Abstract

We investigate the properties of propagation and self-pumped phase conjugation (SPPC) of 90-fs laser pulses at 450 nm in BaTiO3. Femtosecond SPPC in BaTiO3, both in air and in immersion oil, is explored; it is demonstrated that femtosecond self-pumped phase-conjugate pulses are generated from all crystallographic faces of BaTiO3 in immersion oil. We measure the duration of the pulses after propagation and SPPC by using electric field cross correlation. The duration of SPPC increases as the incident angle increases. Because of the partial compensation of the negative angular dispersion, the self-pumped phase-conjugate pulse undergoes a total dispersion smaller than that of the transmitted pulse. By managing the angular dispersion of the femtosecond phase conjugator, we can control the total dispersion and thus the duration of the self-pumped phase-conjugate pulses. The experimental results agree with the theoretical simulations.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Cronin-Golomb, B. Fisher, S. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12 (1984).
    [CrossRef]
  2. P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484 (1989), and references therein.
    [CrossRef]
  3. G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. 19, 1637 (1983).
    [CrossRef]
  4. N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Two-wave mixing in photorefractive BaTiO3:Rh at 1.06 μm in the nanosecond regime,” Opt. Lett. 22, 976 (1997).
    [CrossRef] [PubMed]
  5. N. Barry and M. I. Damzen, “Two-beam coupling and response-time measurements in barium titanate using high-intensity laser pulses,” J. Opt. Soc. Am. B 9, 1488 (1992).
    [CrossRef]
  6. L. K. Lam, T. Y. Chang, J. Feinberg, and R. W. Hellwarth, “Photorefractive-induced gratings formed by nanosecond optical pulses in BaTiO3,” Opt. Lett. 10, 475 (1981).
    [CrossRef]
  7. A. L. Smirl, G. C. Valley, R. A. Mullen, K. Bohnert, C. D. Mire, and T. F. Boggess, “Picosecond photorefractive effect in BaTiO3,” Opt. Lett. 12, 501 (1987).
    [CrossRef] [PubMed]
  8. A. L. Smirl, K. Bohnert, G. C. Valley, R. A. Mullen, and T. F. Boggess, “Formation, decay, and erasure of photorefractive gratings written in barium titanate by picosecond pulses,” J. Opt. Soc. Am. B 6, 606 (1989).
    [CrossRef]
  9. J. M. C. Jonathan, G. Roosen, and Ph. Roussignol, “Time-resolved buildup of a photorefractive grating induced in Bi12SiO20 by picosecond light pulses,” Opt. Lett. 13, 224 (1988).
    [CrossRef] [PubMed]
  10. X. S. Yao, V. Dominic, and J. Feinberg, “Theory of beam coupling and pulse shaping of mode-locked laser pulses in a photorefractive crystal,” J. Opt. Soc. Am. B 7, 234 (1990).
    [CrossRef]
  11. X. Yao and J. Feinberg, “Photorefractive pulse coupling in frequency domain,” Opt. Lett. 18, 104 (1993).
    [CrossRef] [PubMed]
  12. V. Dominic, X. S. Yao, R. M. Pierce, and J. Feinberg, “Measuring the coherence length of mode-locked laser pulses in real time,” Appl. Phys. Lett. 56, 521 (1990).
    [CrossRef]
  13. H. Okamura and K. Kuroda, “Two-dimensional measurement of the temporal correlation function of picosecond light pulses recorded in a photorefractive crystal,” J. Opt. Soc. Am. B 14, 860 (1997).
    [CrossRef]
  14. L. H. Acioli, M. Ulman, E. P. Ippen, J. G. Fujimoto, H. Kong, B. S. Chen, and M. Cronin-Golomb, “Femtosecond temporal encoding in barium titanate,” Opt. Lett. 16, 1984 (1991).
    [CrossRef] [PubMed]
  15. A. Brignon, J.-P. Huignard, M. H. Garrett, and I. Mnushkina, “Self-pumped phase conjugation in rhodium-doped BaTiO3 with 1.06-μm nanosecond pulses,” Opt. Lett. 22, 215 (1997).
    [CrossRef] [PubMed]
  16. B. Monson, G. J. Salamo, A. G. Mott, M. J. Miller, E. J. Sharp, W. W. Clark III, G. L. Wood, and R. R. Neurgaonkar, “Self-pumped phase conjugation with nanosecond pulses in strontium barium niobate,” Opt. Lett. 15, 12 (1990).
    [CrossRef] [PubMed]
  17. M. J. Damzen, N. P. Barry, and M. Buttinger, “High-intensity effects in self-pumped photorefractive phase conjugation using nanosecond pulses,” J. Mod. Opt. 42, 2051 (1995).
    [CrossRef]
  18. M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in a passive phase conjugate mirror,” Appl. Phys. Lett. 47, 1131 (1985).
    [CrossRef]
