Abstract

High-resolution Doppler-free spectra of Sm were measured in the 635–690-nm wavelength region by means of Doppler-free spectroscopy with a single-mode diode laser and a long vapor cell. Isotope shifts were determined to an accuracy of better than 8 MHz for 20 transitions originating mostly from the 4f66s2 7FJ (J=0 to J=6) to 4f66s6p9D°,  9F°, and  7G° levels. Specific mass shifts, field shifts, and changes in the mean-square nuclear charge radii were evaluated by King-plot analysis.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wakasugi, T. Horiguchi, W. G. Jin, H. Sakata, and Y. Yoshizawa, “Changes of the nuclear charge distribution of Nd, Sm, Gd, and Dy from optical isotope shifts,” J. Phys. Soc. Jpn. 59, 2700–2713 (1990).
    [CrossRef]
  2. W. G. Martin, R. Zalubas, and L. Hagan, Atomic Energy Levels—The Rare-Earth Elements, Natl. Stand. Ref. Data Ser. (U.S., Natl. Bur. Stand.) 60 (1978).
  3. H. Schuler and T. Schmidt, “Über eine neue erscheinung bei den Isotopen des Samariums,” Z. Phys. 92, 148–152 (1934).
    [CrossRef]
  4. J. E. Hansen, A. Steudel, and H. Walter, “On the isotope shift on the even isotopes of natural samarium,” Phys. Lett. 19, 565–566 (1965).
    [CrossRef]
  5. W. J. Childs and L. S. Goodman, “Reanalysis of the hyperfine structure of the 4f66s2 7F multiplet in 147, 149Sm, including measurements for the 7F6 state,” Phys. Rev. A 6, 2011–2021 (1972).
    [CrossRef]
  6. H. Brand, B. Nottbeck, H. H. Schulz, and A. Steudel, “Laser-atomic-beam spectroscopy in the samarium I spectrum,” J. Phys. B 11, L99–L103 (1978).
    [CrossRef]
  7. H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: isotope shifts and charges in mean-square nuclear charge radii,” Z. Phys. A 296, 281–286 (1980).
    [CrossRef]
  8. W. G. Jin, T. Horiguchi, W. Yang, and I. Endo, “J dependence of the isotope shift and hyperfine structure in the Sm I 4f65d6s 9H term,” Phys. Rev. A 49, 4398–4403 (1994).
    [CrossRef] [PubMed]
  9. J. A. R. Griffith, G. R. Isaak, R. New, and M. P. Ralls, “Anomalies in the optical shifts of samarium,” J. Phys. B 14, 2769–2780 (1981).
    [CrossRef]
  10. W. H. King, Isotope Shifts in Atomic Spectra (Plenum, New York, 1984).
  11. I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, and F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
    [CrossRef]
  12. W.-G. Jin, T. Wakui, K. Hasegawa, H. Uematsu, T. Minowa, and H. Katsuragawa, “Isotope shifts in Sm I by atomic beam diode-laser spectroscopy,” J. Phys. Soc. Jpn. 88, 2521–2522 (1997).
    [CrossRef]
  13. E. C. Jung, D.-K. Ko, H. Park, B. Yoo, and J. Lee, “Measurement of isotope shifts in Sm I using a single-frequency semiconductor master-oscillator power-amplifier laser near 670 nm and sub-Doppler optogalvanic spectra,” J. Korean Phys. Soc. 34, 18–23 (1999).
  14. W. H. King, “Comments on the article ‘Peculiarities of the isotope shift in the samarium spectrum,” J. Opt. Soc. Am. 53, 638–639 (1963).
    [CrossRef]
  15. M. G. Littman, “Single-mode pulsed tunable dye laser,” Appl. Opt. 23, 4465–4468 (1984).
    [CrossRef] [PubMed]
  16. E. C. Jung, B. Yoo, and J. Lee, “The specific mass shift of ytterbium atomic excited state by intermodulated optogalvanic spectroscopy,” J. Korean Phys. Soc. 32, 671–675 (1998).
  17. K. Heilig and A. Steudel, “Changes in mean-square charge radii from optical isotope shifts,” At. Data Nucl. Data Tables 14, 613–638 (1974).
    [CrossRef]

