Abstract

We propose and demonstrate alkali bismuth gallate glasses as suitable hosts for the rare earth praseodymium (Pr3+) operating at 1.3-µm wavelength. The structure of the glasses was investigated by Raman spectroscopy. The optical absorption and the photoluminescence properties of Pr3+ in these glasses were characterized. The Raman spectrum shows two strong peaks, at 134 and 381 cm-1, and a weak peak at 660 cm-1. The results indicate that bismuth (Bi3+) and gallium (Ga3+) cations do take part in the formation of the glass network. The emission from the Pr3+:1G43H5 transition is at 1.34-µm wavelength, and the spectral bandwidth is 120 nm, which is wider than those of fluoride and chalcogenide glasses. The lifetime of the  1G4 level is ∼78 µs, and the quantum efficiency is ∼17.4%, which is higher than that in fluoride glasses.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on Er/Yb doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315–317 (1997).
    [CrossRef]
  2. P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321–323 (1996).
    [CrossRef]
  3. Y. Miyajima, T. Sugawa, and Y. Fukasaku, “38.2 dB amplification at 1.31 μm and possibility of 0.98 μm pumping in Pr3+-doped fluoride fiber,” Electron. Lett. 27, 1706–1707 (1991).
    [CrossRef]
  4. Y. Nishida, T. Kanamori, Y. Ohishi, M. Yamada, K. Kobayashi, and S. Sudo, “Efficient PDFA module using high-NA PbF2/InF3-based fluoride fiber,” IEEE Photon. Technol. Lett. 9, 318–320 (1997).
    [CrossRef]
  5. M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett. 6, 189–191 (1994).
    [CrossRef]
  6. K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge–Ga–S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
    [CrossRef]
  7. H. Tawarayama, E. Ishikawa, K. Itoh, H. Aoki, H. Yanagita, K. Okada, K. Yamanaka, Y. Matsuoka, and H. Toratani, “Efficient amplification at 1.3 μm in a Pr3+-doped Ga–Na–S fiber,” presented at the International Conference on Optical Amplifiers and Their Applications, Victoria, B.C., Canada, 1997.
  8. P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys. 78, 6367–6374 (1995).
    [CrossRef]
  9. R. S. Quimby, P. A. Tick, N. F. Borrelli, and L. K. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys. 83, 1649–1653 (1998).
    [CrossRef]
  10. W. H. Dumbaugh and J. C. Lapp, “Heavy metal oxide glasses,” J. Am. Ceram. Soc. 75, 2315–2326 (1992).
    [CrossRef]
  11. Y. G. Choi and J. Heo, “1.3 μm emission and multiphonon relaxation phenomena in PbO–Bi2O3–Ga2O3 glasses doped with rare earths,” J. Non-Cryst. Solids 217, 199–207 (1997).
    [CrossRef]
  12. J. C. Lapp, “Alkali bismuth gallate glasses,” Am. Ceram. Soc. Bull. 71, 1543–1549 (1992).
  13. M. Saad and M. Poulain, “Glass-forming ability criterion,” Mater. Sci. Forum 19–20, 11–18 (1987).
    [CrossRef]
  14. F. Miyaji and S. Sakka, “Structure of PbO–Bi2O3–Ga2O3 glasses,” J. Non-Cryst. Solids 134, 77–85 (1991).
    [CrossRef]
  15. M. Janewicz, J. Wasylak, and E. Czerwosz, “Raman investigation of PbO–BiO1.5–GaO1.5 glasses,” Phys. Chem. Glasses 35, 169–173 (1994).
  16. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [CrossRef]
  17. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  18. M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
    [CrossRef]
  19. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
    [CrossRef]
  20. R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→ 4I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 103–111 (1976).
  21. M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys. 48, 4774–4780 (1968).
    [CrossRef]

1998 (1)

R. S. Quimby, P. A. Tick, N. F. Borrelli, and L. K. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys. 83, 1649–1653 (1998).
[CrossRef]

