Abstract

The thermoelastic generation and interferometric detection of ultrafast thermal and acoustic transients in a 300-nm-thick tungsten film are theoretically predicted and supported through experiment. Detection of these picosecond transients is obtained with a time-resolved spectroscopy scheme that uses a rotated cube, common path, self-stabilized Michelson interferometer and subpicosecond laser pulses from a mode-locked laser. These observations are theoretically described by the superposition of changes in the complex index of refraction and displacements over the absorption volume. Data analysis is completed in both time and frequency domains to support the validity of the classical assumptions involved in the theoretical derivation.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Paddock and G. Eesley, “Transient thermoreflectance from metal films,” Opt. Lett. 11, 273–275 (1986).
    [CrossRef] [PubMed]
  2. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986).
    [CrossRef]
  3. B. M. Clemens, G. L. Eesley, and C. A. Paddock, “Time-resolved thermal transport in compositionally modulated metal films,” Phys. Rev. B 37, 1085–1096 (1988).
    [CrossRef]
  4. H.-N. Lin, R. J. Stoner, H. J. Maris, J. M. Harper, C. Cabral, Jr., J.-M. Halbout, and G. W. Rubloff, “Nondestructive detection of titanium disilicide phase transformation by picosecond ultrasonics,” Appl. Phys. Lett. 61, 2700–2702 (1992).
    [CrossRef]
  5. G. Tas, R. J. Stoner, H. J. Maris, G. W. Rubloff, G. S. Oehrlein, and J.-M. Halbout, “Noninvasive picosecond ultrasonic detection of ultrathin interfacial layers: CFx at the Al/Si interface,” Appl. Phys. Lett. 61, 1787–1789 (1992).
    [CrossRef]
  6. G. Tas, J. J. Loomis, H. J. Maris, A. A. Bailes III, and L. E. Seiberling, “Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation,” Appl. Phys. Lett. 72, 2235–2237 (1998).
    [CrossRef]
  7. H. T. Grahn, H. J. Maris, J. Tauc, and K. S. Hatton, “Elastic properties of silicon oxynitride films determined by picosecond acoustics,” Appl. Phys. Lett. 53, 2281–2283 (1988).
    [CrossRef]
  8. H. T. Grahn, H. J. Maris, J. Tauc, and B. Abeles, “Time-resolved study of vibrations of a-Ge:H/a-Si:H multilayers,” Phys. Rev. B 38, 6066–6074 (1988).
    [CrossRef]
  9. C. J. Morath, H. J. Maris, J. J. Cuomo, D. L. Pappas, A. G. Vishnubhai, V. Patel, J. P. Doyle, and K. L. Saenger, “Picosecond optical studies of amorphous diamond and diamondlike carbon: thermal conductivity and longitudinal sound velocity,” J. Appl. Phys. 76, 2636–2640 (1994).
    [CrossRef]
  10. A. Miklos and A. Lorincz, “Transient thermoreflectance of thin metal films in the picosecond regime,” J. Appl. Phys. 63, 2393–2395 (1988).
    [CrossRef]
  11. A. Miklos, Z. Bozoki, and A. Lorincz, “Picosecond transient reflectance of thin metal films,” J. Appl. Phys. 66, 2968–2972 (1989).
    [CrossRef]
  12. T. Q. Qiu and C. L. Tien, “Short-pulse laser heating on metals,” Int. J. Heat Mass Transf. 35, 719–726 (1992).
    [CrossRef]
  13. O. B. Wright, “Ultrafast nonequilibrium stress generation in gold and silver,” Phys. Rev. B 49, 9985–9988 (1994).
    [CrossRef]
  14. O. B. Wright and V. E. Gusev, “Ultrafast generation of acoustic waves in copper,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 331–338 (1995).
    [CrossRef]
  15. J. E. Rothenberg, “Observation of the transient expansion of heated surfaces by picosecond photothermal deflection spectroscopy,” Opt. Lett. 13, 713–715 (1988).
    [CrossRef] [PubMed]
  16. O. B. Wright and K. Kawashima, “Coherent phonon detection from ultrafast surface vibrations,” Phys. Rev. Lett. 69, 1668–1671 (1992).
    [CrossRef] [PubMed]
  17. J. Fiedler and J. W. Wagner, “Interferometric detection of high frequency pulses of ultrasound in thin coatings,” Rev. Prog. Quant. Nondestr. Eval. 16, 1579–1584 (1997).
    [CrossRef]
  18. B. Perrin, B. Bonello, J.-C. Jeannet, and E. Romatet, “Interferometric detection of hypersound waves in modulated structures,” Prog. Nat. Sci. 6, Suppl. S444–S448 (1996).
  19. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, New York 1976).
  20. T. Q. Qiu and C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals,” Trans. ASME, Ser. C: J. Heat Transfer 115, 835–841 (1993).
    [CrossRef]
  21. J. F. Nye, Physical Properties of Materials (Oxford U. Press, New York 1985).
  22. G. C. Wetsel, “Photothermal generation of thermoelastic waves in composite media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 450–461 (1986).
    [CrossRef] [PubMed]
  23. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, New York 1996).
  24. E. Kreyszig, Advanced Engineering Mathematics, 3rd ed. (Wiley, New York 1972).
  25. C. J. K. Richardson, “Theoretical and experimental ultrafast laser ultrasonic inspection of extended interfaces,” M.Sc. thesis (Johns Hopkins University, Baltimore, Md., 1998).
  26. E. N. Leith, P. A. Lyon, and H. Chen, “Imaging problems with femtosecond pulse holography,” J. Opt. Soc. Am. A 8, 1014–1018 (1991).
    [CrossRef]
  27. J. W. Wagner, “Optical detection of ultrasound,” in Physical Acoustics, W. P. Mason and A. D. Pierce, eds. (Academic, New York 1990), Vol. 19, pp. 201–266.
  28. D. E. Gray, ed., American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York 1972).
  29. H. Baker, ed., Phase Diagrams, Vol. 3 of American Society of Metals (American Society of Metals, Materials Park, Ohio, 1992).
  30. J. D. Achenbach, Wave Propagation in Elastic Solids (North-Holland, New York 1984).
  31. K. A. Svinarich, W. J. Meng, and G. L. Eesley, “Picosecond acoustic pulse reflection from a metal–metal interface,” Appl. Phys. Lett. 57, 1185–1187 (1990).
    [CrossRef]
  32. A. Paddock and G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
    [CrossRef]