1999 (1)

E. C. Jung, D.-K. Ko, H. Park, B. Yoo, and J. Lee, “Measurement of isotope shifts in Sm I using a single-frequency semiconductor master-oscillator power-amplifier laser near 670 nm and sub-Doppler optogalvanic spectra,” J. Korean Phys. Soc. 34, 18–23 (1999).

1998 (2)

I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, and F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
[CrossRef]

E. C. Jung, B. Yoo, and J. Lee, “The specific mass shift of ytterbium atomic excited state by intermodulated optogalvanic spectroscopy,” J. Korean Phys. Soc. 32, 671–675 (1998).

1997 (1)

W.-G. Jin, T. Wakui, K. Hasegawa, H. Uematsu, T. Minowa, and H. Katsuragawa, “Isotope shifts in Sm I by atomic beam diode-laser spectroscopy,” J. Phys. Soc. Jpn. 88, 2521–2522 (1997).
[CrossRef]

1994 (1)

W. G. Jin, T. Horiguchi, W. Yang, and I. Endo, “J dependence of the isotope shift and hyperfine structure in the Sm I 4f65d6s 9H term,” Phys. Rev. A 49, 4398–4403 (1994).
[CrossRef] [PubMed]

1990 (1)

M. Wakasugi, T. Horiguchi, W. G. Jin, H. Sakata, and Y. Yoshizawa, “Changes of the nuclear charge distribution of Nd, Sm, Gd, and Dy from optical isotope shifts,” J. Phys. Soc. Jpn. 59, 2700–2713 (1990).
[CrossRef]

1984 (1)

1981 (1)

J. A. R. Griffith, G. R. Isaak, R. New, and M. P. Ralls, “Anomalies in the optical shifts of samarium,” J. Phys. B 14, 2769–2780 (1981).
[CrossRef]

1980 (1)

H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: isotope shifts and charges in mean-square nuclear charge radii,” Z. Phys. A 296, 281–286 (1980).
[CrossRef]

1978 (1)

H. Brand, B. Nottbeck, H. H. Schulz, and A. Steudel, “Laser-atomic-beam spectroscopy in the samarium I spectrum,” J. Phys. B 11, L99–L103 (1978).
[CrossRef]

1974 (1)

K. Heilig and A. Steudel, “Changes in mean-square charge radii from optical isotope shifts,” At. Data Nucl. Data Tables 14, 613–638 (1974).
[CrossRef]

1972 (1)

W. J. Childs and L. S. Goodman, “Reanalysis of the hyperfine structure of the 4f66s2 7F multiplet in 147, 149Sm, including measurements for the 7F6 state,” Phys. Rev. A 6, 2011–2021 (1972).
[CrossRef]

1965 (1)

J. E. Hansen, A. Steudel, and H. Walter, “On the isotope shift on the even isotopes of natural samarium,” Phys. Lett. 19, 565–566 (1965).
[CrossRef]

1963 (1)

1934 (1)

H. Schuler and T. Schmidt, “Über eine neue erscheinung bei den Isotopen des Samariums,” Z. Phys. 92, 148–152 (1934).
[CrossRef]

Brand, H.

H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: isotope shifts and charges in mean-square nuclear charge radii,” Z. Phys. A 296, 281–286 (1980).
[CrossRef]

H. Brand, B. Nottbeck, H. H. Schulz, and A. Steudel, “Laser-atomic-beam spectroscopy in the samarium I spectrum,” J. Phys. B 11, L99–L103 (1978).
[CrossRef]

Childs, W. J.