  19. R. K. Jain and K. Stenersen, “Picosecond pulse operation of a dye laser containing a phase conjugate mirror,” Opt. Lett. 9, 546 (1984).
    [CrossRef] [PubMed]
  20. H. F. Yau, P. J. Wang, E. Y. Pan, J. Chen, and J. Y. Chang, “Self-pumped phase conjugation with picosecond and femtosecond pulses using BaTiO3,” Opt. Commun. 135, 331–336 (1997).
    [CrossRef]
  21. H. F. Yau, P. J. Wang, E. Y. Pan, and J. Chen, “Self-pumped phase conjugation with femtosecond pulses by use of BaTiO3,” Opt. Lett. 21, 1168–1170 (1996).
    [CrossRef] [PubMed]
  22. H. Wang, N. Yoshikawa, S. Yoshikado, and T. Aruga, “Mutually pumped phase conjugator with a rainbow configuration in BaTiO3:Ce crystal using nanosecond pulses,” Opt. Lett. 21, 561 (1996).
    [CrossRef] [PubMed]
  23. S. Ashihara, O. Matoba, T. Shimura, K. Kuroda, J. Kato, and I. Yamaguchi, “Mutually pumped phase conjugators with picosecond pulses,” J. Opt. Soc. Am. B 15, 1971 (1998).
    [CrossRef]
  24. A. Yariv, D. Fekete, and D. M. Pepper, “Compensation for channel dispersion by nonlinear optical phase conjugation,” Opt. Lett. 4, 52 (1979).
    [CrossRef] [PubMed]
  25. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, San Diego, Calif., 1995), Chap. 2.
  26. J. C. Diels, J. J. Fontaine, L. C. McMichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,” Appl. Opt. 24, 1270 (1985).
    [CrossRef] [PubMed]
  27. R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolve optical gating,” Rev. Sci. Instrum. 68, 3277 (1997), and references therein.
    [CrossRef]
  28. R. H. J. Knop and R. Spik, “Phase-sensitive interferometry with ultrashort optical pulses,” Rev. Sci. Instrum. 66, 5459 (1995).
    [CrossRef]
  29. R. M. Brubaker, Q. N. Wang, D. D. Nolte, E. S. Harmon, and M. R. Melloch, “Steady-state four-wave mixing in photorefractive quantum wells with femtosecond pulses,” J. Opt. Soc. Am. B 11, 1038 (1994).
    [CrossRef]
  30. A. M. Levine, E. Ozizmir, R. Trebino, C. C. Hayden, A. M. Johson, and K. L. Tokuda, “Induced-grating autocorrelation of ultrashort pulses in a slowly responding medium,” J. Opt. Soc. Am. B 11, 1609 (1994).
    [CrossRef]
  31. E. T. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, J. P. Chambaret, and A. Mysyrowicz, “Spectral determination of the amplitude and the phase of intense ultrashort optical pulses,” J. Opt. Soc. Am. B 13, 317 (1996).
    [CrossRef]
  32. O. Buccafusca, X. Chen, W. J. Walecki, and A. L. Smirl, “Measurement of the ultrafast polarization dynamics of weak four-wave mixing signals by dual-channel femtosecond spectral interferometry,” J. Opt. Soc. Am. B 15, 1218 (1998).
    [CrossRef]
  33. J. A. Armstrong, “Measurement of picosecond laser pulse widths,” Appl. Phys. Lett. 10, 16 (1967).
    [CrossRef]
  34. K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225 (1989).
    [CrossRef]
  35. R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Bandwidth-limited diffraction of femtosecond pulses from photorefractive quantum wells,” IEEE J. Quantum Electron. 33, 2150 (1997).
    [CrossRef]
  36. Y. Ding, I. Lahiri, D. D. Nolte, G. J. Dunning, and D. M. Pepper, “Electric-field correlation of femtosecond pulses by use of a photoelectromotive-force detector,” J. Opt. Soc. Am. B 15, 2013 (1998).
    [CrossRef]
  37. L. Lepetit, G. Cheriau, and M. Joffre, “Linear techniques of the phase measurement by femtosecond spectral interferometry for application spectroscopy,” J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]
  38. C. Yang, K. Minoshima, K. Seta, H. Matsumoto, and Y. Zhu, “Generation of self-pumped phase conjugation from the −c-face of BaTiO3 with femtosecond pulses,” Appl. Opt. 38, 1704 (1999).
    [CrossRef]
  39. M. Cronin-Golomb, “Almost all transmission grating self-pumped phase-conjugate mirrors are equivalent,” Opt. Lett. 15, 897 (1990).
    [CrossRef] [PubMed]
  40. C. Yang, “Dispersion compensation for femtosecond self-pumped phase conjugator,” Opt. Lett. 24, 31 (1999).
    [CrossRef]
  41. J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486 (1982).
    [CrossRef] [PubMed]
  42. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Chaps. 2 and 3.
  43. K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, “Refractive indices of the single domain BaTiO3 for different wavelengths and temperature,” Phys. Status Solidi A 135, K87 (1993).
    [CrossRef]