1998 (1)

G. Tas, J. J. Loomis, H. J. Maris, A. A. Bailes III, and L. E. Seiberling, “Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation,” Appl. Phys. Lett. 72, 2235–2237 (1998).
[CrossRef]

1997 (1)

J. Fiedler and J. W. Wagner, “Interferometric detection of high frequency pulses of ultrasound in thin coatings,” Rev. Prog. Quant. Nondestr. Eval. 16, 1579–1584 (1997).
[CrossRef]

1996 (1)

B. Perrin, B. Bonello, J.-C. Jeannet, and E. Romatet, “Interferometric detection of hypersound waves in modulated structures,” Prog. Nat. Sci. 6, Suppl. S444–S448 (1996).

1995 (1)

O. B. Wright and V. E. Gusev, “Ultrafast generation of acoustic waves in copper,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 331–338 (1995).
[CrossRef]

1994 (2)

O. B. Wright, “Ultrafast nonequilibrium stress generation in gold and silver,” Phys. Rev. B 49, 9985–9988 (1994).
[CrossRef]

C. J. Morath, H. J. Maris, J. J. Cuomo, D. L. Pappas, A. G. Vishnubhai, V. Patel, J. P. Doyle, and K. L. Saenger, “Picosecond optical studies of amorphous diamond and diamondlike carbon: thermal conductivity and longitudinal sound velocity,” J. Appl. Phys. 76, 2636–2640 (1994).
[CrossRef]

1993 (1)

T. Q. Qiu and C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals,” Trans. ASME, Ser. C: J. Heat Transfer 115, 835–841 (1993).
[CrossRef]

1992 (4)

T. Q. Qiu and C. L. Tien, “Short-pulse laser heating on metals,” Int. J. Heat Mass Transf. 35, 719–726 (1992).
[CrossRef]

H.-N. Lin, R. J. Stoner, H. J. Maris, J. M. Harper, C. Cabral, Jr., J.-M. Halbout, and G. W. Rubloff, “Nondestructive detection of titanium disilicide phase transformation by picosecond ultrasonics,” Appl. Phys. Lett. 61, 2700–2702 (1992).
[CrossRef]

G. Tas, R. J. Stoner, H. J. Maris, G. W. Rubloff, G. S. Oehrlein, and J.-M. Halbout, “Noninvasive picosecond ultrasonic detection of ultrathin interfacial layers: CFx at the Al/Si interface,” Appl. Phys. Lett. 61, 1787–1789 (1992).
[CrossRef]

O. B. Wright and K. Kawashima, “Coherent phonon detection from ultrafast surface vibrations,” Phys. Rev. Lett. 69, 1668–1671 (1992).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

K. A. Svinarich, W. J. Meng, and G. L. Eesley, “Picosecond acoustic pulse reflection from a metal–metal interface,” Appl. Phys. Lett. 57, 1185–1187 (1990).
[CrossRef]

1989 (1)

A. Miklos, Z. Bozoki, and A. Lorincz, “Picosecond transient reflectance of thin metal films,” J. Appl. Phys. 66, 2968–2972 (1989).
[CrossRef]

1988 (5)

B. M. Clemens, G. L. Eesley, and C. A. Paddock, “Time-resolved thermal transport in compositionally modulated metal films,” Phys. Rev. B 37, 1085–1096 (1988).
[CrossRef]

