Abstract

Data erasure is considered an essential requirement for a practical optical time-domain memory, and it requires that the laser used have very good frequency stability. Such a laser is developed for this work, and data erasure is demonstrated with a sample of YSiO5:Eu3+ for write/rewrite pulse sequences of up to a duration of 100 µs. This is two orders of magnitude longer than had been achieved previously. Phase-sensitive detection is introduced and is shown to be invaluable for monitoring the write, rewrite, and read processes.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. Moerner, Persistent Spectral Hole-Burning: Science and Applications (Springer, New York, 1988).
  2. R. W. Equal, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994); R. L. Cone, R. W. Equal, Y. Sun, R. M. Macfarlane, and R. Hutchenson, “Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage,” Laser Phys. 5, 573–575 (1995).
    [Crossref]
  3. R. Yano, M. Mitsunaga, and N. Uesugi, “Ultralong optical dephasing time in Eu3+:Y2SiO5,” Opt. Lett. 16, 1884–1892 (1991); R. Yano, M. Mitsunaga, and N. Uesugi, “Nonlinear laser spectroscopy of Eu3+:Y2SiO5 and its application to time-domain optical memory,” J. Opt. Soc. Am. B 9, 992–997 (1992).
    [Crossref] [PubMed]
  4. A. Szabo, “Frequency selective optical memory,” U.S. patent3,896,420 (July22, 1975); G. Castro, D. Haarer, R. M. Macfarlane, and H. P. Trommsdorff, “Frequency selective optical data storage,” U.S. patent4,101,976 (July18, 1978).
  5. T. W. Mossberg, “Time domain frequency-selective optical data storage,” Opt. Lett. 7, 77–79 (1982).
    [Crossref] [PubMed]
  6. W. R. Babbitt and T. W. Mossberg, “Time-domain frequency-selective optical data storage in a solid-state material,” Opt. Commun. 65, 185–188 (1988); W. R. Babbitt and T. W. Mossberg, “Quasi-two-dimensional time-domain color memories: process limitations and potentials,” J. Opt. Soc. Am. B 11, 1948–1953 (1994).
    [Crossref]
  7. S. Kröll and P. Tidlund, “Recording density limit of photon-echo optical storage with high-speed writing and reading,” Appl. Opt. 32, 7233–7242 (1993).
    [Crossref] [PubMed]
  8. N. N. Akhmediev, “Information erasing in the phenomenon of long lived photon echo,” Opt. Lett. 15, 1035–1037 (1990).
    [Crossref] [PubMed]
  9. M. Arend, E. Block, and S. R. Hartmann, “Random access processing of optical memory use of photon-echo interference effects,” Opt. Lett. 18, 1789–1791 (1993).
    [Crossref] [PubMed]
  10. U. Elman, B. Luo, and S. Kröll, “Influence of laser phase and frequency fluctuations on photon-echo data erasure,” J. Opt. Soc. Am. B 13, 1905–1914 (1996).
    [Crossref]
  11. J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, “Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts,” Phys. Rev. Lett. 63, 78–81 (1989); J. Huang, J. M. Zhang, and T. W. Mossberg, “Excitation-induced frequency shifts and frequency-dependent dephasing in Eu3+:Y2O3,” Opt. Commun. 75, 29–32 (1990); S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, and R. Kachru, “Intensity-dependent photon-echo relaxation in rare-earth-doped crystals,” Phys. Rev. B 41, 11568–11571 (1990); S. Kröll, E. Y. Xu, and R. Kachru, “Influence of excited-state Pr3+ on the relaxation of the Pr3+:YAlO3 3H4 – 1D2 transition,” Phys. Rev. B 44, 30–34 (1991); G. K. Liu and R. L. Cone, “Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed by photon-echo experiments,” Phys. Rev. B 41, 6193–6200 (1990); M. Mitsunaga, T. Takagahara, R. Yano, and N. Uesugi, “Excitation-induced frequency shift probed by stimulated photon echoes,” Phys. Rev. Lett. 68, 3216–3219 (1992); X. A. Shen and R. Kachru, “Optimization of time-domain storage density in the presence of excitation-induced spectral diffusion,” Appl. Opt. 36, 6692–6695 (1997).
    [Crossref] [PubMed]
  12. M. J. Sellars, R. S. Meltzer, P. T. H. Fisk, and N. B. Manson, “Time-resolved ultranarrow optical hole burning of a crystalline solid: Y2O3:Eu3+,” J. Opt. Soc. Am. B 11, 1468–1473 (1994).
    [Crossref]
  13. R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
    [Crossref]
  14. T. Muramoto, S. Nakanishi, T. Endo, and T. Hashi, “Studies of phase characteristics of various photon echoes with a phase sensitive detection method,” Opt. Commun. 36, 409–414 (1981).
    [Crossref]
  15. M. Fujita, H. Nakatsuka, H. Nakanishi, and M. Matsuoka, “Backward echo in two-level systems,” Phys. Rev. Lett. 42, 974–977 (1979); W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
    [Crossref]
  16. J. Dirscherl, B. Neizert, T. Wegener, and H. Walther, “A dye laser spectrometer for high resolution spectroscopy,” Opt. Commun. 91, 131–139 (1992); N. M. Sampas, E. K. Gustafson, and R. L. Byer, “Long-term stability of two diode-laser-pumped nonplanar ring laser independently stabilized to two Fabry–Perot interferometers,” Opt. Lett. 18, 947–949 (1993); A. N. Luiten, A. G. Mann, M. E. Costa, and D. G. Blair, “Power stabilized cryogenic sapphire oscillator,” IEEE Trans. Instrum. Meas. 44, 132–135 (1995); S. Seel, R. Storz, G. Ruoso, J. Mlynek, and S. Schiller, “Cryogenic optical resonators: a new tool for frequency stabilization at the 1-Hz level,” Phys. Rev. Lett. 78, 4741–4744 (1997).
    [Crossref] [PubMed]
  17. J. M. Zhang, D. J. Gauthier, J. Huang, and T. W. Mossberg, “Use of phase-noisy laser fields in the storage of optical pulse shapes in inhomogeneously broadened absorbers,” Opt. Lett. 16, 103–105 (1991); X. A. Shen, Y. S. Bai, and R. Kachru, “Reprogrammable optical matched filter for biphase-coded pulse compression,” Opt. Lett. 17, 1079–1081 (1992); X. A. Shen and R. Kachru, “Use of biphase-coded pulses for wideband data storage in time-domain optical memories,” Appl. Opt. 32, 3149–3151 (1993); Y. S. Bai and R. Kachru, “Coherent time-domain data storage with spread spectrum generated by random biphase shifting,” Opt. Lett. 17, 1189–1191 (1993).
    [Crossref] [PubMed]
  18. X. A. Shen, R. Hartman, and R. Kachru, “Impulse-equivalent time domain optical memory,” Opt. Lett. 21, 833–835 (1996); X. A. Shen and R. Kachru, “Experimental demonstration of impulse-equivalent time domain optical memory,” Opt. Lett. 21, 2020–2022 (1996).
    [Crossref] [PubMed]
  19. M. J. Sellars, T. R. Dyke, G. J. Pryde, and N. B. Manson, “Time-domain optical memories using rare earth ions,” Mater. Sci. Forum (to be published).

