “Compact Faraday rotator for an optical isolator using magnets arranged with alternating polarities,” Opt. Lett. 11, 82–84 (1986).
    [CrossRef] [PubMed]
  9. W. A. Clarkson, N. S. Felgate, and D. C. Hanna, “Simple method for reducing depolarization loss resulting from thermally induced birefringence in solid-state lasers,” Opt. Lett. 24, 820–822 (1999).
    [CrossRef]
  10. A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986), p. 44.
  11. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992).
    [CrossRef] [PubMed]
  12. A. Giazotto, “Wide-band measurement of gravitational waves—the Virgo Project,” Nuovo Cimento C 15, 955–971 (1992).
    [CrossRef]
  13. M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
    [CrossRef]
  14. K. Kawabe, “Status of TAMA project,” Class. Quantum Grav. 14, 1477–1480 (1997).
    [CrossRef]

1999 (3)

E. Khazanov, O. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999) [Kvant. Elektron. (Moscow) 26, 59–64 (1999) ].
[CrossRef]

W. A. Clarkson, N. S. Felgate, and D. C. Hanna, “Simple method for reducing depolarization loss resulting from thermally induced birefringence in solid-state lasers,” Opt. Lett. 24, 820–822 (1999).
[CrossRef]

1998 (1)

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

1997 (3)

K. Kawabe, “Status of TAMA project,” Class. Quantum Grav. 14, 1477–1480 (1997).
[CrossRef]

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

A. N. Malshakov, G. A. Pasmanik, and A. K. Potemkin, “Comparative characteristics of magneto-optical materials,” Appl. Opt. 36, 6403–6410 (1997).
[CrossRef]

1995 (1)

1992 (3)

N. P. Barnes and L. P. Petway, “Variation of the Verdet constant with temperature of terbium gallium garnet,” J. Opt. Soc. Am. B 9, 1912–1915 (1992).
[CrossRef]

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

A. Giazotto, “Wide-band measurement of gravitational waves—the Virgo Project,” Nuovo Cimento C 15, 955–971 (1992).
[CrossRef]

1986 (1)

1970 (1)

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

Abramovici, A.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Alfrey, A. J.

Althouse, W. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Barnes, N. P.

Beach, R. J.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Bibeau, C.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Byer, R. L.

Clarkson, W. A.

Drever, R. W. P.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Ebbers, C. A.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Emanuel, M. A.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Felgate, N. S.

Foster, J. D.

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

Giazotto, A.

A. Giazotto, “Wide-band measurement of gravitational waves—the Virgo Project,” Nuovo Cimento C 15, 955–971 (1992).
[CrossRef]

Gursel, Y.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Hanna, D. C.

Honea, E. C.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Hough, J.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Kawabe, K.

K. Kawabe, “Status of TAMA project,” Class. Quantum Grav. 14, 1477–1480 (1997).
[CrossRef]

Kawakami, S.

Kawamura, S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Khazanov, E.

E. Khazanov, O. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Khazanov, E. A.

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999) [Kvant. Elektron. (Moscow) 26, 59–64 (1999) ].
[CrossRef]

Killbourn, S.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Krupke, W. F.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Kulagin, O.

E. Khazanov, O. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Malshakov, A. N.

Marshall, C. D.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Osterink, L. M.

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

Page, R. H.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Pasmanik, G. A.

Payne, S. A.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Petway, L. P.

Plissi, M. V.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Potemkin, A. K.

Raab, F. J.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Reitze, D.

E. Khazanov, O. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Robertson, N. A.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Rowan, S.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Schaffers, K. I.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Shine, R. J.

Shiraishi, K.

Shoemaker, D.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Sievers, L.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Skeldon, K. D.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Skidmore, J. A.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Spero, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Strain, K. A.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Sutton, S. B.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Tajima, F.

Tanner, D.

E. Khazanov, O. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Thorne, K. S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Torrie, C. I.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Twyford, S. M.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Vogt, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Ward, H.

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Weiss, R.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Whitcomb, S. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Yoshida, S.

E. Khazanov, O. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Zucker, M. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Appl. Opt. (1)

Class. Quantum Grav. (1)

K. Kawabe, “Status of TAMA project,” Class. Quantum Grav. 14, 1477–1480 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Khazanov, O. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

J. Appl. Phys. (1)

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nuovo Cimento C (1)

A. Giazotto, “Wide-band measurement of gravitational waves—the Virgo Project,” Nuovo Cimento C 15, 955–971 (1992).
[CrossRef]

Opt. Lett. (3)

Quantum Electron. (1)

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999) [Kvant. Elektron. (Moscow) 26, 59–64 (1999) ].
[CrossRef]

Rev. Sci. Instrum. (1)

M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998).
[CrossRef]

Science (1)

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Other (1)

A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986), p. 44.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Traditional method for Faraday isolation and novel (Ref. 7) geometries (b) with a λ/2 plate and (c) with a reciprocal rotator: 1,4, polarizers; 2,6, λ/2 plates; 3, 45° Faraday rotator; 5, 22.5° clockwise Faraday rotator; 7, 22.5° counterclockwise Faraday rotator; 8, 67.5° reciprocal polarization rotator.

Fig. 2
Fig. 2

Power dependence of γ(p) for the geometries shown in Fig. 1(a) (a, circles), Fig. 1(b) (b, triangles), and Fig. 1(c) (c, squares). The depolarization is suppressed almost two orders of magnitude at high powers when the Faraday isolator geometries shown in Figs. 1(b) and 1(c) are used.

Fig. 3
Fig. 3

Images of the spatial profiles of the depolarized beams after transmission through the isolators for each geometry shown in (a) Figs 1(a), (b) Fig. 1(b), and (c) Fig. 1(c).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

γ=Pt/(Pt+Pr),
p=PhQλκ,
Q=1LdLdTn0341+v1-v(p11-p12),
γa=A1π2p20.014p2,
γb=8A2π42a2+sin4π8p40.85×10-4p4,
γc=16a2A2π4p41.07×10-5p4,
A1=01y-exp(-y)y-12dyexpy0.137,
A2=01y-exp(-y)y-14 dyexpy0.042,
a=π8-14-sin2(π/8)2.
γ(H=0)=0.017PhQλκ2=0.017p2.

Metrics