A. Miklos and A. Lorincz, “Transient thermoreflectance of thin metal films in the picosecond regime,” J. Appl. Phys. 63, 2393–2395 (1988).
[CrossRef]

H. T. Grahn, H. J. Maris, J. Tauc, and K. S. Hatton, “Elastic properties of silicon oxynitride films determined by picosecond acoustics,” Appl. Phys. Lett. 53, 2281–2283 (1988).
[CrossRef]

H. T. Grahn, H. J. Maris, J. Tauc, and B. Abeles, “Time-resolved study of vibrations of a-Ge:H/a-Si:H multilayers,” Phys. Rev. B 38, 6066–6074 (1988).
[CrossRef]

J. E. Rothenberg, “Observation of the transient expansion of heated surfaces by picosecond photothermal deflection spectroscopy,” Opt. Lett. 13, 713–715 (1988).
[CrossRef] [PubMed]

1986 (4)

A. Paddock and G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
[CrossRef]

C. Paddock and G. Eesley, “Transient thermoreflectance from metal films,” Opt. Lett. 11, 273–275 (1986).
[CrossRef] [PubMed]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986).
[CrossRef]

G. C. Wetsel, “Photothermal generation of thermoelastic waves in composite media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 450–461 (1986).
[CrossRef] [PubMed]

Abeles, B.

H. T. Grahn, H. J. Maris, J. Tauc, and B. Abeles, “Time-resolved study of vibrations of a-Ge:H/a-Si:H multilayers,” Phys. Rev. B 38, 6066–6074 (1988).
[CrossRef]

Bailes III, A. A.

G. Tas, J. J. Loomis, H. J. Maris, A. A. Bailes III, and L. E. Seiberling, “Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation,” Appl. Phys. Lett. 72, 2235–2237 (1998).
[CrossRef]

Bonello, B.

B. Perrin, B. Bonello, J.-C. Jeannet, and E. Romatet, “Interferometric detection of hypersound waves in modulated structures,” Prog. Nat. Sci. 6, Suppl. S444–S448 (1996).

Bozoki, Z.

A. Miklos, Z. Bozoki, and A. Lorincz, “Picosecond transient reflectance of thin metal films,” J. Appl. Phys. 66, 2968–2972 (1989).
[CrossRef]

Cabral , Jr., C.

H.-N. Lin, R. J. Stoner, H. J. Maris, J. M. Harper, C. Cabral, Jr., J.-M. Halbout, and G. W. Rubloff, “Nondestructive detection of titanium disilicide phase transformation by picosecond ultrasonics,” Appl. Phys. Lett. 61, 2700–2702 (1992).
[CrossRef]

Chen, H.

Clemens, B. M.

B. M. Clemens, G. L. Eesley, and C. A. Paddock, “Time-resolved thermal transport in compositionally modulated metal films,” Phys. Rev. B 37, 1085–1096 (1988).
[CrossRef]

Cuomo, J. J.

C. J. Morath, H. J. Maris, J. J. Cuomo, D. L. Pappas, A. G. Vishnubhai, V. Patel, J. P. Doyle, and K. L. Saenger, “Picosecond optical studies of amorphous diamond and diamondlike carbon: thermal conductivity and longitudinal sound velocity,” J. Appl. Phys. 76, 2636–2640 (1994).
[CrossRef]

Doyle, J. P.

C. J. Morath, H. J. Maris, J. J. Cuomo, D. L. Pappas, A. G. Vishnubhai, V. Patel, J. P. Doyle, and K. L. Saenger, “Picosecond optical studies of amorphous diamond and diamondlike carbon: thermal conductivity and longitudinal sound velocity,” J. Appl. Phys. 76, 2636–2640 (1994).
[CrossRef]

Eesley, G.

Eesley, G. L.

K. A. Svinarich, W. J. Meng, and G. L. Eesley, “Picosecond acoustic pulse reflection from a metal–metal interface,” Appl. Phys. Lett. 57, 1185–1187 (1990).
[CrossRef]

B. M. Clemens, G. L. Eesley, and C. A. Paddock, “Time-resolved thermal transport in compositionally modulated metal films,” Phys. Rev. B 37, 1085–1096 (1988).
[CrossRef]

A. Paddock and G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
[CrossRef]

Fiedler, J.

J. Fiedler and J. W. Wagner, “Interferometric detection of high frequency pulses of ultrasound in thin coatings,” Rev. Prog. Quant. Nondestr. Eval. 16, 1579–1584 (1997).
[CrossRef]

Grahn, H. T.