1997 (3)

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on Er/Yb doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315–317 (1997).
[CrossRef]

Y. Nishida, T. Kanamori, Y. Ohishi, M. Yamada, K. Kobayashi, and S. Sudo, “Efficient PDFA module using high-NA PbF2/InF3-based fluoride fiber,” IEEE Photon. Technol. Lett. 9, 318–320 (1997).
[CrossRef]

Y. G. Choi and J. Heo, “1.3 μm emission and multiphonon relaxation phenomena in PbO–Bi2O3–Ga2O3 glasses doped with rare earths,” J. Non-Cryst. Solids 217, 199–207 (1997).
[CrossRef]

1996 (1)

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321–323 (1996).
[CrossRef]

1995 (2)

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge–Ga–S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys. 78, 6367–6374 (1995).
[CrossRef]

1994 (2)

M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett. 6, 189–191 (1994).
[CrossRef]

M. Janewicz, J. Wasylak, and E. Czerwosz, “Raman investigation of PbO–BiO1.5–GaO1.5 glasses,” Phys. Chem. Glasses 35, 169–173 (1994).

1992 (2)

J. C. Lapp, “Alkali bismuth gallate glasses,” Am. Ceram. Soc. Bull. 71, 1543–1549 (1992).

W. H. Dumbaugh and J. C. Lapp, “Heavy metal oxide glasses,” J. Am. Ceram. Soc. 75, 2315–2326 (1992).
[CrossRef]

1991 (2)

Y. Miyajima, T. Sugawa, and Y. Fukasaku, “38.2 dB amplification at 1.31 μm and possibility of 0.98 μm pumping in Pr3+-doped fluoride fiber,” Electron. Lett. 27, 1706–1707 (1991).
[CrossRef]

F. Miyaji and S. Sakka, “Structure of PbO–Bi2O3–Ga2O3 glasses,” J. Non-Cryst. Solids 134, 77–85 (1991).
[CrossRef]

1987 (1)

M. Saad and M. Poulain, “Glass-forming ability criterion,” Mater. Sci. Forum 19–20, 11–18 (1987).
[CrossRef]

1981 (1)

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

1976 (1)

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→ 4I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 103–111 (1976).

1968 (2)

M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys. 48, 4774–4780 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Aitken, B. G.

M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett. 6, 189–191 (1994).
[CrossRef]

Barbier, D.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on Er/Yb doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315–317 (1997).
[CrossRef]

Bartholomew, R. F.

M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett. 6, 189–191 (1994).
[CrossRef]

Béguin, A.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321–323 (1996).
[CrossRef]

Blackburn, D. H.

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

Borrelli, N. F.

R. S. Quimby, P. A. Tick, N. F. Borrelli, and L. K. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys. 83, 1649–1653 (1998).
[CrossRef]

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys. 78, 6367–6374 (1995).
[CrossRef]

M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett. 6, 189–191 (1994).
[CrossRef]

Button, L. J.

M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett. 6, 189–191 (1994).
[CrossRef]

Camy, P.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321–323 (1996).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

Choi, Y. G.

Y. G. Choi and J. Heo, “1.3 μm emission and multiphonon relaxation phenomena in PbO–Bi2O3–Ga2O3 glasses doped with rare earths,” J. Non-Cryst. Solids 217, 199–207 (1997).
[CrossRef]

Clauss, G.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on Er/Yb doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315–317 (1997).
[CrossRef]

Cornelius, L. K.

R. S. Quimby, P. A. Tick, N. F. Borrelli, and L. K. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys. 83, 1649–1653 (1998).
[CrossRef]

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys. 78, 6367–6374 (1995).
[CrossRef]

Czerwosz, E.

M. Janewicz, J. Wasylak, and E. Czerwosz, “Raman investigation of PbO–BiO1.5–GaO1.5 glasses,” Phys. Chem. Glasses 35, 169–173 (1994).