1996 (2)

1994 (2)

M. J. Sellars, R. S. Meltzer, P. T. H. Fisk, and N. B. Manson, “Time-resolved ultranarrow optical hole burning of a crystalline solid: Y2O3:Eu3+,” J. Opt. Soc. Am. B 11, 1468–1473 (1994).
[Crossref]

R. W. Equal, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994); R. L. Cone, R. W. Equal, Y. Sun, R. M. Macfarlane, and R. Hutchenson, “Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage,” Laser Phys. 5, 573–575 (1995).
[Crossref]

1993 (2)

1992 (1)

J. Dirscherl, B. Neizert, T. Wegener, and H. Walther, “A dye laser spectrometer for high resolution spectroscopy,” Opt. Commun. 91, 131–139 (1992); N. M. Sampas, E. K. Gustafson, and R. L. Byer, “Long-term stability of two diode-laser-pumped nonplanar ring laser independently stabilized to two Fabry–Perot interferometers,” Opt. Lett. 18, 947–949 (1993); A. N. Luiten, A. G. Mann, M. E. Costa, and D. G. Blair, “Power stabilized cryogenic sapphire oscillator,” IEEE Trans. Instrum. Meas. 44, 132–135 (1995); S. Seel, R. Storz, G. Ruoso, J. Mlynek, and S. Schiller, “Cryogenic optical resonators: a new tool for frequency stabilization at the 1-Hz level,” Phys. Rev. Lett. 78, 4741–4744 (1997).
[Crossref] [PubMed]

1991 (2)

1990 (1)

1989 (1)