H. T. Grahn, H. J. Maris, J. Tauc, and B. Abeles, “Time-resolved study of vibrations of a-Ge:H/a-Si:H multilayers,” Phys. Rev. B 38, 6066–6074 (1988).
[CrossRef]

H. T. Grahn, H. J. Maris, J. Tauc, and K. S. Hatton, “Elastic properties of silicon oxynitride films determined by picosecond acoustics,” Appl. Phys. Lett. 53, 2281–2283 (1988).
[CrossRef]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986).
[CrossRef]

Gusev, V. E.

O. B. Wright and V. E. Gusev, “Ultrafast generation of acoustic waves in copper,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 331–338 (1995).
[CrossRef]

Halbout, J.-M.

H.-N. Lin, R. J. Stoner, H. J. Maris, J. M. Harper, C. Cabral, Jr., J.-M. Halbout, and G. W. Rubloff, “Nondestructive detection of titanium disilicide phase transformation by picosecond ultrasonics,” Appl. Phys. Lett. 61, 2700–2702 (1992).
[CrossRef]

G. Tas, R. J. Stoner, H. J. Maris, G. W. Rubloff, G. S. Oehrlein, and J.-M. Halbout, “Noninvasive picosecond ultrasonic detection of ultrathin interfacial layers: CFx at the Al/Si interface,” Appl. Phys. Lett. 61, 1787–1789 (1992).
[CrossRef]

Harper, J. M.

H.-N. Lin, R. J. Stoner, H. J. Maris, J. M. Harper, C. Cabral, Jr., J.-M. Halbout, and G. W. Rubloff, “Nondestructive detection of titanium disilicide phase transformation by picosecond ultrasonics,” Appl. Phys. Lett. 61, 2700–2702 (1992).
[CrossRef]

Hatton, K. S.

H. T. Grahn, H. J. Maris, J. Tauc, and K. S. Hatton, “Elastic properties of silicon oxynitride films determined by picosecond acoustics,” Appl. Phys. Lett. 53, 2281–2283 (1988).
[CrossRef]

Jeannet, J.-C.

B. Perrin, B. Bonello, J.-C. Jeannet, and E. Romatet, “Interferometric detection of hypersound waves in modulated structures,” Prog. Nat. Sci. 6, Suppl. S444–S448 (1996).

Kawashima, K.

O. B. Wright and K. Kawashima, “Coherent phonon detection from ultrafast surface vibrations,” Phys. Rev. Lett. 69, 1668–1671 (1992).
[CrossRef] [PubMed]

Leith, E. N.

Lin, H.-N.

H.-N. Lin, R. J. Stoner, H. J. Maris, J. M. Harper, C. Cabral, Jr., J.-M. Halbout, and G. W. Rubloff, “Nondestructive detection of titanium disilicide phase transformation by picosecond ultrasonics,” Appl. Phys. Lett. 61, 2700–2702 (1992).
[CrossRef]

Loomis, J. J.

G. Tas, J. J. Loomis, H. J. Maris, A. A. Bailes III, and L. E. Seiberling, “Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation,” Appl. Phys. Lett. 72, 2235–2237 (1998).
[CrossRef]

Lorincz, A.

A. Miklos, Z. Bozoki, and A. Lorincz, “Picosecond transient reflectance of thin metal films,” J. Appl. Phys. 66, 2968–2972 (1989).
[CrossRef]

A. Miklos and A. Lorincz, “Transient thermoreflectance of thin metal films in the picosecond regime,” J. Appl. Phys. 63, 2393–2395 (1988).
[CrossRef]

Lyon, P. A.

Maris, H. J.

G. Tas, J. J. Loomis, H. J. Maris, A. A. Bailes III, and L. E. Seiberling, “Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation,” Appl. Phys. Lett. 72, 2235–2237 (1998).
[CrossRef]

C. J. Morath, H. J. Maris, J. J. Cuomo, D. L. Pappas, A. G. Vishnubhai, V. Patel, J. P. Doyle, and K. L. Saenger, “Picosecond optical studies of amorphous diamond and diamondlike carbon: thermal conductivity and longitudinal sound velocity,” J. Appl. Phys. 76, 2636–2640 (1994).
[CrossRef]

H.-N. Lin, R. J. Stoner, H. J. Maris, J. M. Harper, C. Cabral, Jr., J.-M. Halbout, and G. W. Rubloff, “Nondestructive detection of titanium disilicide phase transformation by picosecond ultrasonics,” Appl. Phys. Lett. 61, 2700–2702 (1992).
[CrossRef]

G. Tas, R. J. Stoner, H. J. Maris, G. W. Rubloff, G. S. Oehrlein, and J.-M. Halbout, “Noninvasive picosecond ultrasonic detection of ultrathin interfacial layers: CFx at the Al/Si interface,” Appl. Phys. Lett. 61, 1787–1789 (1992).
[CrossRef]

H. T. Grahn, H. J. Maris, J. Tauc, and K. S. Hatton, “Elastic properties of silicon oxynitride films determined by picosecond acoustics,” Appl. Phys. Lett. 53, 2281–2283 (1988).
[CrossRef]

H. T. Grahn, H. J. Maris, J. Tauc, and B. Abeles, “Time-resolved study of vibrations of a-Ge:H/a-Si:H multilayers,” Phys. Rev. B 38, 6066–6074 (1988).
[CrossRef]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986).
[CrossRef]

Meng, W. J.

