Abstract

We have measured the optical fluorescence spectra of dye incorporated in high-quality photonic crystals made from colloids. The spectra reveal a stopgap that is due to Bragg reflection with strikingly reduced attenuation compared with plane-wave transmission. The modified attenuation is independent of the position of the sources in the sample and is brought about by diffuse scattering from defects near the surface. In the presence of a photonic bandgap, the diffuse component would disappear. Thus we have found a simple, unambiguous probe for the presence of photonic bandgaps.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Soukoulis, ed., Photonic Band Gap Materials (Kluwer, Dordrecht, The Netherlands, 1996).
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  3. Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46(6), 66–73 (1993); S. John, “Theory of photonic band gap materials,” in Photonic Band Gap Materials, C. M. Soukoulis, ed. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 563–665.
    [CrossRef]
  4. V. N. Bogomolov, S. V. Gaponenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
    [CrossRef]
  5. E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
    [CrossRef]
  6. T. Yamasaki and T. Tsutsui, “Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene spheres,” Appl. Phys. Lett. 72, 1957–1959 (1998).
    [CrossRef]
  7. K. Yoshino, S. B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, and A. A. Zakhidov, “Observation of inhibited spontaneous emission and stimulated emission of Rhodamine 6G in polymer replica of synthetic opal,” Appl. Phys. Lett. 63, 3506–3508 (1998).
    [CrossRef]
  8. A. Blanco, C. López, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781–1783 (1998).
    [CrossRef]
  9. H. Miguez, A. Blanco, F. Meseguer, C. López, H. M. Yates, M. E. Pemble, V. Fornés, and A. Mifsud, “Bragg diffraction from inidium phosphide infilled fcc silica colloidal crystals,” Phys. Rev. B 59, 1563–1566 (1999).
    [CrossRef]
  10. W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge U. Press, Cambridge, 1989).
  11. A. van Blaaderen and A. Vrij, “Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres,” Langmuir 8, 2921–2931 (1992).
    [CrossRef]
  12. B. Y. Tong, P. K. John, Y.-T. Zhu, Y. S. Liu, S. K. Wong, and W. R. Ware, “Fluorescence lifetime measurements in monodispersed suspensions of polystyrene spheres,” J. Opt. Soc. Am. B 10, 356–359 (1993); N. M. Lawandy, “Fluorescence-lifetime measurements in monodispersed suspensions of polystyrene particles: comment,” J. Opt. Soc. Am. B 10, 2144–2146 (1993).
    [CrossRef]
  13. M. Megens, C. M. van Kats, P. Bösecke, and W. L. Vos, “Synchrotron small-angle x-ray scattering of colloids and photonic colloidal crystals,” J. Appl. Crystallogr. 30, 637–641 (1997).
    [CrossRef]
  14. W. L. Vos, M. Megens, C. M. van Kats, and P. Bösecke, “X-ray diffraction of photonic colloidal single crystals,” Langmuir 13, 6004–6008 (1997).
    [CrossRef]
  15. M. Megens, C. M. van Kats, P. Bösecke, and W. L. Vos, “In situ characterization of colloidal spheres by synchrotron small-angle x-ray scattering,” Langmuir 13, 6120–1629 (1997).
    [CrossRef]
  16. W. L. Vos, R. Sprik, A. van Blaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B 53, 16231–16235 (1996); erratum 55, 1903(E) (1997); “Influence of optical band structures on the diffraction of photonic colloidal crystals,” in Photonic Band Gap Materials, C. M. Soukoulis, ed. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 107–118.
    [CrossRef]
  17. J. C. Maxwell-Garnett, “Colors in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Ser. A 203, 385–420 (1904); “Colors in metal glasses, in metallic films, and in metallic solutions,” Philos. Trans. R. Soc. London, Ser. A 205, 237–288 (1906).
    [CrossRef]
  18. R. W. James, The Optical Principles of the Diffraction of X-Rays (Bell & Hyman, London, 1962).
  19. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, New York, 1976), p. 616.
  20. P. A. Rundquist, P. Photinos, S. Jagannathan, and S. A. Asher, “Dynamical Bragg diffraction from crystalline colloidal arrays,” J. Chem. Phys. 91, 4932–4941 (1989).
    [CrossRef]
  21. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
    [CrossRef] [PubMed]
  22. Ì. Ì. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315–318 (1996).
    [CrossRef] [PubMed]
  23. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
    [CrossRef]
  24. W. L. Vos, J. E. G. J. Wijnhoven, and M. Megens, “Experimental probe of gaps in photonic crystals,” in Conference on Lasers and Electro Optics Europe, September 1998 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), p. 361.
  25. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