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, “Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts,” Phys. Rev. Lett. 63, 78–81 (1989); J. Huang, J. M. Zhang, and T. W. Mossberg, “Excitation-induced frequency shifts and frequency-dependent dephasing in Eu3+:Y2O3,” Opt. Commun. 75, 29–32 (1990); S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, and R. Kachru, “Intensity-dependent photon-echo relaxation in rare-earth-doped crystals,” Phys. Rev. B 41, 11568–11571 (1990); S. Kröll, E. Y. Xu, and R. Kachru, “Influence of excited-state Pr3+ on the relaxation of the Pr3+:YAlO3 3H4 – 1D2 transition,” Phys. Rev. B 44, 30–34 (1991); G. K. Liu and R. L. Cone, “Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed by photon-echo experiments,” Phys. Rev. B 41, 6193–6200 (1990); M. Mitsunaga, T. Takagahara, R. Yano, and N. Uesugi, “Excitation-induced frequency shift probed by stimulated photon echoes,” Phys. Rev. Lett. 68, 3216–3219 (1992); X. A. Shen and R. Kachru, “Optimization of time-domain storage density in the presence of excitation-induced spectral diffusion,” Appl. Opt. 36, 6692–6695 (1997).
[Crossref] [PubMed]

1988 (1)

W. R. Babbitt and T. W. Mossberg, “Time-domain frequency-selective optical data storage in a solid-state material,” Opt. Commun. 65, 185–188 (1988); W. R. Babbitt and T. W. Mossberg, “Quasi-two-dimensional time-domain color memories: process limitations and potentials,” J. Opt. Soc. Am. B 11, 1948–1953 (1994).
[Crossref]

1983 (1)

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[Crossref]

1982 (1)

1981 (1)

T. Muramoto, S. Nakanishi, T. Endo, and T. Hashi, “Studies of phase characteristics of various photon echoes with a phase sensitive detection method,” Opt. Commun. 36, 409–414 (1981).
[Crossref]

1979 (1)

M. Fujita, H. Nakatsuka, H. Nakanishi, and M. Matsuoka, “Backward echo in two-level systems,” Phys. Rev. Lett. 42, 974–977 (1979); W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[Crossref]

Akhmediev, N. N.

Arend, M.

Babbitt, W. R.

W. R. Babbitt and T. W. Mossberg, “Time-domain frequency-selective optical data storage in a solid-state material,” Opt. Commun. 65, 185–188 (1988); W. R. Babbitt and T. W. Mossberg, “Quasi-two-dimensional time-domain color memories: process limitations and potentials,” J. Opt. Soc. Am. B 11, 1948–1953 (1994).
[Crossref]

Block, E.

Cone, R. L.

R. W. Equal, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994); R. L. Cone, R. W. Equal, Y. Sun, R. M. Macfarlane, and R. Hutchenson, “Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage,” Laser Phys. 5, 573–575 (1995).
[Crossref]

Dirscherl, J.

J. Dirscherl, B. Neizert, T. Wegener, and H. Walther, “A dye laser spectrometer for high resolution spectroscopy,” Opt. Commun. 91, 131–139 (1992); N. M. Sampas, E. K. Gustafson, and R. L. Byer, “Long-term stability of two diode-laser-pumped nonplanar ring laser independently stabilized to two Fabry–Perot interferometers,” Opt. Lett. 18, 947–949 (1993); A. N. Luiten, A. G. Mann, M. E. Costa, and D. G. Blair, “Power stabilized cryogenic sapphire oscillator,” IEEE Trans. Instrum. Meas. 44, 132–135 (1995); S. Seel, R. Storz, G. Ruoso, J. Mlynek, and S. Schiller, “Cryogenic optical resonators: a new tool for frequency stabilization at the 1-Hz level,” Phys. Rev. Lett. 78, 4741–4744 (1997).
[Crossref] [PubMed]

Drever, R. W.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[Crossref]

Dyke, T. R.

M. J. Sellars, T. R. Dyke, G. J. Pryde, and N. B. Manson, “Time-domain optical memories using rare earth ions,” Mater. Sci. Forum (to be published).

Elman, U.

Endo, T.

T. Muramoto, S. Nakanishi, T. Endo, and T. Hashi, “Studies of phase characteristics of various photon echoes with a phase sensitive detection method,” Opt. Commun. 36, 409–414 (1981).
[Crossref]

Equal, R. W.

R. W. Equal, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994); R. L. Cone, R. W. Equal, Y. Sun, R. M. Macfarlane, and R. Hutchenson, “Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage,” Laser Phys. 5, 573–575 (1995).
[Crossref]

Fisk, P. T. H.

Ford, G. M.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[Crossref]

Fujita, M.

M. Fujita, H. Nakatsuka, H. Nakanishi, and M. Matsuoka, “Backward echo in two-level systems,” Phys. Rev. Lett. 42, 974–977 (1979); W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[Crossref]

Gauthier, D. J.

Hall, J. L.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[Crossref]

Hartman, R.

Hartmann, S. R.

Hashi, T.

T. Muramoto, S. Nakanishi, T. Endo, and T. Hashi, “Studies of phase characteristics of various photon echoes with a phase sensitive detection method,” Opt. Commun. 36, 409–414 (1981).
[Crossref]

Hough, J.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[Crossref]

Huang, J.