1999

1998

1997

A. Brignon, J.-P. Huignard, M. H. Garrett, and I. Mnushkina, “Self-pumped phase conjugation in rhodium-doped BaTiO3 with 1.06-μm nanosecond pulses,” Opt. Lett. 22, 215 (1997).
[CrossRef] [PubMed]

N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Two-wave mixing in photorefractive BaTiO3:Rh at 1.06 μm in the nanosecond regime,” Opt. Lett. 22, 976 (1997).
[CrossRef] [PubMed]

H. F. Yau, P. J. Wang, E. Y. Pan, J. Chen, and J. Y. Chang, “Self-pumped phase conjugation with picosecond and femtosecond pulses using BaTiO3,” Opt. Commun. 135, 331–336 (1997).
[CrossRef]

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolve optical gating,” Rev. Sci. Instrum. 68, 3277 (1997), and references therein.
[CrossRef]

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Bandwidth-limited diffraction of femtosecond pulses from photorefractive quantum wells,” IEEE J. Quantum Electron. 33, 2150 (1997).
[CrossRef]

H. Okamura and K. Kuroda, “Two-dimensional measurement of the temporal correlation function of picosecond light pulses recorded in a photorefractive crystal,” J. Opt. Soc. Am. B 14, 860 (1997).
[CrossRef]

1996

1995

M. J. Damzen, N. P. Barry, and M. Buttinger, “High-intensity effects in self-pumped photorefractive phase conjugation using nanosecond pulses,” J. Mod. Opt. 42, 2051 (1995).
[CrossRef]

R. H. J. Knop and R. Spik, “Phase-sensitive interferometry with ultrashort optical pulses,” Rev. Sci. Instrum. 66, 5459 (1995).
[CrossRef]

L. Lepetit, G. Cheriau, and M. Joffre, “Linear techniques of the phase measurement by femtosecond spectral interferometry for application spectroscopy,” J. Opt. Soc. Am. B 12, 2467 (1995).
[CrossRef]

1994

1993

X. Yao and J. Feinberg, “Photorefractive pulse coupling in frequency domain,” Opt. Lett. 18, 104 (1993).
[CrossRef] [PubMed]

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, “Refractive indices of the single domain BaTiO3 for different wavelengths and temperature,” Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

1992

1991

1990

1989

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484 (1989), and references therein.
[CrossRef]

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

A. L. Smirl, K. Bohnert, G. C. Valley, R. A. Mullen, and T. F. Boggess, “Formation, decay, and erasure of photorefractive gratings written in barium titanate by picosecond pulses,” J. Opt. Soc. Am. B 6, 606 (1989).
[CrossRef]

1988

1987

1985

J. C. Diels, J. J. Fontaine, L. C. McMichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,” Appl. Opt. 24, 1270 (1985).
[CrossRef] [PubMed]

M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in a passive phase conjugate mirror,” Appl. Phys. Lett. 47, 1131 (1985).
[CrossRef]

1984

M. Cronin-Golomb, B. Fisher, S. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12 (1984).
[CrossRef]

R. K. Jain and K. Stenersen, “Picosecond pulse operation of a dye laser containing a phase conjugate mirror,” Opt. Lett. 9, 546 (1984).
[CrossRef] [PubMed]

1983

G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. 19, 1637 (1983).
[CrossRef]

1982

1981

1979

1967

J. A. Armstrong, “Measurement of picosecond laser pulse widths,” Appl. Phys. Lett. 10, 16 (1967).
[CrossRef]

Acioli, L. H.

Armstrong, J. A.

J. A. Armstrong, “Measurement of picosecond laser pulse widths,” Appl. Phys. Lett. 10, 16 (1967).
[CrossRef]

Aruga, T.

Ashihara, S.

Barry, N.

Barry, N. P.

M. J. Damzen, N. P. Barry, and M. Buttinger, “High-intensity effects in self-pumped photorefractive phase conjugation using nanosecond pulses,” J. Mod. Opt. 42, 2051 (1995).
[CrossRef]

Boggess, T. F.