1999 (1)

H. Miguez, A. Blanco, F. Meseguer, C. López, H. M. Yates, M. E. Pemble, V. Fornés, and A. Mifsud, “Bragg diffraction from inidium phosphide infilled fcc silica colloidal crystals,” Phys. Rev. B 59, 1563–1566 (1999).
[CrossRef]

1998 (4)

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[CrossRef]

T. Yamasaki and T. Tsutsui, “Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene spheres,” Appl. Phys. Lett. 72, 1957–1959 (1998).
[CrossRef]

K. Yoshino, S. B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, and A. A. Zakhidov, “Observation of inhibited spontaneous emission and stimulated emission of Rhodamine 6G in polymer replica of synthetic opal,” Appl. Phys. Lett. 63, 3506–3508 (1998).
[CrossRef]

A. Blanco, C. López, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781–1783 (1998).
[CrossRef]

1997 (5)

V. N. Bogomolov, S. V. Gaponenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[CrossRef]

M. Megens, C. M. van Kats, P. Bösecke, and W. L. Vos, “Synchrotron small-angle x-ray scattering of colloids and photonic colloidal crystals,” J. Appl. Crystallogr. 30, 637–641 (1997).
[CrossRef]

W. L. Vos, M. Megens, C. M. van Kats, and P. Bösecke, “X-ray diffraction of photonic colloidal single crystals,” Langmuir 13, 6004–6008 (1997).
[CrossRef]

M. Megens, C. M. van Kats, P. Bösecke, and W. L. Vos, “In situ characterization of colloidal spheres by synchrotron small-angle x-ray scattering,” Langmuir 13, 6120–1629 (1997).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

1996 (1)

Ì. Ì. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315–318 (1996).
[CrossRef] [PubMed]

1992 (1)

A. van Blaaderen and A. Vrij, “Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres,” Langmuir 8, 2921–2931 (1992).
[CrossRef]

1990 (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

1989 (1)

P. A. Rundquist, P. Photinos, S. Jagannathan, and S. A. Asher, “Dynamical Bragg diffraction from crystalline colloidal arrays,” J. Chem. Phys. 91, 4932–4941 (1989).
[CrossRef]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Asher, S. A.

P. A. Rundquist, P. Photinos, S. Jagannathan, and S. A. Asher, “Dynamical Bragg diffraction from crystalline colloidal arrays,” J. Chem. Phys. 91, 4932–4941 (1989).
[CrossRef]

Bardinal, V.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Benisty, H.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Blanco, A.

H. Miguez, A. Blanco, F. Meseguer, C. López, H. M. Yates, M. E. Pemble, V. Fornés, and A. Mifsud, “Bragg diffraction from inidium phosphide infilled fcc silica colloidal crystals,” Phys. Rev. B 59, 1563–1566 (1999).
[CrossRef]

A. Blanco, C. López, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781–1783 (1998).
[CrossRef]

Bogomolov, V. N.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[CrossRef]

V. N. Bogomolov, S. V. Gaponenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[CrossRef]

Bösecke, P.