K. A. Svinarich, W. J. Meng, and G. L. Eesley, “Picosecond acoustic pulse reflection from a metal–metal interface,” Appl. Phys. Lett. 57, 1185–1187 (1990).
[CrossRef]

Miklos, A.

A. Miklos, Z. Bozoki, and A. Lorincz, “Picosecond transient reflectance of thin metal films,” J. Appl. Phys. 66, 2968–2972 (1989).
[CrossRef]

A. Miklos and A. Lorincz, “Transient thermoreflectance of thin metal films in the picosecond regime,” J. Appl. Phys. 63, 2393–2395 (1988).
[CrossRef]

Morath, C. J.

C. J. Morath, H. J. Maris, J. J. Cuomo, D. L. Pappas, A. G. Vishnubhai, V. Patel, J. P. Doyle, and K. L. Saenger, “Picosecond optical studies of amorphous diamond and diamondlike carbon: thermal conductivity and longitudinal sound velocity,” J. Appl. Phys. 76, 2636–2640 (1994).
[CrossRef]

Oehrlein, G. S.

G. Tas, R. J. Stoner, H. J. Maris, G. W. Rubloff, G. S. Oehrlein, and J.-M. Halbout, “Noninvasive picosecond ultrasonic detection of ultrathin interfacial layers: CFx at the Al/Si interface,” Appl. Phys. Lett. 61, 1787–1789 (1992).
[CrossRef]

Paddock, A.

A. Paddock and G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
[CrossRef]

Paddock, C.

Paddock, C. A.

B. M. Clemens, G. L. Eesley, and C. A. Paddock, “Time-resolved thermal transport in compositionally modulated metal films,” Phys. Rev. B 37, 1085–1096 (1988).
[CrossRef]

Pappas, D. L.

C. J. Morath, H. J. Maris, J. J. Cuomo, D. L. Pappas, A. G. Vishnubhai, V. Patel, J. P. Doyle, and K. L. Saenger, “Picosecond optical studies of amorphous diamond and diamondlike carbon: thermal conductivity and longitudinal sound velocity,” J. Appl. Phys. 76, 2636–2640 (1994).
[CrossRef]

Patel, V.

C. J. Morath, H. J. Maris, J. J. Cuomo, D. L. Pappas, A. G. Vishnubhai, V. Patel, J. P. Doyle, and K. L. Saenger, “Picosecond optical studies of amorphous diamond and diamondlike carbon: thermal conductivity and longitudinal sound velocity,” J. Appl. Phys. 76, 2636–2640 (1994).
[CrossRef]

Perrin, B.

B. Perrin, B. Bonello, J.-C. Jeannet, and E. Romatet, “Interferometric detection of hypersound waves in modulated structures,” Prog. Nat. Sci. 6, Suppl. S444–S448 (1996).

Qiu, T. Q.

T. Q. Qiu and C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals,” Trans. ASME, Ser. C: J. Heat Transfer 115, 835–841 (1993).
[CrossRef]

T. Q. Qiu and C. L. Tien, “Short-pulse laser heating on metals,” Int. J. Heat Mass Transf. 35, 719–726 (1992).
[CrossRef]

Romatet, E.

B. Perrin, B. Bonello, J.-C. Jeannet, and E. Romatet, “Interferometric detection of hypersound waves in modulated structures,” Prog. Nat. Sci. 6, Suppl. S444–S448 (1996).

Rothenberg, J. E.

Rubloff, G. W.

G. Tas, R. J. Stoner, H. J. Maris, G. W. Rubloff, G. S. Oehrlein, and J.-M. Halbout, “Noninvasive picosecond ultrasonic detection of ultrathin interfacial layers: CFx at the Al/Si interface,” Appl. Phys. Lett. 61, 1787–1789 (1992).
[CrossRef]

H.-N. Lin, R. J. Stoner, H. J. Maris, J. M. Harper, C. Cabral, Jr., J.-M. Halbout, and G. W. Rubloff, “Nondestructive detection of titanium disilicide phase transformation by picosecond ultrasonics,” Appl. Phys. Lett. 61, 2700–2702 (1992).
[CrossRef]

Saenger, K. L.

C. J. Morath, H. J. Maris, J. J. Cuomo, D. L. Pappas, A. G. Vishnubhai, V. Patel, J. P. Doyle, and K. L. Saenger, “Picosecond optical studies of amorphous diamond and diamondlike carbon: thermal conductivity and longitudinal sound velocity,” J. Appl. Phys. 76, 2636–2640 (1994).
[CrossRef]

Seiberling, L. E.