J. M. Zhang, D. J. Gauthier, J. Huang, and T. W. Mossberg, “Use of phase-noisy laser fields in the storage of optical pulse shapes in inhomogeneously broadened absorbers,” Opt. Lett. 16, 103–105 (1991); X. A. Shen, Y. S. Bai, and R. Kachru, “Reprogrammable optical matched filter for biphase-coded pulse compression,” Opt. Lett. 17, 1079–1081 (1992); X. A. Shen and R. Kachru, “Use of biphase-coded pulses for wideband data storage in time-domain optical memories,” Appl. Opt. 32, 3149–3151 (1993); Y. S. Bai and R. Kachru, “Coherent time-domain data storage with spread spectrum generated by random biphase shifting,” Opt. Lett. 17, 1189–1191 (1993).
[Crossref] [PubMed]

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, “Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts,” Phys. Rev. Lett. 63, 78–81 (1989); J. Huang, J. M. Zhang, and T. W. Mossberg, “Excitation-induced frequency shifts and frequency-dependent dephasing in Eu3+:Y2O3,” Opt. Commun. 75, 29–32 (1990); S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, and R. Kachru, “Intensity-dependent photon-echo relaxation in rare-earth-doped crystals,” Phys. Rev. B 41, 11568–11571 (1990); S. Kröll, E. Y. Xu, and R. Kachru, “Influence of excited-state Pr3+ on the relaxation of the Pr3+:YAlO3 3H4 – 1D2 transition,” Phys. Rev. B 44, 30–34 (1991); G. K. Liu and R. L. Cone, “Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed by photon-echo experiments,” Phys. Rev. B 41, 6193–6200 (1990); M. Mitsunaga, T. Takagahara, R. Yano, and N. Uesugi, “Excitation-induced frequency shift probed by stimulated photon echoes,” Phys. Rev. Lett. 68, 3216–3219 (1992); X. A. Shen and R. Kachru, “Optimization of time-domain storage density in the presence of excitation-induced spectral diffusion,” Appl. Opt. 36, 6692–6695 (1997).
[Crossref] [PubMed]

Kachru, R.

Kowalski, F. V.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[Crossref]

Kröll, S.

Lezama, A.

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, “Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts,” Phys. Rev. Lett. 63, 78–81 (1989); J. Huang, J. M. Zhang, and T. W. Mossberg, “Excitation-induced frequency shifts and frequency-dependent dephasing in Eu3+:Y2O3,” Opt. Commun. 75, 29–32 (1990); S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, and R. Kachru, “Intensity-dependent photon-echo relaxation in rare-earth-doped crystals,” Phys. Rev. B 41, 11568–11571 (1990); S. Kröll, E. Y. Xu, and R. Kachru, “Influence of excited-state Pr3+ on the relaxation of the Pr3+:YAlO3 3H4 – 1D2 transition,” Phys. Rev. B 44, 30–34 (1991); G. K. Liu and R. L. Cone, “Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed by photon-echo experiments,” Phys. Rev. B 41, 6193–6200 (1990); M. Mitsunaga, T. Takagahara, R. Yano, and N. Uesugi, “Excitation-induced frequency shift probed by stimulated photon echoes,” Phys. Rev. Lett. 68, 3216–3219 (1992); X. A. Shen and R. Kachru, “Optimization of time-domain storage density in the presence of excitation-induced spectral diffusion,” Appl. Opt. 36, 6692–6695 (1997).
[Crossref] [PubMed]

Luo, B.

Macfarlane, R. M.

R. W. Equal, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994); R. L. Cone, R. W. Equal, Y. Sun, R. M. Macfarlane, and R. Hutchenson, “Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage,” Laser Phys. 5, 573–575 (1995).
[Crossref]

Manson, N. B.

M. J. Sellars, R. S. Meltzer, P. T. H. Fisk, and N. B. Manson, “Time-resolved ultranarrow optical hole burning of a crystalline solid: Y2O3:Eu3+,” J. Opt. Soc. Am. B 11, 1468–1473 (1994).
[Crossref]

M. J. Sellars, T. R. Dyke, G. J. Pryde, and N. B. Manson, “Time-domain optical memories using rare earth ions,” Mater. Sci. Forum (to be published).

Matsuoka, M.

M. Fujita, H. Nakatsuka, H. Nakanishi, and M. Matsuoka, “Backward echo in two-level systems,” Phys. Rev. Lett. 42, 974–977 (1979); W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[Crossref]

Meltzer, R. S.

Mitsunaga, M.

Moerner, W. E.

W. E. Moerner, Persistent Spectral Hole-Burning: Science and Applications (Springer, New York, 1988).

Mossberg, T. W.