M. Megens, C. M. van Kats, P. Bösecke, and W. L. Vos, “Synchrotron small-angle x-ray scattering of colloids and photonic colloidal crystals,” J. Appl. Crystallogr. 30, 637–641 (1997).
[CrossRef]

W. L. Vos, M. Megens, C. M. van Kats, and P. Bösecke, “X-ray diffraction of photonic colloidal single crystals,” Langmuir 13, 6004–6008 (1997).
[CrossRef]

M. Megens, C. M. van Kats, P. Bösecke, and W. L. Vos, “In situ characterization of colloidal spheres by synchrotron small-angle x-ray scattering,” Langmuir 13, 6120–1629 (1997).
[CrossRef]

Cassagne, D.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Chan, C. T.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

De La Rue, R. M.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Fornés, V.

H. Miguez, A. Blanco, F. Meseguer, C. López, H. M. Yates, M. E. Pemble, V. Fornés, and A. Mifsud, “Bragg diffraction from inidium phosphide infilled fcc silica colloidal crystals,” Phys. Rev. B 59, 1563–1566 (1999).
[CrossRef]

Gaponenko, N. V.

V. N. Bogomolov, S. V. Gaponenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[CrossRef]

Gaponenko, S. V.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[CrossRef]

V. N. Bogomolov, S. V. Gaponenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[CrossRef]

Herrero, J.

A. Blanco, C. López, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781–1783 (1998).
[CrossRef]

Ho, K. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

Houdré, R.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Jagannathan, S.

P. A. Rundquist, P. Photinos, S. Jagannathan, and S. A. Asher, “Dynamical Bragg diffraction from crystalline colloidal arrays,” J. Chem. Phys. 91, 4932–4941 (1989).
[CrossRef]

Jouanin, C.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Kalosha, I. I.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[CrossRef]

Kapitonov, A. M.

V. N. Bogomolov, S. V. Gaponenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[CrossRef]

Kawagishi, Y.

K. Yoshino, S. B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, and A. A. Zakhidov, “Observation of inhibited spontaneous emission and stimulated emission of Rhodamine 6G in polymer replica of synthetic opal,” Appl. Phys. Lett. 63, 3506–3508 (1998).
[CrossRef]

Krauss, T. F.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Labilloy, D.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Lee, S. B.

K. Yoshino, S. B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, and A. A. Zakhidov, “Observation of inhibited spontaneous emission and stimulated emission of Rhodamine 6G in polymer replica of synthetic opal,” Appl. Phys. Lett. 63, 3506–3508 (1998).
[CrossRef]

López, C.

H. Miguez, A. Blanco, F. Meseguer, C. López, H. M. Yates, M. E. Pemble, V. Fornés, and A. Mifsud, “Bragg diffraction from inidium phosphide infilled fcc silica colloidal crystals,” Phys. Rev. B 59, 1563–1566 (1999).
[CrossRef]

A. Blanco, C. López, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781–1783 (1998).
[CrossRef]

Mayoral, R.

A. Blanco, C. López, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781–1783 (1998).
[CrossRef]

Megens, M.

M. Megens, C. M. van Kats, P. Bösecke, and W. L. Vos, “Synchrotron small-angle x-ray scattering of colloids and photonic colloidal crystals,” J. Appl. Crystallogr. 30, 637–641 (1997).
[CrossRef]

M. Megens, C. M. van Kats, P. Bösecke, and W. L. Vos, “In situ characterization of colloidal spheres by synchrotron small-angle x-ray scattering,” Langmuir 13, 6120–1629 (1997).
[CrossRef]

W. L. Vos, M. Megens, C. M. van Kats, and P. Bösecke, “X-ray diffraction of photonic colloidal single crystals,” Langmuir 13, 6004–6008 (1997).
[CrossRef]

Meseguer, F.

H. Miguez, A. Blanco, F. Meseguer, C. López, H. M. Yates, M. E. Pemble, V. Fornés, and A. Mifsud, “Bragg diffraction from inidium phosphide infilled fcc silica colloidal crystals,” Phys. Rev. B 59, 1563–1566 (1999).
[CrossRef]

A. Blanco, C. López, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781–1783 (1998).
[CrossRef]

Mifsud, A.