G. Tas, J. J. Loomis, H. J. Maris, A. A. Bailes III, and L. E. Seiberling, “Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation,” Appl. Phys. Lett. 72, 2235–2237 (1998).
[CrossRef]

Stoner, R. J.

G. Tas, R. J. Stoner, H. J. Maris, G. W. Rubloff, G. S. Oehrlein, and J.-M. Halbout, “Noninvasive picosecond ultrasonic detection of ultrathin interfacial layers: CFx at the Al/Si interface,” Appl. Phys. Lett. 61, 1787–1789 (1992).
[CrossRef]

H.-N. Lin, R. J. Stoner, H. J. Maris, J. M. Harper, C. Cabral, Jr., J.-M. Halbout, and G. W. Rubloff, “Nondestructive detection of titanium disilicide phase transformation by picosecond ultrasonics,” Appl. Phys. Lett. 61, 2700–2702 (1992).
[CrossRef]

Svinarich, K. A.

K. A. Svinarich, W. J. Meng, and G. L. Eesley, “Picosecond acoustic pulse reflection from a metal–metal interface,” Appl. Phys. Lett. 57, 1185–1187 (1990).
[CrossRef]

Tas, G.

G. Tas, J. J. Loomis, H. J. Maris, A. A. Bailes III, and L. E. Seiberling, “Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation,” Appl. Phys. Lett. 72, 2235–2237 (1998).
[CrossRef]

G. Tas, R. J. Stoner, H. J. Maris, G. W. Rubloff, G. S. Oehrlein, and J.-M. Halbout, “Noninvasive picosecond ultrasonic detection of ultrathin interfacial layers: CFx at the Al/Si interface,” Appl. Phys. Lett. 61, 1787–1789 (1992).
[CrossRef]

Tauc, J.

H. T. Grahn, H. J. Maris, J. Tauc, and K. S. Hatton, “Elastic properties of silicon oxynitride films determined by picosecond acoustics,” Appl. Phys. Lett. 53, 2281–2283 (1988).
[CrossRef]

H. T. Grahn, H. J. Maris, J. Tauc, and B. Abeles, “Time-resolved study of vibrations of a-Ge:H/a-Si:H multilayers,” Phys. Rev. B 38, 6066–6074 (1988).
[CrossRef]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986).
[CrossRef]

Thomsen, C.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986).
[CrossRef]

Tien, C. L.

T. Q. Qiu and C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals,” Trans. ASME, Ser. C: J. Heat Transfer 115, 835–841 (1993).
[CrossRef]

T. Q. Qiu and C. L. Tien, “Short-pulse laser heating on metals,” Int. J. Heat Mass Transf. 35, 719–726 (1992).
[CrossRef]

Vishnubhai, A. G.

C. J. Morath, H. J. Maris, J. J. Cuomo, D. L. Pappas, A. G. Vishnubhai, V. Patel, J. P. Doyle, and K. L. Saenger, “Picosecond optical studies of amorphous diamond and diamondlike carbon: thermal conductivity and longitudinal sound velocity,” J. Appl. Phys. 76, 2636–2640 (1994).
[CrossRef]

Wagner, J. W.

J. Fiedler and J. W. Wagner, “Interferometric detection of high frequency pulses of ultrasound in thin coatings,” Rev. Prog. Quant. Nondestr. Eval. 16, 1579–1584 (1997).
[CrossRef]

Wetsel, G. C.

G. C. Wetsel, “Photothermal generation of thermoelastic waves in composite media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 450–461 (1986).
[CrossRef] [PubMed]

Wright, O. B.

O. B. Wright and V. E. Gusev, “Ultrafast generation of acoustic waves in copper,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 331–338 (1995).
[CrossRef]

O. B. Wright, “Ultrafast nonequilibrium stress generation in gold and silver,” Phys. Rev. B 49, 9985–9988 (1994).
[CrossRef]

O. B. Wright and K. Kawashima, “Coherent phonon detection from ultrafast surface vibrations,” Phys. Rev. Lett. 69, 1668–1671 (1992).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

H.-N. Lin, R. J. Stoner, H. J. Maris, J. M. Harper, C. Cabral, Jr., J.-M. Halbout, and G. W. Rubloff, “Nondestructive detection of titanium disilicide phase transformation by picosecond ultrasonics,” Appl. Phys. Lett. 61, 2700–2702 (1992).
[CrossRef]

G. Tas, R. J. Stoner, H. J. Maris, G. W. Rubloff, G. S. Oehrlein, and J.-M. Halbout, “Noninvasive picosecond ultrasonic detection of ultrathin interfacial layers: CFx at the Al/Si interface,” Appl. Phys. Lett. 61, 1787–1789 (1992).
[CrossRef]

G. Tas, J. J. Loomis, H. J. Maris, A. A. Bailes III, and L. E. Seiberling, “Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation,” Appl. Phys. Lett. 72, 2235–2237 (1998).
[CrossRef]