Bohnert, K.

Brignon, A.

Brubaker, R. M.

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Bandwidth-limited diffraction of femtosecond pulses from photorefractive quantum wells,” IEEE J. Quantum Electron. 33, 2150 (1997).
[CrossRef]

R. M. Brubaker, Q. N. Wang, D. D. Nolte, E. S. Harmon, and M. R. Melloch, “Steady-state four-wave mixing in photorefractive quantum wells with femtosecond pulses,” J. Opt. Soc. Am. B 11, 1038 (1994).
[CrossRef]

Buccafusca, O.

Buse, K.

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, “Refractive indices of the single domain BaTiO3 for different wavelengths and temperature,” Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Buttinger, M.

M. J. Damzen, N. P. Barry, and M. Buttinger, “High-intensity effects in self-pumped photorefractive phase conjugation using nanosecond pulses,” J. Mod. Opt. 42, 2051 (1995).
[CrossRef]

Chambaret, J. P.

Chang, J. Y.

H. F. Yau, P. J. Wang, E. Y. Pan, J. Chen, and J. Y. Chang, “Self-pumped phase conjugation with picosecond and femtosecond pulses using BaTiO3,” Opt. Commun. 135, 331–336 (1997).
[CrossRef]

Chang, T. Y.

Chen, B. S.

Chen, J.

H. F. Yau, P. J. Wang, E. Y. Pan, J. Chen, and J. Y. Chang, “Self-pumped phase conjugation with picosecond and femtosecond pulses using BaTiO3,” Opt. Commun. 135, 331–336 (1997).
[CrossRef]

H. F. Yau, P. J. Wang, E. Y. Pan, and J. Chen, “Self-pumped phase conjugation with femtosecond pulses by use of BaTiO3,” Opt. Lett. 21, 1168–1170 (1996).
[CrossRef] [PubMed]

Chen, X.

Cheriau, G.

Clark III, W. W.

Cronin-Golomb, M.

L. H. Acioli, M. Ulman, E. P. Ippen, J. G. Fujimoto, H. Kong, B. S. Chen, and M. Cronin-Golomb, “Femtosecond temporal encoding in barium titanate,” Opt. Lett. 16, 1984 (1991).
[CrossRef] [PubMed]

M. Cronin-Golomb, “Almost all transmission grating self-pumped phase-conjugate mirrors are equivalent,” Opt. Lett. 15, 897 (1990).
[CrossRef] [PubMed]

M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in a passive phase conjugate mirror,” Appl. Phys. Lett. 47, 1131 (1985).
[CrossRef]

M. Cronin-Golomb, B. Fisher, S. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12 (1984).
[CrossRef]

Damzen, M. I.

Damzen, M. J.

M. J. Damzen, N. P. Barry, and M. Buttinger, “High-intensity effects in self-pumped photorefractive phase conjugation using nanosecond pulses,” J. Mod. Opt. 42, 2051 (1995).
[CrossRef]

Delong, K. W.

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolve optical gating,” Rev. Sci. Instrum. 68, 3277 (1997), and references therein.
[CrossRef]

Diels, J. C.

Ding, Y.

Y. Ding, I. Lahiri, D. D. Nolte, G. J. Dunning, and D. M. Pepper, “Electric-field correlation of femtosecond pulses by use of a photoelectromotive-force detector,” J. Opt. Soc. Am. B 15, 2013 (1998).
[CrossRef]

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Bandwidth-limited diffraction of femtosecond pulses from photorefractive quantum wells,” IEEE J. Quantum Electron. 33, 2150 (1997).
[CrossRef]

Dominic, V.

V. Dominic, X. S. Yao, R. M. Pierce, and J. Feinberg, “Measuring the coherence length of mode-locked laser pulses in real time,” Appl. Phys. Lett. 56, 521 (1990).
[CrossRef]

X. S. Yao, V. Dominic, and J. Feinberg, “Theory of beam coupling and pulse shaping of mode-locked laser pulses in a photorefractive crystal,” J. Opt. Soc. Am. B 7, 234 (1990).
[CrossRef]

Dunning, G. J.

Feinberg, J.

Fekete, D.

Fisher, B.

M. Cronin-Golomb, B. Fisher, S. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12 (1984).
[CrossRef]

Fittinghoff, D. N.

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolve optical gating,” Rev. Sci. Instrum. 68, 3277 (1997), and references therein.
[CrossRef]

Fontaine, J. J.

Franco, M. A.

Fujimoto, J. G.

Garrett, M. H.

Grillon, G.

Harmon, E. S.

Hayden, C. C.

Hellwarth, R. W.

Hesse, H.