J. M. Zhang, D. J. Gauthier, J. Huang, and T. W. Mossberg, “Use of phase-noisy laser fields in the storage of optical pulse shapes in inhomogeneously broadened absorbers,” Opt. Lett. 16, 103–105 (1991); X. A. Shen, Y. S. Bai, and R. Kachru, “Reprogrammable optical matched filter for biphase-coded pulse compression,” Opt. Lett. 17, 1079–1081 (1992); X. A. Shen and R. Kachru, “Use of biphase-coded pulses for wideband data storage in time-domain optical memories,” Appl. Opt. 32, 3149–3151 (1993); Y. S. Bai and R. Kachru, “Coherent time-domain data storage with spread spectrum generated by random biphase shifting,” Opt. Lett. 17, 1189–1191 (1993).
[Crossref] [PubMed]

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, “Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts,” Phys. Rev. Lett. 63, 78–81 (1989); J. Huang, J. M. Zhang, and T. W. Mossberg, “Excitation-induced frequency shifts and frequency-dependent dephasing in Eu3+:Y2O3,” Opt. Commun. 75, 29–32 (1990); S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, and R. Kachru, “Intensity-dependent photon-echo relaxation in rare-earth-doped crystals,” Phys. Rev. B 41, 11568–11571 (1990); S. Kröll, E. Y. Xu, and R. Kachru, “Influence of excited-state Pr3+ on the relaxation of the Pr3+:YAlO3 3H4 – 1D2 transition,” Phys. Rev. B 44, 30–34 (1991); G. K. Liu and R. L. Cone, “Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed by photon-echo experiments,” Phys. Rev. B 41, 6193–6200 (1990); M. Mitsunaga, T. Takagahara, R. Yano, and N. Uesugi, “Excitation-induced frequency shift probed by stimulated photon echoes,” Phys. Rev. Lett. 68, 3216–3219 (1992); X. A. Shen and R. Kachru, “Optimization of time-domain storage density in the presence of excitation-induced spectral diffusion,” Appl. Opt. 36, 6692–6695 (1997).
[Crossref] [PubMed]

W. R. Babbitt and T. W. Mossberg, “Time-domain frequency-selective optical data storage in a solid-state material,” Opt. Commun. 65, 185–188 (1988); W. R. Babbitt and T. W. Mossberg, “Quasi-two-dimensional time-domain color memories: process limitations and potentials,” J. Opt. Soc. Am. B 11, 1948–1953 (1994).
[Crossref]

T. W. Mossberg, “Time domain frequency-selective optical data storage,” Opt. Lett. 7, 77–79 (1982).
[Crossref] [PubMed]

Munley, A. J.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[Crossref]

Muramoto, T.

T. Muramoto, S. Nakanishi, T. Endo, and T. Hashi, “Studies of phase characteristics of various photon echoes with a phase sensitive detection method,” Opt. Commun. 36, 409–414 (1981).
[Crossref]

Nakanishi, H.

M. Fujita, H. Nakatsuka, H. Nakanishi, and M. Matsuoka, “Backward echo in two-level systems,” Phys. Rev. Lett. 42, 974–977 (1979); W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[Crossref]

Nakanishi, S.

T. Muramoto, S. Nakanishi, T. Endo, and T. Hashi, “Studies of phase characteristics of various photon echoes with a phase sensitive detection method,” Opt. Commun. 36, 409–414 (1981).
[Crossref]

Nakatsuka, H.

M. Fujita, H. Nakatsuka, H. Nakanishi, and M. Matsuoka, “Backward echo in two-level systems,” Phys. Rev. Lett. 42, 974–977 (1979); W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[Crossref]

Neizert, B.

J. Dirscherl, B. Neizert, T. Wegener, and H. Walther, “A dye laser spectrometer for high resolution spectroscopy,” Opt. Commun. 91, 131–139 (1992); N. M. Sampas, E. K. Gustafson, and R. L. Byer, “Long-term stability of two diode-laser-pumped nonplanar ring laser independently stabilized to two Fabry–Perot interferometers,” Opt. Lett. 18, 947–949 (1993); A. N. Luiten, A. G. Mann, M. E. Costa, and D. G. Blair, “Power stabilized cryogenic sapphire oscillator,” IEEE Trans. Instrum. Meas. 44, 132–135 (1995); S. Seel, R. Storz, G. Ruoso, J. Mlynek, and S. Schiller, “Cryogenic optical resonators: a new tool for frequency stabilization at the 1-Hz level,” Phys. Rev. Lett. 78, 4741–4744 (1997).
[Crossref] [PubMed]

Pryde, G. J.

M. J. Sellars, T. R. Dyke, G. J. Pryde, and N. B. Manson, “Time-domain optical memories using rare earth ions,” Mater. Sci. Forum (to be published).