H. T. Grahn, H. J. Maris, J. Tauc, and K. S. Hatton, “Elastic properties of silicon oxynitride films determined by picosecond acoustics,” Appl. Phys. Lett. 53, 2281–2283 (1988).
[CrossRef]

K. A. Svinarich, W. J. Meng, and G. L. Eesley, “Picosecond acoustic pulse reflection from a metal–metal interface,” Appl. Phys. Lett. 57, 1185–1187 (1990).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

G. C. Wetsel, “Photothermal generation of thermoelastic waves in composite media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 450–461 (1986).
[CrossRef] [PubMed]

O. B. Wright and V. E. Gusev, “Ultrafast generation of acoustic waves in copper,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 331–338 (1995).
[CrossRef]

Int. J. Heat Mass Transf. (1)

T. Q. Qiu and C. L. Tien, “Short-pulse laser heating on metals,” Int. J. Heat Mass Transf. 35, 719–726 (1992).
[CrossRef]

J. Appl. Phys. (4)

C. J. Morath, H. J. Maris, J. J. Cuomo, D. L. Pappas, A. G. Vishnubhai, V. Patel, J. P. Doyle, and K. L. Saenger, “Picosecond optical studies of amorphous diamond and diamondlike carbon: thermal conductivity and longitudinal sound velocity,” J. Appl. Phys. 76, 2636–2640 (1994).
[CrossRef]

A. Miklos and A. Lorincz, “Transient thermoreflectance of thin metal films in the picosecond regime,” J. Appl. Phys. 63, 2393–2395 (1988).
[CrossRef]

A. Miklos, Z. Bozoki, and A. Lorincz, “Picosecond transient reflectance of thin metal films,” J. Appl. Phys. 66, 2968–2972 (1989).
[CrossRef]

A. Paddock and G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Phys. Rev. B (4)

O. B. Wright, “Ultrafast nonequilibrium stress generation in gold and silver,” Phys. Rev. B 49, 9985–9988 (1994).
[CrossRef]

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986).
[CrossRef]

B. M. Clemens, G. L. Eesley, and C. A. Paddock, “Time-resolved thermal transport in compositionally modulated metal films,” Phys. Rev. B 37, 1085–1096 (1988).
[CrossRef]

H. T. Grahn, H. J. Maris, J. Tauc, and B. Abeles, “Time-resolved study of vibrations of a-Ge:H/a-Si:H multilayers,” Phys. Rev. B 38, 6066–6074 (1988).
[CrossRef]

Phys. Rev. Lett. (1)

O. B. Wright and K. Kawashima, “Coherent phonon detection from ultrafast surface vibrations,” Phys. Rev. Lett. 69, 1668–1671 (1992).
[CrossRef] [PubMed]

Prog. Nat. Sci. (1)

B. Perrin, B. Bonello, J.-C. Jeannet, and E. Romatet, “Interferometric detection of hypersound waves in modulated structures,” Prog. Nat. Sci. 6, Suppl. S444–S448 (1996).

Rev. Prog. Quant. Nondestr. Eval. (1)

J. Fiedler and J. W. Wagner, “Interferometric detection of high frequency pulses of ultrasound in thin coatings,” Rev. Prog. Quant. Nondestr. Eval. 16, 1579–1584 (1997).
[CrossRef]

Trans. ASME, Ser. C: J. Heat Transfer (1)

T. Q. Qiu and C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals,” Trans. ASME, Ser. C: J. Heat Transfer 115, 835–841 (1993).
[CrossRef]

Other (9)

J. F. Nye, Physical Properties of Materials (Oxford U. Press, New York 1985).

J. W. Wagner, “Optical detection of ultrasound,” in Physical Acoustics, W. P. Mason and A. D. Pierce, eds. (Academic, New York 1990), Vol. 19, pp. 201–266.

D. E. Gray, ed., American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York 1972).

H. Baker, ed., Phase Diagrams, Vol. 3 of American Society of Metals (American Society of Metals, Materials Park, Ohio, 1992).

J. D. Achenbach, Wave Propagation in Elastic Solids (North-Holland, New York 1984).

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, New York 1996).

E. Kreyszig, Advanced Engineering Mathematics, 3rd ed. (Wiley, New York 1972).

C. J. K. Richardson, “Theoretical and experimental ultrafast laser ultrasonic inspection of extended interfaces,” M.Sc. thesis (Johns Hopkins University, Baltimore, Md., 1998).

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, New York 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the time-resolved interferometric thermal and acoustic spectroscopy setup. The reference and signal legs of the interferometer reflect off the sample surface in different locations.

Fig. 2
Fig. 2

Theoretical simulations of measured thermal and acoustic responses of a thin film to an ultrafast laser pulse: (a) near-surface displacements measured with a Michelson interferometer, (b) changes in intensity of reflected light, and (c) changes in phase of reflected light. In each case the optical measurement considers a distributed interaction region defined by the absorption coefficient.