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, “Refractive indices of the single domain BaTiO3 for different wavelengths and temperature,” Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Huignard, J.-P.

Huot, N.

Ippen, E. P.

Jain, R. K.

Joffre, M.

Johson, A. M.

Jonathan, J. M. C.

Kato, J.

Knop, R. H. J.

R. H. J. Knop and R. Spik, “Phase-sensitive interferometry with ultrashort optical pulses,” Rev. Sci. Instrum. 66, 5459 (1995).
[CrossRef]

Kong, H.

Kratzig, E.

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, “Refractive indices of the single domain BaTiO3 for different wavelengths and temperature,” Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Krumbugel, M. A.

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolve optical gating,” Rev. Sci. Instrum. 68, 3277 (1997), and references therein.
[CrossRef]

Kuroda, K.

Lahiri, I.

Lam, L. K.

Lepetit, L.

Levine, A. M.

Loheide, S.

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, “Refractive indices of the single domain BaTiO3 for different wavelengths and temperature,” Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Matoba, O.

Matsumoto, H.

McMichael, L. C.

Melloch, M. R.

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Bandwidth-limited diffraction of femtosecond pulses from photorefractive quantum wells,” IEEE J. Quantum Electron. 33, 2150 (1997).
[CrossRef]

R. M. Brubaker, Q. N. Wang, D. D. Nolte, E. S. Harmon, and M. R. Melloch, “Steady-state four-wave mixing in photorefractive quantum wells with femtosecond pulses,” J. Opt. Soc. Am. B 11, 1038 (1994).
[CrossRef]

Mersch, F.

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, “Refractive indices of the single domain BaTiO3 for different wavelengths and temperature,” Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Miller, M. J.

Minoshima, K.

Mire, C. D.

Mnushkina, I.

Mogi, K.

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Monson, B.

Mott, A. G.

Mullen, R. A.

Mysyrowicz, A.

Naganuma, K.

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Neurgaonkar, R. R.

Nibbering, E. T.

Nolte, D. D.

Okamura, H.

Ozizmir, E.

Pan, E. Y.

H. F. Yau, P. J. Wang, E. Y. Pan, J. Chen, and J. Y. Chang, “Self-pumped phase conjugation with picosecond and femtosecond pulses using BaTiO3,” Opt. Commun. 135, 331–336 (1997).
[CrossRef]

H. F. Yau, P. J. Wang, E. Y. Pan, and J. Chen, “Self-pumped phase conjugation with femtosecond pulses by use of BaTiO3,” Opt. Lett. 21, 1168–1170 (1996).
[CrossRef] [PubMed]

Paslaski, J.

M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in a passive phase conjugate mirror,” Appl. Phys. Lett. 47, 1131 (1985).
[CrossRef]

Pepper, D. M.

Pierce, R. M.

V. Dominic, X. S. Yao, R. M. Pierce, and J. Feinberg, “Measuring the coherence length of mode-locked laser pulses in real time,” Appl. Phys. Lett. 56, 521 (1990).
[CrossRef]

Prade, B. S.

Richman, B. A.

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolve optical gating,” Rev. Sci. Instrum. 68, 3277 (1997), and references therein.
[CrossRef]

Riehemann, S.

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, “Refractive indices of the single domain BaTiO3 for different wavelengths and temperature,” Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Roosen, G.

Roussignol, Ph.

Rytz, D.

Salamo, G. J.

Seta, K.

Sharp, E. J.

Shimura, T.

Simoni, F.

Smirl, A. L.

Spik, R.

R. H. J. Knop and R. Spik, “Phase-sensitive interferometry with ultrashort optical pulses,” Rev. Sci. Instrum. 66, 5459 (1995).
[CrossRef]

Stenersen, K.

Sweetser, J. N.

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolve optical gating,” Rev. Sci. Instrum. 68, 3277 (1997), and references therein.
[CrossRef]

Tokuda, K. L.

Trebino, R.

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolve optical gating,” Rev. Sci. Instrum. 68, 3277 (1997), and references therein.
[CrossRef]

A. M. Levine, E. Ozizmir, R. Trebino, C. C. Hayden, A. M. Johson, and K. L. Tokuda, “Induced-grating autocorrelation of ultrashort pulses in a slowly responding medium,” J. Opt. Soc. Am. B 11, 1609 (1994).
[CrossRef]

Ulman, M.

Valley, G. C.

Walecki, W. J.

Wang, H.

Wang, P. J.