H. Miguez, A. Blanco, F. Meseguer, C. López, H. M. Yates, M. E. Pemble, V. Fornés, and A. Mifsud, “Bragg diffraction from inidium phosphide infilled fcc silica colloidal crystals,” Phys. Rev. B 59, 1563–1566 (1999).
[CrossRef]

A. Blanco, C. López, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781–1783 (1998).
[CrossRef]

Miguez, H.

H. Miguez, A. Blanco, F. Meseguer, C. López, H. M. Yates, M. E. Pemble, V. Fornés, and A. Mifsud, “Bragg diffraction from inidium phosphide infilled fcc silica colloidal crystals,” Phys. Rev. B 59, 1563–1566 (1999).
[CrossRef]

A. Blanco, C. López, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781–1783 (1998).
[CrossRef]

Oesterle, U.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Ozaki, M.

K. Yoshino, S. B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, and A. A. Zakhidov, “Observation of inhibited spontaneous emission and stimulated emission of Rhodamine 6G in polymer replica of synthetic opal,” Appl. Phys. Lett. 63, 3506–3508 (1998).
[CrossRef]

Pemble, M. E.

H. Miguez, A. Blanco, F. Meseguer, C. López, H. M. Yates, M. E. Pemble, V. Fornés, and A. Mifsud, “Bragg diffraction from inidium phosphide infilled fcc silica colloidal crystals,” Phys. Rev. B 59, 1563–1566 (1999).
[CrossRef]

Petrov, E. P.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[CrossRef]

V. N. Bogomolov, S. V. Gaponenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[CrossRef]

Photinos, P.

P. A. Rundquist, P. Photinos, S. Jagannathan, and S. A. Asher, “Dynamical Bragg diffraction from crystalline colloidal arrays,” J. Chem. Phys. 91, 4932–4941 (1989).
[CrossRef]

Ponyavina, A. N.

V. N. Bogomolov, S. V. Gaponenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[CrossRef]

Prokofiev, A. V.

V. N. Bogomolov, S. V. Gaponenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[CrossRef]

Rundquist, P. A.

P. A. Rundquist, P. Photinos, S. Jagannathan, and S. A. Asher, “Dynamical Bragg diffraction from crystalline colloidal arrays,” J. Chem. Phys. 91, 4932–4941 (1989).
[CrossRef]

Samoilovich, S. M.

V. N. Bogomolov, S. V. Gaponenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[CrossRef]

Silvanovich, N. I.

V. N. Bogomolov, S. V. Gaponenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[CrossRef]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

Tarhan, Ì. Ì.

Ì. Ì. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315–318 (1996).
[CrossRef] [PubMed]

Tatsuhara, S.

K. Yoshino, S. B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, and A. A. Zakhidov, “Observation of inhibited spontaneous emission and stimulated emission of Rhodamine 6G in polymer replica of synthetic opal,” Appl. Phys. Lett. 63, 3506–3508 (1998).
[CrossRef]

Tsutsui, T.

T. Yamasaki and T. Tsutsui, “Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene spheres,” Appl. Phys. Lett. 72, 1957–1959 (1998).
[CrossRef]

van Blaaderen, A.

A. van Blaaderen and A. Vrij, “Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres,” Langmuir 8, 2921–2931 (1992).
[CrossRef]

van Kats, C. M.

M. Megens, C. M. van Kats, P. Bösecke, and W. L. Vos, “Synchrotron small-angle x-ray scattering of colloids and photonic colloidal crystals,” J. Appl. Crystallogr. 30, 637–641 (1997).
[CrossRef]

W. L. Vos, M. Megens, C. M. van Kats, and P. Bösecke, “X-ray diffraction of photonic colloidal single crystals,” Langmuir 13, 6004–6008 (1997).
[CrossRef]

M. Megens, C. M. van Kats, P. Bösecke, and W. L. Vos, “In situ characterization of colloidal spheres by synchrotron small-angle x-ray scattering,” Langmuir 13, 6120–1629 (1997).
[CrossRef]

Vos, W. L.