W. J. Childs and L. S. Goodman, “Reanalysis of the hyperfine structure of the 4f66s2 7F multiplet in 147, 149Sm, including measurements for the 7F6 state,” Phys. Rev. A 6, 2011–2021 (1972).
[CrossRef]

Dinklage, A.

Duarte, A. E.

Duarte, F. J.

Endo, I.

W. G. Jin, T. Horiguchi, W. Yang, and I. Endo, “J dependence of the isotope shift and hyperfine structure in the Sm I 4f65d6s 9H term,” Phys. Rev. A 49, 4398–4403 (1994).
[CrossRef] [PubMed]

Goodman, L. S.

W. J. Childs and L. S. Goodman, “Reanalysis of the hyperfine structure of the 4f66s2 7F multiplet in 147, 149Sm, including measurements for the 7F6 state,” Phys. Rev. A 6, 2011–2021 (1972).
[CrossRef]

Griffith, J. A. R.

J. A. R. Griffith, G. R. Isaak, R. New, and M. P. Ralls, “Anomalies in the optical shifts of samarium,” J. Phys. B 14, 2769–2780 (1981).
[CrossRef]

Hansen, J. E.

J. E. Hansen, A. Steudel, and H. Walter, “On the isotope shift on the even isotopes of natural samarium,” Phys. Lett. 19, 565–566 (1965).
[CrossRef]

Hasegawa, K.

W.-G. Jin, T. Wakui, K. Hasegawa, H. Uematsu, T. Minowa, and H. Katsuragawa, “Isotope shifts in Sm I by atomic beam diode-laser spectroscopy,” J. Phys. Soc. Jpn. 88, 2521–2522 (1997).
[CrossRef]

Heilig, K.

K. Heilig and A. Steudel, “Changes in mean-square charge radii from optical isotope shifts,” At. Data Nucl. Data Tables 14, 613–638 (1974).
[CrossRef]

Horiguchi, T.

W. G. Jin, T. Horiguchi, W. Yang, and I. Endo, “J dependence of the isotope shift and hyperfine structure in the Sm I 4f65d6s 9H term,” Phys. Rev. A 49, 4398–4403 (1994).
[CrossRef] [PubMed]

M. Wakasugi, T. Horiguchi, W. G. Jin, H. Sakata, and Y. Yoshizawa, “Changes of the nuclear charge distribution of Nd, Sm, Gd, and Dy from optical isotope shifts,” J. Phys. Soc. Jpn. 59, 2700–2713 (1990).
[CrossRef]

Isaak, G. R.

J. A. R. Griffith, G. R. Isaak, R. New, and M. P. Ralls, “Anomalies in the optical shifts of samarium,” J. Phys. B 14, 2769–2780 (1981).
[CrossRef]

Jin, W. G.

W. G. Jin, T. Horiguchi, W. Yang, and I. Endo, “J dependence of the isotope shift and hyperfine structure in the Sm I 4f65d6s 9H term,” Phys. Rev. A 49, 4398–4403 (1994).
[CrossRef] [PubMed]

M. Wakasugi, T. Horiguchi, W. G. Jin, H. Sakata, and Y. Yoshizawa, “Changes of the nuclear charge distribution of Nd, Sm, Gd, and Dy from optical isotope shifts,” J. Phys. Soc. Jpn. 59, 2700–2713 (1990).
[CrossRef]

Jin, W.-G.

W.-G. Jin, T. Wakui, K. Hasegawa, H. Uematsu, T. Minowa, and H. Katsuragawa, “Isotope shifts in Sm I by atomic beam diode-laser spectroscopy,” J. Phys. Soc. Jpn. 88, 2521–2522 (1997).
[CrossRef]

Jung, E. C.

E. C. Jung, D.-K. Ko, H. Park, B. Yoo, and J. Lee, “Measurement of isotope shifts in Sm I using a single-frequency semiconductor master-oscillator power-amplifier laser near 670 nm and sub-Doppler optogalvanic spectra,” J. Korean Phys. Soc. 34, 18–23 (1999).