H. F. Yau, P. J. Wang, E. Y. Pan, J. Chen, and J. Y. Chang, “Self-pumped phase conjugation with picosecond and femtosecond pulses using BaTiO3,” Opt. Commun. 135, 331–336 (1997).
[CrossRef]

H. F. Yau, P. J. Wang, E. Y. Pan, and J. Chen, “Self-pumped phase conjugation with femtosecond pulses by use of BaTiO3,” Opt. Lett. 21, 1168–1170 (1996).
[CrossRef] [PubMed]

Wang, Q. N.

Weiner, A. M.

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Bandwidth-limited diffraction of femtosecond pulses from photorefractive quantum wells,” IEEE J. Quantum Electron. 33, 2150 (1997).
[CrossRef]

White, S. O.

M. Cronin-Golomb, B. Fisher, S. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12 (1984).
[CrossRef]

Wood, G. L.

Yamada, H.

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Yamaguchi, I.

Yang, C.

Yao, X.

Yao, X. S.

X. S. Yao, V. Dominic, and J. Feinberg, “Theory of beam coupling and pulse shaping of mode-locked laser pulses in a photorefractive crystal,” J. Opt. Soc. Am. B 7, 234 (1990).
[CrossRef]

V. Dominic, X. S. Yao, R. M. Pierce, and J. Feinberg, “Measuring the coherence length of mode-locked laser pulses in real time,” Appl. Phys. Lett. 56, 521 (1990).
[CrossRef]

Yariv, A.

M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in a passive phase conjugate mirror,” Appl. Phys. Lett. 47, 1131 (1985).
[CrossRef]

M. Cronin-Golomb, B. Fisher, S. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12 (1984).
[CrossRef]

A. Yariv, D. Fekete, and D. M. Pepper, “Compensation for channel dispersion by nonlinear optical phase conjugation,” Opt. Lett. 4, 52 (1979).
[CrossRef] [PubMed]

Yau, H. F.

H. F. Yau, P. J. Wang, E. Y. Pan, J. Chen, and J. Y. Chang, “Self-pumped phase conjugation with picosecond and femtosecond pulses using BaTiO3,” Opt. Commun. 135, 331–336 (1997).
[CrossRef]

H. F. Yau, P. J. Wang, E. Y. Pan, and J. Chen, “Self-pumped phase conjugation with femtosecond pulses by use of BaTiO3,” Opt. Lett. 21, 1168–1170 (1996).
[CrossRef] [PubMed]

Yeh, P.

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484 (1989), and references therein.
[CrossRef]

Yoshikado, S.

Yoshikawa, N.

Zhu, Y.

Appl. Opt.

Appl. Phys. Lett.

V. Dominic, X. S. Yao, R. M. Pierce, and J. Feinberg, “Measuring the coherence length of mode-locked laser pulses in real time,” Appl. Phys. Lett. 56, 521 (1990).
[CrossRef]

M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in a passive phase conjugate mirror,” Appl. Phys. Lett. 47, 1131 (1985).
[CrossRef]

J. A. Armstrong, “Measurement of picosecond laser pulse widths,” Appl. Phys. Lett. 10, 16 (1967).
[CrossRef]

IEEE J. Quantum Electron.

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Bandwidth-limited diffraction of femtosecond pulses from photorefractive quantum wells,” IEEE J. Quantum Electron. 33, 2150 (1997).
[CrossRef]

M. Cronin-Golomb, B. Fisher, S. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12 (1984).
[CrossRef]

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484 (1989), and references therein.
[CrossRef]

G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. 19, 1637 (1983).
[CrossRef]

J. Mod. Opt.

M. J. Damzen, N. P. Barry, and M. Buttinger, “High-intensity effects in self-pumped photorefractive phase conjugation using nanosecond pulses,” J. Mod. Opt. 42, 2051 (1995).
[CrossRef]

J. Opt. Soc. Am. B

A. L. Smirl, K. Bohnert, G. C. Valley, R. A. Mullen, and T. F. Boggess, “Formation, decay, and erasure of photorefractive gratings written in barium titanate by picosecond pulses,” J. Opt. Soc. Am. B 6, 606 (1989).
[CrossRef]

X. S. Yao, V. Dominic, and J. Feinberg, “Theory of beam coupling and pulse shaping of mode-locked laser pulses in a photorefractive crystal,” J. Opt. Soc. Am. B 7, 234 (1990).
[CrossRef]

N. Barry and M. I. Damzen, “Two-beam coupling and response-time measurements in barium titanate using high-intensity laser pulses,” J. Opt. Soc. Am. B 9, 1488 (1992).
[CrossRef]

L. Lepetit, G. Cheriau, and M. Joffre, “Linear techniques of the phase measurement by femtosecond spectral interferometry for application spectroscopy,” J. Opt. Soc. Am. B 12, 2467 (1995).
[CrossRef]