Delavaux, J.-M. P.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on Er/Yb doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315–317 (1997).
[CrossRef]

Dumbaugh, W. H.

W. H. Dumbaugh and J. C. Lapp, “Heavy metal oxide glasses,” J. Am. Ceram. Soc. 75, 2315–2326 (1992).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

Fukasaku, Y.

Y. Miyajima, T. Sugawa, and Y. Fukasaku, “38.2 dB amplification at 1.31 μm and possibility of 0.98 μm pumping in Pr3+-doped fluoride fiber,” Electron. Lett. 27, 1706–1707 (1991).
[CrossRef]

Hempstead, M.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321–323 (1996).
[CrossRef]

Heo, J.

Y. G. Choi and J. Heo, “1.3 μm emission and multiphonon relaxation phenomena in PbO–Bi2O3–Ga2O3 glasses doped with rare earths,” J. Non-Cryst. Solids 217, 199–207 (1997).
[CrossRef]

Jacobs, R. R.

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→ 4I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 103–111 (1976).

Janewicz, M.

M. Janewicz, J. Wasylak, and E. Czerwosz, “Raman investigation of PbO–BiO1.5–GaO1.5 glasses,” Phys. Chem. Glasses 35, 169–173 (1994).

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Kanamori, T.

Y. Nishida, T. Kanamori, Y. Ohishi, M. Yamada, K. Kobayashi, and S. Sudo, “Efficient PDFA module using high-NA PbF2/InF3-based fluoride fiber,” IEEE Photon. Technol. Lett. 9, 318–320 (1997).
[CrossRef]

Kevorkian, A.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on Er/Yb doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315–317 (1997).
[CrossRef]

Kobayashi, K.

Y. Nishida, T. Kanamori, Y. Ohishi, M. Yamada, K. Kobayashi, and S. Sudo, “Efficient PDFA module using high-NA PbF2/InF3-based fluoride fiber,” IEEE Photon. Technol. Lett. 9, 318–320 (1997).
[CrossRef]

Koonen, A. M. J.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321–323 (1996).
[CrossRef]

Lapp, J. C.

J. C. Lapp, “Alkali bismuth gallate glasses,” Am. Ceram. Soc. Bull. 71, 1543–1549 (1992).

W. H. Dumbaugh and J. C. Lapp, “Heavy metal oxide glasses,” J. Am. Ceram. Soc. 75, 2315–2326 (1992).
[CrossRef]

Lerminiaux, C.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321–323 (1996).
[CrossRef]

Machewirth, D. P.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge–Ga–S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

Miyaji, F.

F. Miyaji and S. Sakka, “Structure of PbO–Bi2O3–Ga2O3 glasses,” J. Non-Cryst. Solids 134, 77–85 (1991).
[CrossRef]

Miyajima, Y.

Y. Miyajima, T. Sugawa, and Y. Fukasaku, “38.2 dB amplification at 1.31 μm and possibility of 0.98 μm pumping in Pr3+-doped fluoride fiber,” Electron. Lett. 27, 1706–1707 (1991).
[CrossRef]

Murphy, E.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on Er/Yb doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315–317 (1997).
[CrossRef]

Myers, J. D.

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

Newhouse, M. A.

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys. 78, 6367–6374 (1995).
[CrossRef]

M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett. 6, 189–191 (1994).
[CrossRef]

Nishida, Y.

Y. Nishida, T. Kanamori, Y. Ohishi, M. Yamada, K. Kobayashi, and S. Sudo, “Efficient PDFA module using high-NA PbF2/InF3-based fluoride fiber,” IEEE Photon. Technol. Lett. 9, 318–320 (1997).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Ohishi, Y.

Y. Nishida, T. Kanamori, Y. Ohishi, M. Yamada, K. Kobayashi, and S. Sudo, “Efficient PDFA module using high-NA PbF2/InF3-based fluoride fiber,” IEEE Photon. Technol. Lett. 9, 318–320 (1997).
[CrossRef]

Poulain, M.

