Abstract

We numerically investigate the performance of wavelength shifters in quasi-phase-matched channel waveguides in lithium niobate. The shifters are based on cascaded quadratic processes, namely, sum- and difference-frequency generation, and permit efficient conversion and signal gain near 1.55 µm over the full bandwidth of erbium-doped fiber amplifiers.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
    [CrossRef]
  2. H. Masuda, S. Kawai, K. I. Suzuki, and K. Aida, “Ultrawide 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fiber amplifiers and distributed Raman amplifiers,” IEEE Photonics Technol. Lett. 10, 516–518 (1998).
    [CrossRef]
  3. K. Oberman, S. Kindt, D. Breuer, and K. Petermann, “Performance analysis of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers,” J. Lightwave Technol. 16, 78–85 (1998).
    [CrossRef]
  4. B. E. Little, H. Kuwatsuka, and H. Ishikawa, “Nondegenerate four-wave mixing efficiencies in DFB laser wavelength converters,” IEEE Photonics Technol. Lett. 10, 591–521 (1998).
    [CrossRef]
  5. J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Broadband wavelength conversion with amplification by four-wave mixing in semiconductor travelling wave amplifiers,” Electron. Lett. 30, 859–860 (1994).
    [CrossRef]
  6. A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 31, 689–699 (1995).
    [CrossRef]
  7. A. Uchida, M. Takeoka, T. Nakata, and F. Kannari, “Wide-range all-optical wavelength conversion using dual-wavelength-pumped fiber Raman converter,” J. Lightwave Technol. 16, 92–99 (1998).
    [CrossRef]
  8. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. Lett. 127, 1918–1939 (1962).
  9. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  10. C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
    [CrossRef]
  11. C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasi-phase-matched difference frequency generation,” Jpn. J. Appl. Phys., Part 1 34L, 1543–1545 (1995).
    [CrossRef]
  12. M. H. Chou, M. A. Arbore, M. M. Fejer, A. Galvanauskas, and D. Harter, “Efficient generation of infrared light in LiNbO3 waveguides with integrated coupling structures,” in Nonlinear Guided Waves and Their Applications, Vol. 5 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 54–56.
  13. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μm-band wavelength conversion based on difference frequency mixing in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004–1006 (1998).
    [CrossRef]
  14. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
    [CrossRef]
  15. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996); G. Assanto, “Quadratic cascading: effects and applications,” in Beam Shaping and Control with Nonlinear Optics, F. Kajzar and R. Reinisch, eds. (Plenum, New York, 1997), pp. 341–374.
    [CrossRef]
  16. K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
    [CrossRef]
  17. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical paramet-ric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
    [CrossRef]
  18. E. Yablonovitch, C. Flytzanis, and N. Bloembergen, “Anisotropic three-wave and double two-wave frequency mixing in GaAs,” Phys. Rev. Lett. 29, 865–868 (1972).
    [CrossRef]
  19. H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
    [CrossRef]
  20. G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, “Frequency shifting through cascade second-order processes in an N-(4-nitrophenyl)-L-prolinol crystal,” Opt. Lett. 23, 439–441 (1998).
    [CrossRef]
  21. O. Gorbounova, Y. J. Ding, J. B. Khurgin, S. J. Lee, and A. E. Craig, “Optical frequency shifters based on cascaded second-order nonlinear processes,” Opt. Lett. 21, 558–560 (1996).
    [CrossRef] [PubMed]
  22. M. A. M. Marte, “Competing nonlinearities,” Phys. Rev. A 49, R3166–R3169 (1994).
    [CrossRef] [PubMed]
  23. M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
    [CrossRef] [PubMed]
  24. G. L. Lawrence and J. Edwards, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–374 (1984).
    [CrossRef]
  25. M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
    [CrossRef]
  26. K. Parameswaran, E. L. Ginzton Laboratory, Stanford University, Stanford, Calif. 94305 (personal communication, 1998).
  27. G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “Coherent interactions for all-optical signal pro-cessing via quadratic nonlinearities,” IEEE J. Quantum Electron. 31, 673–681 (1995).
    [CrossRef]
  28. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
    [CrossRef] [PubMed]
  29. P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
    [CrossRef]
  30. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
    [CrossRef]
  31. P. E. Britton, D. Taverner, K. Puech, D. J. Richardson, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Optical parametric oscillation in periodically poled lithium niobate driven by a diode-pumped Q-switched erbium fiber laser,” Opt. Lett. 23, 582–584 (1998).
    [CrossRef]
  32. Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
    [CrossRef]
  33. I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave-mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
    [CrossRef]
  34. I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
    [CrossRef]

1998 (10)

H. Masuda, S. Kawai, K. I. Suzuki, and K. Aida, “Ultrawide 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fiber amplifiers and distributed Raman amplifiers,” IEEE Photonics Technol. Lett. 10, 516–518 (1998).
[CrossRef]

K. Oberman, S. Kindt, D. Breuer, and K. Petermann, “Performance analysis of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers,” J. Lightwave Technol. 16, 78–85 (1998).
[CrossRef]

B. E. Little, H. Kuwatsuka, and H. Ishikawa, “Nondegenerate four-wave mixing efficiencies in DFB laser wavelength converters,” IEEE Photonics Technol. Lett. 10, 591–521 (1998).
[CrossRef]