M. Megens, C. M. van Kats, P. Bösecke, and W. L. Vos, “In situ characterization of colloidal spheres by synchrotron small-angle x-ray scattering,” Langmuir 13, 6120–1629 (1997).
[CrossRef]

M. Megens, C. M. van Kats, P. Bösecke, and W. L. Vos, “Synchrotron small-angle x-ray scattering of colloids and photonic colloidal crystals,” J. Appl. Crystallogr. 30, 637–641 (1997).
[CrossRef]

W. L. Vos, M. Megens, C. M. van Kats, and P. Bösecke, “X-ray diffraction of photonic colloidal single crystals,” Langmuir 13, 6004–6008 (1997).
[CrossRef]

Vrij, A.

A. van Blaaderen and A. Vrij, “Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres,” Langmuir 8, 2921–2931 (1992).
[CrossRef]

Watson, G. H.

Ì. Ì. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315–318 (1996).
[CrossRef] [PubMed]

Weisbuch, C.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yamasaki, T.

T. Yamasaki and T. Tsutsui, “Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene spheres,” Appl. Phys. Lett. 72, 1957–1959 (1998).
[CrossRef]

Yates, H. M.

H. Miguez, A. Blanco, F. Meseguer, C. López, H. M. Yates, M. E. Pemble, V. Fornés, and A. Mifsud, “Bragg diffraction from inidium phosphide infilled fcc silica colloidal crystals,” Phys. Rev. B 59, 1563–1566 (1999).
[CrossRef]

Yoshino, K.

K. Yoshino, S. B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, and A. A. Zakhidov, “Observation of inhibited spontaneous emission and stimulated emission of Rhodamine 6G in polymer replica of synthetic opal,” Appl. Phys. Lett. 63, 3506–3508 (1998).
[CrossRef]

Zakhidov, A. A.

K. Yoshino, S. B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, and A. A. Zakhidov, “Observation of inhibited spontaneous emission and stimulated emission of Rhodamine 6G in polymer replica of synthetic opal,” Appl. Phys. Lett. 63, 3506–3508 (1998).
[CrossRef]

Appl. Phys. Lett. (3)

T. Yamasaki and T. Tsutsui, “Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene spheres,” Appl. Phys. Lett. 72, 1957–1959 (1998).
[CrossRef]

K. Yoshino, S. B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, and A. A. Zakhidov, “Observation of inhibited spontaneous emission and stimulated emission of Rhodamine 6G in polymer replica of synthetic opal,” Appl. Phys. Lett. 63, 3506–3508 (1998).
[CrossRef]

A. Blanco, C. López, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781–1783 (1998).
[CrossRef]

J. Appl. Crystallogr. (1)

M. Megens, C. M. van Kats, P. Bösecke, and W. L. Vos, “Synchrotron small-angle x-ray scattering of colloids and photonic colloidal crystals,” J. Appl. Crystallogr. 30, 637–641 (1997).
[CrossRef]

J. Chem. Phys. (1)

P. A. Rundquist, P. Photinos, S. Jagannathan, and S. A. Asher, “Dynamical Bragg diffraction from crystalline colloidal arrays,” J. Chem. Phys. 91, 4932–4941 (1989).
[CrossRef]

Langmuir (3)

W. L. Vos, M. Megens, C. M. van Kats, and P. Bösecke, “X-ray diffraction of photonic colloidal single crystals,” Langmuir 13, 6004–6008 (1997).
[CrossRef]

M. Megens, C. M. van Kats, P. Bösecke, and W. L. Vos, “In situ characterization of colloidal spheres by synchrotron small-angle x-ray scattering,” Langmuir 13, 6120–1629 (1997).
[CrossRef]

A. van Blaaderen and A. Vrij, “Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres,” Langmuir 8, 2921–2931 (1992).
[CrossRef]

Phys. Rev. B (1)

H. Miguez, A. Blanco, F. Meseguer, C. López, H. M. Yates, M. E. Pemble, V. Fornés, and A. Mifsud, “Bragg diffraction from inidium phosphide infilled fcc silica colloidal crystals,” Phys. Rev. B 59, 1563–1566 (1999).
[CrossRef]