M. Saad and M. Poulain, “Glass-forming ability criterion,” Mater. Sci. Forum 19–20, 11–18 (1987).
[CrossRef]

Prel, C.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321–323 (1996).
[CrossRef]

Quimby, R. S.

R. S. Quimby, P. A. Tick, N. F. Borrelli, and L. K. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys. 83, 1649–1653 (1998).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

Rattay, M.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on Er/Yb doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315–317 (1997).
[CrossRef]

Román, J. E.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321–323 (1996).
[CrossRef]

Saad, M.

M. Saad and M. Poulain, “Glass-forming ability criterion,” Mater. Sci. Forum 19–20, 11–18 (1987).
[CrossRef]

Saint André, F.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on Er/Yb doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315–317 (1997).
[CrossRef]

Sakka, S.

F. Miyaji and S. Sakka, “Structure of PbO–Bi2O3–Ga2O3 glasses,” J. Non-Cryst. Solids 134, 77–85 (1991).
[CrossRef]

Sigel Jr., G. H.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge–Ga–S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

Snitzer, E.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge–Ga–S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

Sudo, S.

Y. Nishida, T. Kanamori, Y. Ohishi, M. Yamada, K. Kobayashi, and S. Sudo, “Efficient PDFA module using high-NA PbF2/InF3-based fluoride fiber,” IEEE Photon. Technol. Lett. 9, 318–320 (1997).
[CrossRef]

Sugawa, T.

Y. Miyajima, T. Sugawa, and Y. Fukasaku, “38.2 dB amplification at 1.31 μm and possibility of 0.98 μm pumping in Pr3+-doped fluoride fiber,” Electron. Lett. 27, 1706–1707 (1991).
[CrossRef]

Tick, P. A.

R. S. Quimby, P. A. Tick, N. F. Borrelli, and L. K. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys. 83, 1649–1653 (1998).
[CrossRef]

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys. 78, 6367–6374 (1995).
[CrossRef]

Trouillon, M.

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on Er/Yb doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315–317 (1997).
[CrossRef]

van der Plaats, J. C.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321–323 (1996).
[CrossRef]

Wasylak, J.

M. Janewicz, J. Wasylak, and E. Czerwosz, “Raman investigation of PbO–BiO1.5–GaO1.5 glasses,” Phys. Chem. Glasses 35, 169–173 (1994).

Weber, M. J.

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→ 4I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 103–111 (1976).

M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys. 48, 4774–4780 (1968).
[CrossRef]

Wei, K.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge–Ga–S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

Wenzel, J.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge–Ga–S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

Wilkinson, J. S.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321–323 (1996).
[CrossRef]

Willems, F. W.

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321–323 (1996).
[CrossRef]

Yamada, M.

Y. Nishida, T. Kanamori, Y. Ohishi, M. Yamada, K. Kobayashi, and S. Sudo, “Efficient PDFA module using high-NA PbF2/InF3-based fluoride fiber,” IEEE Photon. Technol. Lett. 9, 318–320 (1997).
[CrossRef]

Am. Ceram. Soc. Bull. (1)

J. C. Lapp, “Alkali bismuth gallate glasses,” Am. Ceram. Soc. Bull. 71, 1543–1549 (1992).

Electron. Lett. (2)

P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321–323 (1996).
[CrossRef]

Y. Miyajima, T. Sugawa, and Y. Fukasaku, “38.2 dB amplification at 1.31 μm and possibility of 0.98 μm pumping in Pr3+-doped fluoride fiber,” Electron. Lett. 27, 1706–1707 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→ 4I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 103–111 (1976).