E. T. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, J. P. Chambaret, and A. Mysyrowicz, “Spectral determination of the amplitude and the phase of intense ultrashort optical pulses,” J. Opt. Soc. Am. B 13, 317 (1996).
[CrossRef]

H. Okamura and K. Kuroda, “Two-dimensional measurement of the temporal correlation function of picosecond light pulses recorded in a photorefractive crystal,” J. Opt. Soc. Am. B 14, 860 (1997).
[CrossRef]

O. Buccafusca, X. Chen, W. J. Walecki, and A. L. Smirl, “Measurement of the ultrafast polarization dynamics of weak four-wave mixing signals by dual-channel femtosecond spectral interferometry,” J. Opt. Soc. Am. B 15, 1218 (1998).
[CrossRef]

S. Ashihara, O. Matoba, T. Shimura, K. Kuroda, J. Kato, and I. Yamaguchi, “Mutually pumped phase conjugators with picosecond pulses,” J. Opt. Soc. Am. B 15, 1971 (1998).
[CrossRef]

Y. Ding, I. Lahiri, D. D. Nolte, G. J. Dunning, and D. M. Pepper, “Electric-field correlation of femtosecond pulses by use of a photoelectromotive-force detector,” J. Opt. Soc. Am. B 15, 2013 (1998).
[CrossRef]

R. M. Brubaker, Q. N. Wang, D. D. Nolte, E. S. Harmon, and M. R. Melloch, “Steady-state four-wave mixing in photorefractive quantum wells with femtosecond pulses,” J. Opt. Soc. Am. B 11, 1038 (1994).
[CrossRef]

A. M. Levine, E. Ozizmir, R. Trebino, C. C. Hayden, A. M. Johson, and K. L. Tokuda, “Induced-grating autocorrelation of ultrashort pulses in a slowly responding medium,” J. Opt. Soc. Am. B 11, 1609 (1994).
[CrossRef]

Opt. Commun.

H. F. Yau, P. J. Wang, E. Y. Pan, J. Chen, and J. Y. Chang, “Self-pumped phase conjugation with picosecond and femtosecond pulses using BaTiO3,” Opt. Commun. 135, 331–336 (1997).
[CrossRef]

Opt. Lett.

A. Yariv, D. Fekete, and D. M. Pepper, “Compensation for channel dispersion by nonlinear optical phase conjugation,” Opt. Lett. 4, 52 (1979).
[CrossRef] [PubMed]

J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486 (1982).
[CrossRef] [PubMed]

R. K. Jain and K. Stenersen, “Picosecond pulse operation of a dye laser containing a phase conjugate mirror,” Opt. Lett. 9, 546 (1984).
[CrossRef] [PubMed]

L. K. Lam, T. Y. Chang, J. Feinberg, and R. W. Hellwarth, “Photorefractive-induced gratings formed by nanosecond optical pulses in BaTiO3,” Opt. Lett. 10, 475 (1981).
[CrossRef]

A. L. Smirl, G. C. Valley, R. A. Mullen, K. Bohnert, C. D. Mire, and T. F. Boggess, “Picosecond photorefractive effect in BaTiO3,” Opt. Lett. 12, 501 (1987).
[CrossRef] [PubMed]

J. M. C. Jonathan, G. Roosen, and Ph. Roussignol, “Time-resolved buildup of a photorefractive grating induced in Bi12SiO20 by picosecond light pulses,” Opt. Lett. 13, 224 (1988).
[CrossRef] [PubMed]

B. Monson, G. J. Salamo, A. G. Mott, M. J. Miller, E. J. Sharp, W. W. Clark III, G. L. Wood, and R. R. Neurgaonkar, “Self-pumped phase conjugation with nanosecond pulses in strontium barium niobate,” Opt. Lett. 15, 12 (1990).
[CrossRef] [PubMed]

M. Cronin-Golomb, “Almost all transmission grating self-pumped phase-conjugate mirrors are equivalent,” Opt. Lett. 15, 897 (1990).
[CrossRef] [PubMed]

L. H. Acioli, M. Ulman, E. P. Ippen, J. G. Fujimoto, H. Kong, B. S. Chen, and M. Cronin-Golomb, “Femtosecond temporal encoding in barium titanate,” Opt. Lett. 16, 1984 (1991).
[CrossRef] [PubMed]

X. Yao and J. Feinberg, “Photorefractive pulse coupling in frequency domain,” Opt. Lett. 18, 104 (1993).
[CrossRef] [PubMed]

A. Brignon, J.-P. Huignard, M. H. Garrett, and I. Mnushkina, “Self-pumped phase conjugation in rhodium-doped BaTiO3 with 1.06-μm nanosecond pulses,” Opt. Lett. 22, 215 (1997).
[CrossRef] [PubMed]