Sellars, M. J.

M. J. Sellars, R. S. Meltzer, P. T. H. Fisk, and N. B. Manson, “Time-resolved ultranarrow optical hole burning of a crystalline solid: Y2O3:Eu3+,” J. Opt. Soc. Am. B 11, 1468–1473 (1994).
[Crossref]

M. J. Sellars, T. R. Dyke, G. J. Pryde, and N. B. Manson, “Time-domain optical memories using rare earth ions,” Mater. Sci. Forum (to be published).

Shen, X. A.

Sun, Y.

R. W. Equal, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994); R. L. Cone, R. W. Equal, Y. Sun, R. M. Macfarlane, and R. Hutchenson, “Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage,” Laser Phys. 5, 573–575 (1995).
[Crossref]

Szabo, A.

A. Szabo, “Frequency selective optical memory,” U.S. patent3,896,420 (July22, 1975); G. Castro, D. Haarer, R. M. Macfarlane, and H. P. Trommsdorff, “Frequency selective optical data storage,” U.S. patent4,101,976 (July18, 1978).

Tidlund, P.

Uesugi, N.

Walther, H.

J. Dirscherl, B. Neizert, T. Wegener, and H. Walther, “A dye laser spectrometer for high resolution spectroscopy,” Opt. Commun. 91, 131–139 (1992); N. M. Sampas, E. K. Gustafson, and R. L. Byer, “Long-term stability of two diode-laser-pumped nonplanar ring laser independently stabilized to two Fabry–Perot interferometers,” Opt. Lett. 18, 947–949 (1993); A. N. Luiten, A. G. Mann, M. E. Costa, and D. G. Blair, “Power stabilized cryogenic sapphire oscillator,” IEEE Trans. Instrum. Meas. 44, 132–135 (1995); S. Seel, R. Storz, G. Ruoso, J. Mlynek, and S. Schiller, “Cryogenic optical resonators: a new tool for frequency stabilization at the 1-Hz level,” Phys. Rev. Lett. 78, 4741–4744 (1997).
[Crossref] [PubMed]

Ward, H.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[Crossref]

Wegener, T.

J. Dirscherl, B. Neizert, T. Wegener, and H. Walther, “A dye laser spectrometer for high resolution spectroscopy,” Opt. Commun. 91, 131–139 (1992); N. M. Sampas, E. K. Gustafson, and R. L. Byer, “Long-term stability of two diode-laser-pumped nonplanar ring laser independently stabilized to two Fabry–Perot interferometers,” Opt. Lett. 18, 947–949 (1993); A. N. Luiten, A. G. Mann, M. E. Costa, and D. G. Blair, “Power stabilized cryogenic sapphire oscillator,” IEEE Trans. Instrum. Meas. 44, 132–135 (1995); S. Seel, R. Storz, G. Ruoso, J. Mlynek, and S. Schiller, “Cryogenic optical resonators: a new tool for frequency stabilization at the 1-Hz level,” Phys. Rev. Lett. 78, 4741–4744 (1997).
[Crossref] [PubMed]

Yano, R.

Zhang, J. M.

J. M. Zhang, D. J. Gauthier, J. Huang, and T. W. Mossberg, “Use of phase-noisy laser fields in the storage of optical pulse shapes in inhomogeneously broadened absorbers,” Opt. Lett. 16, 103–105 (1991); X. A. Shen, Y. S. Bai, and R. Kachru, “Reprogrammable optical matched filter for biphase-coded pulse compression,” Opt. Lett. 17, 1079–1081 (1992); X. A. Shen and R. Kachru, “Use of biphase-coded pulses for wideband data storage in time-domain optical memories,” Appl. Opt. 32, 3149–3151 (1993); Y. S. Bai and R. Kachru, “Coherent time-domain data storage with spread spectrum generated by random biphase shifting,” Opt. Lett. 17, 1189–1191 (1993).
[Crossref] [PubMed]

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, “Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts,” Phys. Rev. Lett. 63, 78–81 (1989); J. Huang, J. M. Zhang, and T. W. Mossberg, “Excitation-induced frequency shifts and frequency-dependent dephasing in Eu3+:Y2O3,” Opt. Commun. 75, 29–32 (1990); S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, and R. Kachru, “Intensity-dependent photon-echo relaxation in rare-earth-doped crystals,” Phys. Rev. B 41, 11568–11571 (1990); S. Kröll, E. Y. Xu, and R. Kachru, “Influence of excited-state Pr3+ on the relaxation of the Pr3+:YAlO3 3H4 – 1D2 transition,” Phys. Rev. B 44, 30–34 (1991); G. K. Liu and R. L. Cone, “Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed by photon-echo experiments,” Phys. Rev. B 41, 6193–6200 (1990); M. Mitsunaga, T. Takagahara, R. Yano, and N. Uesugi, “Excitation-induced frequency shift probed by stimulated photon echoes,” Phys. Rev. Lett. 68, 3216–3219 (1992); X. A. Shen and R. Kachru, “Optimization of time-domain storage density in the presence of excitation-induced spectral diffusion,” Appl. Opt. 36, 6692–6695 (1997).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B: Photophys. Laser Chem. (1)