Phys. Rev. E (1)

V. N. Bogomolov, S. V. Gaponenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[CrossRef]

Phys. Rev. Lett. (5)

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

Ì. Ì. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315–318 (1996).
[CrossRef] [PubMed]

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
[CrossRef]

Other (10)

W. L. Vos, J. E. G. J. Wijnhoven, and M. Megens, “Experimental probe of gaps in photonic crystals,” in Conference on Lasers and Electro Optics Europe, September 1998 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), p. 361.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

W. L. Vos, R. Sprik, A. van Blaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B 53, 16231–16235 (1996); erratum 55, 1903(E) (1997); “Influence of optical band structures on the diffraction of photonic colloidal crystals,” in Photonic Band Gap Materials, C. M. Soukoulis, ed. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 107–118.
[CrossRef]

J. C. Maxwell-Garnett, “Colors in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Ser. A 203, 385–420 (1904); “Colors in metal glasses, in metallic films, and in metallic solutions,” Philos. Trans. R. Soc. London, Ser. A 205, 237–288 (1906).
[CrossRef]

R. W. James, The Optical Principles of the Diffraction of X-Rays (Bell & Hyman, London, 1962).

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, New York, 1976), p. 616.

Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46(6), 66–73 (1993); S. John, “Theory of photonic band gap materials,” in Photonic Band Gap Materials, C. M. Soukoulis, ed. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 563–665.
[CrossRef]

W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge U. Press, Cambridge, 1989).

B. Y. Tong, P. K. John, Y.-T. Zhu, Y. S. Liu, S. K. Wong, and W. R. Ware, “Fluorescence lifetime measurements in monodispersed suspensions of polystyrene spheres,” J. Opt. Soc. Am. B 10, 356–359 (1993); N. M. Lawandy, “Fluorescence-lifetime measurements in monodispersed suspensions of polystyrene particles: comment,” J. Opt. Soc. Am. B 10, 2144–2146 (1993).
[CrossRef]

C. M. Soukoulis, ed., Photonic Band Gap Materials (Kluwer, Dordrecht, The Netherlands, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic drawing of the trajectory of light emitted by a point source inside a photonic crystal (a) when the light is just Bragg reflected from the crystal planes indicated, (b) for Bragg reflection at shorter wavelength, when the reflection is inclined to the lattice planes, and (c) in a crystal with a photonic bandgap. The cross in the top panel indicates a defect.

Fig. 2
Fig. 2

Fluorescence spectrum of dye in a photonic colloidal crystal (solid curve) and in a colloidal liquid of spheres (dotted curve, offset by 0.05). Bragg reflection causes a stopgap in the spectrum of the crystal.

Fig. 3
Fig. 3

Transfer function of a light source inside a crystal (solid curve, relative fluorescence intensity) and of a light source outside the crystal, far away (dotted curve, transmission of a plane wave). Both spectra were taken perpendicular to the (111) crystal planes.

Fig. 4
Fig. 4

Transfer function for sample rotations of 0°–40° in two directions. The spectra have been divided by a reference spectrum and normalized at long wavelength. For positive rotations the curves have been offset upward; for negative rotations, downward. The stopgap shifts to shorter wavelengths if the crystal is rotated, in accordance with Bragg’s law.

Fig. 5
Fig. 5

Central wavelength of the stopgap in the transfer function (open circles) and in transmission spectra (crosses) as a function of rotation of the sample. The solid curve corresponds to Bragg’s law with a correction for refraction at the sample interface, with an effective refractive index of 1.39. The dotted curves are based on the refractive indices of silica (upper curve) and water (lower curve).

Fig. 6
Fig. 6

Transfer functions (relative fluorescence intensities) for various distances from the light source to the sample surface, in a crystal similar to that in Fig. 3. The depth of the light source varies with the depth of the light beam that excites the fluorescence as indicated schematically on the right. The upper and middle curves have been offset by 0.5 and 1.0, respectively. Each curve corresponds to the position in the sample as indicated.

Metrics