E. C. Jung, B. Yoo, and J. Lee, “The specific mass shift of ytterbium atomic excited state by intermodulated optogalvanic spectroscopy,” J. Korean Phys. Soc. 32, 671–675 (1998).

Katsuragawa, H.

W.-G. Jin, T. Wakui, K. Hasegawa, H. Uematsu, T. Minowa, and H. Katsuragawa, “Isotope shifts in Sm I by atomic beam diode-laser spectroscopy,” J. Phys. Soc. Jpn. 88, 2521–2522 (1997).
[CrossRef]

King, W. H.

Ko, D.-K.

E. C. Jung, D.-K. Ko, H. Park, B. Yoo, and J. Lee, “Measurement of isotope shifts in Sm I using a single-frequency semiconductor master-oscillator power-amplifier laser near 670 nm and sub-Doppler optogalvanic spectra,” J. Korean Phys. Soc. 34, 18–23 (1999).

Lee, J.

E. C. Jung, D.-K. Ko, H. Park, B. Yoo, and J. Lee, “Measurement of isotope shifts in Sm I using a single-frequency semiconductor master-oscillator power-amplifier laser near 670 nm and sub-Doppler optogalvanic spectra,” J. Korean Phys. Soc. 34, 18–23 (1999).

E. C. Jung, B. Yoo, and J. Lee, “The specific mass shift of ytterbium atomic excited state by intermodulated optogalvanic spectroscopy,” J. Korean Phys. Soc. 32, 671–675 (1998).

Littman, M. G.

Lokajczyk, T.

Minowa, T.

W.-G. Jin, T. Wakui, K. Hasegawa, H. Uematsu, T. Minowa, and H. Katsuragawa, “Isotope shifts in Sm I by atomic beam diode-laser spectroscopy,” J. Phys. Soc. Jpn. 88, 2521–2522 (1997).
[CrossRef]

New, R.

J. A. R. Griffith, G. R. Isaak, R. New, and M. P. Ralls, “Anomalies in the optical shifts of samarium,” J. Phys. B 14, 2769–2780 (1981).
[CrossRef]

Nottbeck, B.

H. Brand, B. Nottbeck, H. H. Schulz, and A. Steudel, “Laser-atomic-beam spectroscopy in the samarium I spectrum,” J. Phys. B 11, L99–L103 (1978).
[CrossRef]

Olivares, I. E.

Park, H.

E. C. Jung, D.-K. Ko, H. Park, B. Yoo, and J. Lee, “Measurement of isotope shifts in Sm I using a single-frequency semiconductor master-oscillator power-amplifier laser near 670 nm and sub-Doppler optogalvanic spectra,” J. Korean Phys. Soc. 34, 18–23 (1999).

Ralls, M. P.

J. A. R. Griffith, G. R. Isaak, R. New, and M. P. Ralls, “Anomalies in the optical shifts of samarium,” J. Phys. B 14, 2769–2780 (1981).
[CrossRef]

Sakata, H.

M. Wakasugi, T. Horiguchi, W. G. Jin, H. Sakata, and Y. Yoshizawa, “Changes of the nuclear charge distribution of Nd, Sm, Gd, and Dy from optical isotope shifts,” J. Phys. Soc. Jpn. 59, 2700–2713 (1990).
[CrossRef]

Schmidt, T.

H. Schuler and T. Schmidt, “Über eine neue erscheinung bei den Isotopen des Samariums,” Z. Phys. 92, 148–152 (1934).
[CrossRef]

Schuler, H.

H. Schuler and T. Schmidt, “Über eine neue erscheinung bei den Isotopen des Samariums,” Z. Phys. 92, 148–152 (1934).
[CrossRef]

Schulz, H. H.

H. Brand, B. Nottbeck, H. H. Schulz, and A. Steudel, “Laser-atomic-beam spectroscopy in the samarium I spectrum,” J. Phys. B 11, L99–L103 (1978).
[CrossRef]

Seibert, B.