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (3)

T. Muramoto, S. Nakanishi, T. Endo, and T. Hashi, “Studies of phase characteristics of various photon echoes with a phase sensitive detection method,” Opt. Commun. 36, 409–414 (1981).
[Crossref]

J. Dirscherl, B. Neizert, T. Wegener, and H. Walther, “A dye laser spectrometer for high resolution spectroscopy,” Opt. Commun. 91, 131–139 (1992); N. M. Sampas, E. K. Gustafson, and R. L. Byer, “Long-term stability of two diode-laser-pumped nonplanar ring laser independently stabilized to two Fabry–Perot interferometers,” Opt. Lett. 18, 947–949 (1993); A. N. Luiten, A. G. Mann, M. E. Costa, and D. G. Blair, “Power stabilized cryogenic sapphire oscillator,” IEEE Trans. Instrum. Meas. 44, 132–135 (1995); S. Seel, R. Storz, G. Ruoso, J. Mlynek, and S. Schiller, “Cryogenic optical resonators: a new tool for frequency stabilization at the 1-Hz level,” Phys. Rev. Lett. 78, 4741–4744 (1997).
[Crossref] [PubMed]

W. R. Babbitt and T. W. Mossberg, “Time-domain frequency-selective optical data storage in a solid-state material,” Opt. Commun. 65, 185–188 (1988); W. R. Babbitt and T. W. Mossberg, “Quasi-two-dimensional time-domain color memories: process limitations and potentials,” J. Opt. Soc. Am. B 11, 1948–1953 (1994).
[Crossref]

Opt. Lett. (6)

T. W. Mossberg, “Time domain frequency-selective optical data storage,” Opt. Lett. 7, 77–79 (1982).
[Crossref] [PubMed]

N. N. Akhmediev, “Information erasing in the phenomenon of long lived photon echo,” Opt. Lett. 15, 1035–1037 (1990).
[Crossref] [PubMed]

M. Arend, E. Block, and S. R. Hartmann, “Random access processing of optical memory use of photon-echo interference effects,” Opt. Lett. 18, 1789–1791 (1993).
[Crossref] [PubMed]

R. Yano, M. Mitsunaga, and N. Uesugi, “Ultralong optical dephasing time in Eu3+:Y2SiO5,” Opt. Lett. 16, 1884–1892 (1991); R. Yano, M. Mitsunaga, and N. Uesugi, “Nonlinear laser spectroscopy of Eu3+:Y2SiO5 and its application to time-domain optical memory,” J. Opt. Soc. Am. B 9, 992–997 (1992).
[Crossref] [PubMed]

J. M. Zhang, D. J. Gauthier, J. Huang, and T. W. Mossberg, “Use of phase-noisy laser fields in the storage of optical pulse shapes in inhomogeneously broadened absorbers,” Opt. Lett. 16, 103–105 (1991); X. A. Shen, Y. S. Bai, and R. Kachru, “Reprogrammable optical matched filter for biphase-coded pulse compression,” Opt. Lett. 17, 1079–1081 (1992); X. A. Shen and R. Kachru, “Use of biphase-coded pulses for wideband data storage in time-domain optical memories,” Appl. Opt. 32, 3149–3151 (1993); Y. S. Bai and R. Kachru, “Coherent time-domain data storage with spread spectrum generated by random biphase shifting,” Opt. Lett. 17, 1189–1191 (1993).
[Crossref] [PubMed]

X. A. Shen, R. Hartman, and R. Kachru, “Impulse-equivalent time domain optical memory,” Opt. Lett. 21, 833–835 (1996); X. A. Shen and R. Kachru, “Experimental demonstration of impulse-equivalent time domain optical memory,” Opt. Lett. 21, 2020–2022 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

M. Fujita, H. Nakatsuka, H. Nakanishi, and M. Matsuoka, “Backward echo in two-level systems,” Phys. Rev. Lett. 42, 974–977 (1979); W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[Crossref]

