Abstract

We report the development of compact, efficiently diode-pumped Nd:YAG and Nd:YAlO3 lasers in a pulsed regime, mode locked by a nonlinear mirror (NLM) technique. Pumping with an 80-W single-bar diode array at a repetition rate as high as 200 Hz and depending on the NLM configuration, trains of 20–100 pulses, with 25-ps pulses with energies as high as 9 µJ each, are generated. These novel pulsed picosecond sources show excellent amplitude stability (<2% amplitude fluctuation) and beam quality. Numerical simulations of the pulse-formation dynamics are presented, and the results are compared with the experiments.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Agnesi, E. Piccinini, G. C. Reali, and C. Solcia, “All-solid-state picosecond tunable source of near-infrared radiation,” Opt. Lett. 22, 1415–1417 (1997).
    [CrossRef]
  2. A. Agnesi, G. C. Reali, and V. Kubecek, “Nonlinear mirror operation of a diode-pumped quasi-cw picosecond Nd:YAG laser,” Appl. Phys. B: Lasers Opt. 66, 283–285 (1998).
    [CrossRef]
  3. K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B: Photophys. Laser Chem. 45, 191–195 (1988).
    [CrossRef]
  4. D. R. Walker, C. J. Flood, H. M. Van Driel, U. J. Greiner, and H. H. Klingerberg, “High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses,” Appl. Phys. Lett. 65, 1992–1994 (1994).
    [CrossRef]
  5. K. A. Stankov, “25 ps pulses from a Nd:YAG laser mode locked by a frequency doubling β-BaB2O4 crystal,” Appl. Phys. Lett. 58, 2203–2205 (1991).
    [CrossRef]
  6. I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107, 281–286 (1994).
    [CrossRef]
  7. M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3.” J. Appl. Phys. 42, 4996–5005 (1971).
    [CrossRef]
  8. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  9. D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23, 575–592 (1987).
    [CrossRef]
  10. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
  11. G. Cerullo, V. Magni, and A. Monguzzi, “Group-velocity mismatch compensation in continuous-wave lasers mode locked by second-order nonlinearities,” Opt. Lett. 20, 1785–1787 (1995).
    [CrossRef] [PubMed]
  12. A. Agnesi, C. Pennacchio, and G. C. Reali, “High-average-power nonlinear mirror mode-locking with diode-pumped Neodymium lasers,” in Conference on Lasers and Electro-optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 16.
  13. H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
    [CrossRef]
  14. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” Appl. Phys. 34, 2346–2349 (1963).
    [CrossRef]
  15. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]

1998

A. Agnesi, G. C. Reali, and V. Kubecek, “Nonlinear mirror operation of a diode-pumped quasi-cw picosecond Nd:YAG laser,” Appl. Phys. B: Lasers Opt. 66, 283–285 (1998).
[CrossRef]

1997

1995

1994

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107, 281–286 (1994).
[CrossRef]

D. R. Walker, C. J. Flood, H. M. Van Driel, U. J. Greiner, and H. H. Klingerberg, “High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses,” Appl. Phys. Lett. 65, 1992–1994 (1994).
[CrossRef]

1992

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

1991

K. A. Stankov, “25 ps pulses from a Nd:YAG laser mode locked by a frequency doubling β-BaB2O4 crystal,” Appl. Phys. Lett. 58, 2203–2205 (1991).
[CrossRef]

1988

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B: Photophys. Laser Chem. 45, 191–195 (1988).
[CrossRef]

1987

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23, 575–592 (1987).
[CrossRef]

1971

M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3.” J. Appl. Phys. 42, 4996–5005 (1971).
[CrossRef]

1963

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Agnesi, A.

A. Agnesi, G. C. Reali, and V. Kubecek, “Nonlinear mirror operation of a diode-pumped quasi-cw picosecond Nd:YAG laser,” Appl. Phys. B: Lasers Opt. 66, 283–285 (1998).
[CrossRef]

A. Agnesi, E. Piccinini, G. C. Reali, and C. Solcia, “All-solid-state picosecond tunable source of near-infrared radiation,” Opt. Lett. 22, 1415–1417 (1997).
[CrossRef]

Bosenberg, W. R.

Buchvarov, I.

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107, 281–286 (1994).
[CrossRef]

Byer, R. L.

Cerullo, G.

Christov, G.

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107, 281–286 (1994).
[CrossRef]

Eckardt, R. C.

Eimerl, D.

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23, 575–592 (1987).
[CrossRef]

Fejer, M. M.

Flood, C. J.

D. R. Walker, C. J. Flood, H. M. Van Driel, U. J. Greiner, and H. H. Klingerberg, “High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses,” Appl. Phys. Lett. 65, 1992–1994 (1994).
[CrossRef]

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Greiner, U. J.

D. R. Walker, C. J. Flood, H. M. Van Driel, U. J. Greiner, and H. H. Klingerberg, “High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses,” Appl. Phys. Lett. 65, 1992–1994 (1994).
[CrossRef]

Kazamura, M.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Klingerberg, H. H.

D. R. Walker, C. J. Flood, H. M. Van Driel, U. J. Greiner, and H. H. Klingerberg, “High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses,” Appl. Phys. Lett. 65, 1992–1994 (1994).
[CrossRef]

Kubecek, V.

A. Agnesi, G. C. Reali, and V. Kubecek, “Nonlinear mirror operation of a diode-pumped quasi-cw picosecond Nd:YAG laser,” Appl. Phys. B: Lasers Opt. 66, 283–285 (1998).
[CrossRef]

Kume, M.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Magni, V.