H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: isotope shifts and charges in mean-square nuclear charge radii,” Z. Phys. A 296, 281–286 (1980).
[CrossRef]

Steudel, A.

H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: isotope shifts and charges in mean-square nuclear charge radii,” Z. Phys. A 296, 281–286 (1980).
[CrossRef]

H. Brand, B. Nottbeck, H. H. Schulz, and A. Steudel, “Laser-atomic-beam spectroscopy in the samarium I spectrum,” J. Phys. B 11, L99–L103 (1978).
[CrossRef]

K. Heilig and A. Steudel, “Changes in mean-square charge radii from optical isotope shifts,” At. Data Nucl. Data Tables 14, 613–638 (1974).
[CrossRef]

J. E. Hansen, A. Steudel, and H. Walter, “On the isotope shift on the even isotopes of natural samarium,” Phys. Lett. 19, 565–566 (1965).
[CrossRef]

Uematsu, H.

W.-G. Jin, T. Wakui, K. Hasegawa, H. Uematsu, T. Minowa, and H. Katsuragawa, “Isotope shifts in Sm I by atomic beam diode-laser spectroscopy,” J. Phys. Soc. Jpn. 88, 2521–2522 (1997).
[CrossRef]

Wakasugi, M.

M. Wakasugi, T. Horiguchi, W. G. Jin, H. Sakata, and Y. Yoshizawa, “Changes of the nuclear charge distribution of Nd, Sm, Gd, and Dy from optical isotope shifts,” J. Phys. Soc. Jpn. 59, 2700–2713 (1990).
[CrossRef]

Wakui, T.

W.-G. Jin, T. Wakui, K. Hasegawa, H. Uematsu, T. Minowa, and H. Katsuragawa, “Isotope shifts in Sm I by atomic beam diode-laser spectroscopy,” J. Phys. Soc. Jpn. 88, 2521–2522 (1997).
[CrossRef]

Walter, H.

J. E. Hansen, A. Steudel, and H. Walter, “On the isotope shift on the even isotopes of natural samarium,” Phys. Lett. 19, 565–566 (1965).
[CrossRef]

Yang, W.

W. G. Jin, T. Horiguchi, W. Yang, and I. Endo, “J dependence of the isotope shift and hyperfine structure in the Sm I 4f65d6s 9H term,” Phys. Rev. A 49, 4398–4403 (1994).
[CrossRef] [PubMed]

Yoo, B.

E. C. Jung, D.-K. Ko, H. Park, B. Yoo, and J. Lee, “Measurement of isotope shifts in Sm I using a single-frequency semiconductor master-oscillator power-amplifier laser near 670 nm and sub-Doppler optogalvanic spectra,” J. Korean Phys. Soc. 34, 18–23 (1999).

E. C. Jung, B. Yoo, and J. Lee, “The specific mass shift of ytterbium atomic excited state by intermodulated optogalvanic spectroscopy,” J. Korean Phys. Soc. 32, 671–675 (1998).

Yoshizawa, Y.

M. Wakasugi, T. Horiguchi, W. G. Jin, H. Sakata, and Y. Yoshizawa, “Changes of the nuclear charge distribution of Nd, Sm, Gd, and Dy from optical isotope shifts,” J. Phys. Soc. Jpn. 59, 2700–2713 (1990).
[CrossRef]

Appl. Opt. (1)

At. Data Nucl. Data Tables (1)

K. Heilig and A. Steudel, “Changes in mean-square charge radii from optical isotope shifts,” At. Data Nucl. Data Tables 14, 613–638 (1974).
[CrossRef]

J. Korean Phys. Soc. (2)

E. C. Jung, B. Yoo, and J. Lee, “The specific mass shift of ytterbium atomic excited state by intermodulated optogalvanic spectroscopy,” J. Korean Phys. Soc. 32, 671–675 (1998).