N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Two-wave mixing in photorefractive BaTiO3:Rh at 1.06 μm in the nanosecond regime,” Opt. Lett. 22, 976 (1997).
[CrossRef] [PubMed]

C. Yang, “Dispersion compensation for femtosecond self-pumped phase conjugator,” Opt. Lett. 24, 31 (1999).
[CrossRef]

H. Wang, N. Yoshikawa, S. Yoshikado, and T. Aruga, “Mutually pumped phase conjugator with a rainbow configuration in BaTiO3:Ce crystal using nanosecond pulses,” Opt. Lett. 21, 561 (1996).
[CrossRef] [PubMed]

H. F. Yau, P. J. Wang, E. Y. Pan, and J. Chen, “Self-pumped phase conjugation with femtosecond pulses by use of BaTiO3,” Opt. Lett. 21, 1168–1170 (1996).
[CrossRef] [PubMed]

Phys. Status Solidi A

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, “Refractive indices of the single domain BaTiO3 for different wavelengths and temperature,” Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Rev. Sci. Instrum.

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolve optical gating,” Rev. Sci. Instrum. 68, 3277 (1997), and references therein.
[CrossRef]

R. H. J. Knop and R. Spik, “Phase-sensitive interferometry with ultrashort optical pulses,” Rev. Sci. Instrum. 66, 5459 (1995).
[CrossRef]

Other

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, San Diego, Calif., 1995), Chap. 2.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Chaps. 2 and 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of experimental setup for measurement of the duration of the reference pulses without BaTiO3 and the duration of the transmitted and the SPPC pulses with BaTiO3. A mode-locked Ti:Al2O3 laser operates at a 900-nm line. BBO, second-harmonic-generation crystal; M’s, mirrors; S, electric shuttle; BS, beam splitter; D, photodiode detector; ω-cut, filter.

Fig. 2
Fig. 2

Electric field autocorrelation of the reference laser pulse. The FWHM of the envelope of the interferometric trace is 184 fs, which indicates that the reference pulse width is 92 fs.

Fig. 3
Fig. 3

Electric field cross correlation between the signal pulse propagating along the a axis of the crystal and the reference pulse. The FWHM of the envelope is 620 fs, which leads to a broadened pulse width of 428 fs for the signal pulse.

Fig. 4
Fig. 4

Pulse width of SPPC generated from the -c face of BaTiO3 in air, as well as the phase-conjugate reflectivity, as a function of the incident angle.

Fig. 5
Fig. 5

Pulse width of SPPC generated from the +c face of BaTiO3 in immersion oil, as well as the phase-conjugate reflectivity, as a function of the incident angle.

Fig. 6
Fig. 6

Theoretical simulations of the pulse widths of the transmitted pulses. Dashed curve, ordinary polarization; solid curve, extraordinary polarization; triangle, the measured pulse width of the pulses propagating along the c axis of the crystal (ordinary polarization); two circles, the measured pulse widths of the pulses propagating along the a axis and the b axis of the crystal (extraordinary polarization).

Fig. 7
Fig. 7

Theoretical simulations of the pulse width of SPPC as a function of the grating spacing. The incident pulse width is 92 fs. Solid curve, for 450 nm; dashed curve, for 800 nm. When the grating spacing Λ>0.5 µm, the pulse width of the SPPC is almost the same as that of the incident pulse for 800 nm. The pulse width of the SPPC is at least three times as long as that of the incident pulses for 450 nm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E(t, τ)=ES(t)+ER(t-τ)=ESS(t)exp(-iωct)+ERR(t-τ)×exp[-iωc(t-τ)].
I(t, τ)=IS|S(t)|2+IR|R(t-τ)|2+2(ISIR)1/2S(t)R*(t-τ)exp(-iωcτ)+c.c.
I(τ)=-I(t, τ)dt=I0[1+mAS,R exp(-iωcτ)+c.c.],
AS,R=-S(t)R(t-τ)dt.
AS,R=exp[-4 ln 2τ2/2(tS2+tR2)],
Ψ(Ω)=0bn(Ω-ωc)n,
Epc(Ω)=R(Ω)exp[-iΨ(Ω)]Ein(Ω),
Epc(Ω, z)=A0R(Ω)exp-i0bn(Ω-ωc)2×exp-iτG022Ω2exp-iβ2Ω2z2,
Epc(t, L)=A1 exp-1-i(b2+β2L/2)(τG0/2)2×(t+b1)τG01+(b2+β2L/2)2/(τG0/2)42,
τpc(L)=τG0{[1+(b2+β2L/2)2]/(τG0/2)4}1/2.

Metrics