Monguzzi, A.

Myers, L. E.

Nagai, H.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Ohta, I.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Piccinini, E.

Pierce, J. W.

Reali, G. C.

A. Agnesi, G. C. Reali, and V. Kubecek, “Nonlinear mirror operation of a diode-pumped quasi-cw picosecond Nd:YAG laser,” Appl. Phys. B: Lasers Opt. 66, 283–285 (1998).
[CrossRef]

A. Agnesi, E. Piccinini, G. C. Reali, and C. Solcia, “All-solid-state picosecond tunable source of near-infrared radiation,” Opt. Lett. 22, 1415–1417 (1997).
[CrossRef]

Saltiel, S.

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107, 281–286 (1994).
[CrossRef]

Shimizu, H.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Solcia, C.

Stankov, K. A.

K. A. Stankov, “25 ps pulses from a Nd:YAG laser mode locked by a frequency doubling β-BaB2O4 crystal,” Appl. Phys. Lett. 58, 2203–2205 (1991).
[CrossRef]

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B: Photophys. Laser Chem. 45, 191–195 (1988).
[CrossRef]

Van Driel, H. M.

D. R. Walker, C. J. Flood, H. M. Van Driel, U. J. Greiner, and H. H. Klingerberg, “High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses,” Appl. Phys. Lett. 65, 1992–1994 (1994).
[CrossRef]

Varitimos, T. E.

M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3.” J. Appl. Phys. 42, 4996–5005 (1971).
[CrossRef]

Walker, D. R.

D. R. Walker, C. J. Flood, H. M. Van Driel, U. J. Greiner, and H. H. Klingerberg, “High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses,” Appl. Phys. Lett. 65, 1992–1994 (1994).
[CrossRef]

Weber, M. J.

M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3.” J. Appl. Phys. 42, 4996–5005 (1971).
[CrossRef]

Appl. Phys.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Appl. Phys. B: Lasers Opt.

A. Agnesi, G. C. Reali, and V. Kubecek, “Nonlinear mirror operation of a diode-pumped quasi-cw picosecond Nd:YAG laser,” Appl. Phys. B: Lasers Opt. 66, 283–285 (1998).
[CrossRef]

Appl. Phys. B: Photophys. Laser Chem.

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B: Photophys. Laser Chem. 45, 191–195 (1988).
[CrossRef]

Appl. Phys. Lett.

D. R. Walker, C. J. Flood, H. M. Van Driel, U. J. Greiner, and H. H. Klingerberg, “High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses,” Appl. Phys. Lett. 65, 1992–1994 (1994).
[CrossRef]

K. A. Stankov, “25 ps pulses from a Nd:YAG laser mode locked by a frequency doubling β-BaB2O4 crystal,” Appl. Phys. Lett. 58, 2203–2205 (1991).
[CrossRef]

IEEE J. Quantum Electron.

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23, 575–592 (1987).
[CrossRef]

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

J. Appl. Phys.

M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3.” J. Appl. Phys. 42, 4996–5005 (1971).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107, 281–286 (1994).
[CrossRef]

Opt. Lett.

Other

A. Agnesi, C. Pennacchio, and G. C. Reali, “High-average-power nonlinear mirror mode-locking with diode-pumped Neodymium lasers,” in Conference on Lasers and Electro-optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 16.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Layout: LD, diode bar; ML, 400-µm-diameter microlens; AL, 8.1-mm focal acylindrical lens; LC, laser crystal; M1, input mirror; AOM, 60-MHz acousto-optic modulator; P, glass plate; L, f=250-mm lens; M2, r=2 f2=150-mm mirror; NLC, nonlinear crystal; M3, dichroic OC.

Fig. 2
Fig. 2

Mode size in the laser crystal (wg) and on the dichroic OC (wo), as a function of the separation. d=170 mm.

Fig. 3
Fig. 3

Envelope of the pulse train emitted from (a) M3 and from (b) P with the Nd:YAG laser and the BBO-NLM.

Fig. 4
Fig. 4

Pulse autocorrelation (a hyperbolic secant squared shape is assumed) of the signal from M3 (dashed line) and P (solid line).

Fig. 5
Fig. 5

Envelope of the pulse train emitted from M3 with the Nd:YAlO3 laser and the BBO-NLM.

Fig. 6
Fig. 6

Numerical results for the mode-locked Nd:YAG laser with the BBO-NLM. (a) pulse train emitted from M3, (b) pulse train emitted from P, (c) SH average efficiency for a single pass through NLC, (d) pulses from M3 and P corresponding to the train peak in (a), and (e) pulses corresponding to the half-peak value after the envelope peak in (a).

Tables (2)

Tables Icon

Table 1 Performance of the KTP-NLM Mode-Locked Nd:YAG Lasera

Tables Icon

Table 2 Performance of the BBO-NLM Mode-Locked Nd:YAG Lasera

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

GVM=1vω-1v2ω,
τc=2×GVM×l.
1v=kω=-λ2c(n/λ)λ
E2ωz=Z0ω0deffn2ωEω2 exp(iδ),
Eωz=-Z0ω0deffnωE2ωEω* exp(-iδ),
δ=φ+Δk¯z,
lF(ν)ννF2,
gg01-ν2νg2-l0-lF(ν)g0-l0-g0ν2νg2+1g0ν2νF2g01-ν2νg,eff2-l0,
νg,eff=-νg1+1g0νgνF21/2.
Iz=gI,gt=-gIJs,

Metrics