E. C. Jung, D.-K. Ko, H. Park, B. Yoo, and J. Lee, “Measurement of isotope shifts in Sm I using a single-frequency semiconductor master-oscillator power-amplifier laser near 670 nm and sub-Doppler optogalvanic spectra,” J. Korean Phys. Soc. 34, 18–23 (1999).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. B (2)

J. A. R. Griffith, G. R. Isaak, R. New, and M. P. Ralls, “Anomalies in the optical shifts of samarium,” J. Phys. B 14, 2769–2780 (1981).
[CrossRef]

H. Brand, B. Nottbeck, H. H. Schulz, and A. Steudel, “Laser-atomic-beam spectroscopy in the samarium I spectrum,” J. Phys. B 11, L99–L103 (1978).
[CrossRef]

J. Phys. Soc. Jpn. (2)

M. Wakasugi, T. Horiguchi, W. G. Jin, H. Sakata, and Y. Yoshizawa, “Changes of the nuclear charge distribution of Nd, Sm, Gd, and Dy from optical isotope shifts,” J. Phys. Soc. Jpn. 59, 2700–2713 (1990).
[CrossRef]

W.-G. Jin, T. Wakui, K. Hasegawa, H. Uematsu, T. Minowa, and H. Katsuragawa, “Isotope shifts in Sm I by atomic beam diode-laser spectroscopy,” J. Phys. Soc. Jpn. 88, 2521–2522 (1997).
[CrossRef]

Phys. Lett. (1)

J. E. Hansen, A. Steudel, and H. Walter, “On the isotope shift on the even isotopes of natural samarium,” Phys. Lett. 19, 565–566 (1965).
[CrossRef]

Phys. Rev. A (2)

W. J. Childs and L. S. Goodman, “Reanalysis of the hyperfine structure of the 4f66s2 7F multiplet in 147, 149Sm, including measurements for the 7F6 state,” Phys. Rev. A 6, 2011–2021 (1972).
[CrossRef]

W. G. Jin, T. Horiguchi, W. Yang, and I. Endo, “J dependence of the isotope shift and hyperfine structure in the Sm I 4f65d6s 9H term,” Phys. Rev. A 49, 4398–4403 (1994).
[CrossRef] [PubMed]

Z. Phys. (1)

H. Schuler and T. Schmidt, “Über eine neue erscheinung bei den Isotopen des Samariums,” Z. Phys. 92, 148–152 (1934).
[CrossRef]

Z. Phys. A (1)

H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: isotope shifts and charges in mean-square nuclear charge radii,” Z. Phys. A 296, 281–286 (1980).
[CrossRef]

Other (2)

W. G. Martin, R. Zalubas, and L. Hagan, Atomic Energy Levels—The Rare-Earth Elements, Natl. Stand. Ref. Data Ser. (U.S., Natl. Bur. Stand.) 60 (1978).

W. H. King, Isotope Shifts in Atomic Spectra (Plenum, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for Sm i Doppler-free spectroscopy; F-P, Fabry–Perot.

Fig. 2
Fig. 2

Diagram of the studied transitions and related energy level schemes in Sm i.

Fig. 3
Fig. 3

Typical measured Doppler-free spectrum of 672.588-nm transition.

Fig. 4
Fig. 4

King plot of the transition 672.588 nm, taking 598.97 nm as the reference line.

Tables (3)

Tables Icon

Table 1 Measured Isotope Shifts of Even Isotopes for 20 Transitions of Sm

Tables Icon

Table 2 Specific Mass Shifts and Field Shifts in the Investigated Sm Transition

Tables Icon

Table 3 Changes in Mean-Square Nuclear Charge Radii δr2 (fm2) for Even Mass Isotope Pairs

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

NMS=A2-A1A2A1(νi/1836.1),
δνiA1A2=FiλA1A2+A2-A1A1A2(νi/1836.1+Mi),
ξiA1A2=FiFjξjA1A2+Mi-MjFiFj,

Metrics