IEEE Photon. Technol. Lett. (3)

Y. Nishida, T. Kanamori, Y. Ohishi, M. Yamada, K. Kobayashi, and S. Sudo, “Efficient PDFA module using high-NA PbF2/InF3-based fluoride fiber,” IEEE Photon. Technol. Lett. 9, 318–320 (1997).
[CrossRef]

M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett. 6, 189–191 (1994).
[CrossRef]

D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on Er/Yb doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315–317 (1997).
[CrossRef]

J. Am. Ceram. Soc. (1)

W. H. Dumbaugh and J. C. Lapp, “Heavy metal oxide glasses,” J. Am. Ceram. Soc. 75, 2315–2326 (1992).
[CrossRef]

J. Appl. Phys. (3)

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys. 78, 6367–6374 (1995).
[CrossRef]

R. S. Quimby, P. A. Tick, N. F. Borrelli, and L. K. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys. 83, 1649–1653 (1998).
[CrossRef]

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

J. Chem. Phys. (3)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys. 48, 4774–4780 (1968).
[CrossRef]

J. Non-Cryst. Solids (3)

F. Miyaji and S. Sakka, “Structure of PbO–Bi2O3–Ga2O3 glasses,” J. Non-Cryst. Solids 134, 77–85 (1991).
[CrossRef]

Y. G. Choi and J. Heo, “1.3 μm emission and multiphonon relaxation phenomena in PbO–Bi2O3–Ga2O3 glasses doped with rare earths,” J. Non-Cryst. Solids 217, 199–207 (1997).
[CrossRef]

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge–Ga–S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
[CrossRef]

Mater. Sci. Forum (1)

M. Saad and M. Poulain, “Glass-forming ability criterion,” Mater. Sci. Forum 19–20, 11–18 (1987).
[CrossRef]

Phys. Chem. Glasses (1)

M. Janewicz, J. Wasylak, and E. Czerwosz, “Raman investigation of PbO–BiO1.5–GaO1.5 glasses,” Phys. Chem. Glasses 35, 169–173 (1994).

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Other (1)

H. Tawarayama, E. Ishikawa, K. Itoh, H. Aoki, H. Yanagita, K. Okada, K. Yamanaka, Y. Matsuoka, and H. Toratani, “Efficient amplification at 1.3 μm in a Pr3+-doped Ga–Na–S fiber,” presented at the International Conference on Optical Amplifiers and Their Applications, Victoria, B.C., Canada, 1997.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Polarized Raman spectrum of undoped K2OBi2O3Ga2O3 glasses.

Fig. 2
Fig. 2

Deconvolved Raman spectrum of K2OBi2O3Ga2O3 glasses. Solid curve, experimental data; dotted curves, fitting data.

Fig. 3
Fig. 3

Absorption spectrum of 1.0-wt. % Pr3+-doped K2OBi2O3Ga2O3 glasses.

Fig. 4
Fig. 4

Fluorescence spectrum of the  1G43H5 transition in 0.5-wt. % Pr3+-doped K2OBi2O3Ga2O3 glasses.

Tables (2)

Tables Icon

Table 1 Measured and Calculated Oscillator Strengths, Electric-Dipole Line Strengths Sed for Some Transitions, and Judd–Ofelt Intensity Parameters of Pr3+ in K2OBi2O3Ga2O3 Glasses

Tables Icon

Table 2 Optical Transitions from the  1G4 Levels of Pr3+ in K2OBi2O3Ga2O3 Glassesa

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

sed(J; J)=t=2,4,6 ΩtαSL, JU(t)αSL, J2,
fexp=2303mc2NAπe2(ν)dv=4.318×10-9(v)dv,
f(J, J)=8π2mc(n2+2)23hλ(2J+1)9nSed(J; J),
A[(S, L)J:(S, L)J]
=64π4e2n3h(2J+1)λ-3(n2+2)29
×t=2,4,6 Ωt(S, L)JU(t)(S, L)J2.
β[(S, L)J:(S, L)J]=A[(S, L)J:(S, L)J]S,L,JA[(S, L)J:(S, L)J],
σse=λ48πcn2AΔλeff,
τR=S,L,JA[(S, L)J:(S, L)J]-1=Atotal-1.
WMP=1τmeas-1τR

Metrics