J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, “Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts,” Phys. Rev. Lett. 63, 78–81 (1989); J. Huang, J. M. Zhang, and T. W. Mossberg, “Excitation-induced frequency shifts and frequency-dependent dephasing in Eu3+:Y2O3,” Opt. Commun. 75, 29–32 (1990); S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, and R. Kachru, “Intensity-dependent photon-echo relaxation in rare-earth-doped crystals,” Phys. Rev. B 41, 11568–11571 (1990); S. Kröll, E. Y. Xu, and R. Kachru, “Influence of excited-state Pr3+ on the relaxation of the Pr3+:YAlO3 3H4 – 1D2 transition,” Phys. Rev. B 44, 30–34 (1991); G. K. Liu and R. L. Cone, “Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed by photon-echo experiments,” Phys. Rev. B 41, 6193–6200 (1990); M. Mitsunaga, T. Takagahara, R. Yano, and N. Uesugi, “Excitation-induced frequency shift probed by stimulated photon echoes,” Phys. Rev. Lett. 68, 3216–3219 (1992); X. A. Shen and R. Kachru, “Optimization of time-domain storage density in the presence of excitation-induced spectral diffusion,” Appl. Opt. 36, 6692–6695 (1997).
[Crossref] [PubMed]

R. W. Equal, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994); R. L. Cone, R. W. Equal, Y. Sun, R. M. Macfarlane, and R. Hutchenson, “Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage,” Laser Phys. 5, 573–575 (1995).
[Crossref]

Other (3)

W. E. Moerner, Persistent Spectral Hole-Burning: Science and Applications (Springer, New York, 1988).

A. Szabo, “Frequency selective optical memory,” U.S. patent3,896,420 (July22, 1975); G. Castro, D. Haarer, R. M. Macfarlane, and H. P. Trommsdorff, “Frequency selective optical data storage,” U.S. patent4,101,976 (July18, 1978).

M. J. Sellars, T. R. Dyke, G. J. Pryde, and N. B. Manson, “Time-domain optical memories using rare earth ions,” Mater. Sci. Forum (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of experimental apparatus. The laser is shown on the left and is locked to a stabilized reference cavity. The beam is gated by two acousto-optic modulators (AOM 1 and AOM 2). The two modulators also shift the frequency by 10 MHz, the transmitted light is overlapped with a weak beam (∼1%) direct from the laser, and the transmitted light or the echo can be detected as a heterodyne beat signal. This 10-MHz signal is detected with phase-sensitive detection by use of a dual double-balanced mixer. Two orthogonal phases are measured, and a reference pulse is used to determine 0° phase.

Fig. 2
Fig. 2

Definitions of pulse sequences used in the experiments. There are three separate groups of pulses denoted as write 1, modify (or write 2), and read, and each is initiated by a single reference pulse. After the reference pulse the data sequence is completed on a time scale of τT2200 µs. The delays between the reference pulses are greater than T2 but less than 30 ms. The latter restriction is due to the residual laser drift.

Fig. 3
Fig. 3

Illustration of bit-by-bit storage. A schematic of write pulses is shown together with experimental measurement of subsequent stimulated photon echo detected with phase-sensitive techniques. The signals are detected in orthogonal phases and presented with respect to the read pulse. Each pulse is 3 µs wide. The sharp line immediately after the read pulse is due to gating of the attenuating acousto-optic modulator and indicates a gain change of 20. The sequences correspond to the following: (a) (A) only, τA=50 µs; (b) (B) only, τB=40 µs; and (c) (A) + (B) in a two-step write process. The delay between write and read pulses is σ = 200 µs, and between write 1 and write 2 it is Δ = 200 µs.

Fig. 4
Fig. 4

Illustration of bit-by-bit storage with positive and negative pulses. A schematic of write pulses is shown together with stimulated photon echo similar to Fig. 1. The sequences correspond to the following: (a) (A) only, τA=50 µs; (b) (-B) only, τB=40 µs; and (c) (A) + (-B) in a two-step write process.

Fig. 5
Fig. 5

Demonstration of data erasure, [(A) + (B)] + (-B) = A. Upper schematics give write sequences, and lower traces give experimental measurements of subsequent echoes with phase-sensitive detection: (a) (A) + (B) in a two-step write process; (b) a (-B) write sequence is added to the above sequence, and measurement shows B is erased.

Fig. 6
Fig. 6

Demonstration of enforcing, (A + B) + (B) = A + 2B, and data erasure, (A + B) + (-B) = A. (a) (A + B) is written in a single write sequence. The echo at 10 µs is the cross-talk echo between two data bits. (b) The effect of adding (B) to the above memory. The same echoes are obtained except B is increased in size. (c) Data erasure by adding a negative (-B) pulse to the memory as stored in (a).

Fig. 7
Fig. 7

Demonstration of data erasure from a five-pulse data sequence with 10-ms processing delays, Δ and σ. The schematics indicate the pulse sequence used for writing and subsequently erasing data bit 1. This procedure is repeated for data bits 2–5, and the experimental traces show the resultant stimulated echoes where one bit is erased.

Metrics