Fig. 3
Fig. 3

Theoretical parametric study of (a) thermal conductivity, (b) specific heat, and (c) absorption coefficient on the signal as would be measured from an index-of-refraction-sensitive Michelson interferometer. (d) Isolation of the spreading of the acoustic pulse width as the absorption depth increases.

Fig. 4
Fig. 4

Two-detector index-of-refraction-sensitive interferometric experimental setup using a rotated cube Michelson interferometer. The pump beam contains approximately 10 times the energy of the probe beam.

Fig. 5
Fig. 5

(a) Theoretical and experimental comparison of the as-measured signals for the 271-nm-thick tungsten film upon a niobium–tungsten substrate. (b) Acoustic signals obtained by removing the thermal contribution by subtracting a fit polynomial from the as-measured signal. (c) Fourier transform of experimental and theoretical acoustic waveforms showing periodic maxima that can be used to determine the film thickness.

Tables (1)

Tables Icon

Table 1 Material Parameters Used in the Curve Fit of the Tungsten–Niobium–Tungsten Sample Featured in Fig. 5a

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

κ2Tz2+W=ρCvTt,
c2uz2-BTz=ρ2ut2,
u|t=0=utt=0=T|t=0=Ttt=0=0.
Tzz=0=0.
σ|z=0=cuz-BTz=0=0,
u|z=d=us|z=d,
T|z=d=Ts|z=d,
κTzz=d=κsTszz=d,
cuz-BTz=d=csusz-BsTsz=d.
W(z, t)=I0(1-R)β2exp(-βz)sin2πt2τ0t2τ0t>2τ,t<0,
κ2T˜z2+W˜=ρCvsT˜,
c2u˜z2-BT˜z=ρs2u˜,
T˜=W˜ exp(βz)(β2-μ2)α[exp(-μz)+exp(μz)]+exp(-βz)-βμexp(-μz),
μ=(ρCvsκ-1)1/2,
α=exp(-μd)[(μsκsβ/μ)-κβ]+exp(-βd)(κβ-μsκs)exp(μd)(μsκs+μκ)+exp(-μd)(μsκs-μκ),
W˜=β(1-R)2exp(-βz)2π3τ[1-exp(-τs)]τs[(τs)2+4π2].
u˜=u˜h+iu˜i=A exp(-rz)+B exp(rz)+C2 exp(-μz)+C3 exp(μz)+C4 exp(-βz),
C2=-BμW˜ exp(βz)[α-(β/μ)]c(μ2-r2)(β2-μ2),
C3=BμαW˜ exp(βz)c(μ2-r2)(β2-μ2),
C4=-BβW˜ exp(βz)c(β2-r2)(β2-μ2),
A=B-1rccμC2-cμC3+cβC4+W˜ exp(βz)(β2-μ2)B2α+1-βμ=B-1rcF,
B=1cr[exp(rd)-exp(-rd)]+csrs[exp(rd)+exp(-rd)]×csrscr-1F exp(-rd)+(cμ-csrs)C2 exp(-μd)-(cμ+csrs)C3 exp(μd)+(cβ-csrs)C4 exp(-βd)+BBsW˜ exp(βz)(β2-μ2)α-βμexp(-μd)+α exp(μd)+exp(-βd)+BsW˜ exp(βz)(β2-μ2)μsrs-μs2μs2-rs2-1[α exp(-μd)+α exp(μd)+exp(-βd)+exp(βd)].
ΔRR=1(1+n02+k02)2-4n02{4(n0-k0)×[(n02-k02-1)In-2n0k0Jη]νη+8n0k0[2n0k0Iη+(n02-k02-1)Jη]wη},
Iη=K00Aη(z)exp(-2k0K0z)sin(2K0n0z)dz,
Jη=K00Aη(z)exp(-2k0K0z)cos(2K0n0z)dz.
Δθ=tan-12(n02-k02)Iηνη+4n0k0Jηwη[(n02-k02)νη]2(Iη2+Jη2)+(2n0k0wη)2(Iη2+Jη2)-1.
Id=I1(1+ΔR/R)+I2+2[(I1+ΔI)I2]1/2×cos(2K0δ+Δθ+Φ0),
Id=(I1+I2)+(ΔR/R)I1+2I1I2×[cos(Φ0)-(2K0δ+Δθ)sin(Φ0)].
Id=(I1+I2)-4I1I2K0δ-2I1I2Δθ+(ΔR/R)I1.
δ(t)=2k0K00u(t, z)exp(-2k0K0z)dz,
δmin=hνBηK2k2P01+K cos k(zr-z0)sin2 k(zr-z0)1/2.
dVdz=2πAλ,
r=z1-z2z1+z2.

Metrics