A. Uchida, M. Takeoka, T. Nakata, and F. Kannari, “Wide-range all-optical wavelength conversion using dual-wavelength-pumped fiber Raman converter,” J. Lightwave Technol. 16, 92–99 (1998).
[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μm-band wavelength conversion based on difference frequency mixing in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004–1006 (1998).
[CrossRef]

G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, “Frequency shifting through cascade second-order processes in an N-(4-nitrophenyl)-L-prolinol crystal,” Opt. Lett. 23, 439–441 (1998).
[CrossRef]

P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
[CrossRef]

P. E. Britton, D. Taverner, K. Puech, D. J. Richardson, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Optical parametric oscillation in periodically poled lithium niobate driven by a diode-pumped Q-switched erbium fiber laser,” Opt. Lett. 23, 582–584 (1998).
[CrossRef]

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave-mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
[CrossRef]

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
[CrossRef]

1997 (3)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
[CrossRef]

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical paramet-ric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
[CrossRef]

1996 (4)

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
[CrossRef]

O. Gorbounova, Y. J. Ding, J. B. Khurgin, S. J. Lee, and A. E. Craig, “Optical frequency shifters based on cascaded second-order nonlinear processes,” Opt. Lett. 21, 558–560 (1996).
[CrossRef] [PubMed]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[CrossRef] [PubMed]

1995 (3)

G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “Coherent interactions for all-optical signal pro-cessing via quadratic nonlinearities,” IEEE J. Quantum Electron. 31, 673–681 (1995).
[CrossRef]

A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 31, 689–699 (1995).
[CrossRef]

C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasi-phase-matched difference frequency generation,” Jpn. J. Appl. Phys., Part 1 34L, 1543–1545 (1995).
[CrossRef]

1994 (2)

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Broadband wavelength conversion with amplification by four-wave mixing in semiconductor travelling wave amplifiers,” Electron. Lett. 30, 859–860 (1994).
[CrossRef]

M. A. M. Marte, “Competing nonlinearities,” Phys. Rev. A 49, R3166–R3169 (1994).
[CrossRef] [PubMed]

1993 (3)

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
[CrossRef]

H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
[CrossRef]

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

1991 (1)

1984 (1)

G. L. Lawrence and J. Edwards, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–374 (1984).
[CrossRef]

1972 (1)

E. Yablonovitch, C. Flytzanis, and N. Bloembergen, “Anisotropic three-wave and double two-wave frequency mixing in GaAs,” Phys. Rev. Lett. 29, 865–868 (1972).
[CrossRef]

1969 (1)

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. Lett. 127, 1918–1939 (1962).

Aida, K.

H. Masuda, S. Kawai, K. I. Suzuki, and K. Aida, “Ultrawide 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fiber amplifiers and distributed Raman amplifiers,” IEEE Photonics Technol. Lett. 10, 516–518 (1998).
[CrossRef]

Antoniades, N.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Arbore, M. A.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. Lett. 127, 1918–1939 (1962).

Assanto, G.

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “Coherent interactions for all-optical signal pro-cessing via quadratic nonlinearities,” IEEE J. Quantum Electron. 31, 673–681 (1995).
[CrossRef]

Banfi, G. P.

G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, “Frequency shifting through cascade second-order processes in an N-(4-nitrophenyl)-L-prolinol crystal,” Opt. Lett. 23, 439–441 (1998).
[CrossRef]

H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
[CrossRef]

Bhat, R.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Bisson, S. E.

Bloembergen, N.

E. Yablonovitch, C. Flytzanis, and N. Bloembergen, “Anisotropic three-wave and double two-wave frequency mixing in GaAs,” Phys. Rev. Lett. 29, 865–868 (1972).
[CrossRef]

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. Lett. 127, 1918–1939 (1962).

Bortz, M. L.

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
[CrossRef]

M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
[CrossRef] [PubMed]

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
[CrossRef]

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical paramet-ric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[CrossRef] [PubMed]

Breuer, D.

Britton, P. E.

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[CrossRef] [PubMed]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Caneau, C.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Caroubalos, C.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave-mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
[CrossRef]

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
[CrossRef]

Chou, M. H.

Craig, A. E.

D’Ottavi, A.

A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 31, 689–699 (1995).
[CrossRef]

Datta, P. K.

Degiorgio, V.

Ding, Y. J.

Donelli, G.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. Lett. 127, 1918–1939 (1962).

Eckardt, R. C.

Edwards, J.

G. L. Lawrence and J. Edwards, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–374 (1984).
[CrossRef]

Eyres, L. A.

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
[CrossRef]

Fejer, M. M.

Flytzanis, C.

E. Yablonovitch, C. Flytzanis, and N. Bloembergen, “Anisotropic three-wave and double two-wave frequency mixing in GaAs,” Phys. Rev. Lett. 29, 865–868 (1972).
[CrossRef]

Fortusini, D.

Gallo, K.

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

Gorbounova, O.

Hanna, D. C.

Hauden, J.

Iannone, E.

A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 31, 689–699 (1995).
[CrossRef]

Ishikawa, H.

B. E. Little, H. Kuwatsuka, and H. Ishikawa, “Nondegenerate four-wave mixing efficiencies in DFB laser wavelength converters,” IEEE Photonics Technol. Lett. 10, 591–521 (1998).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Kamijoh, T.

C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasi-phase-matched difference frequency generation,” Jpn. J. Appl. Phys., Part 1 34L, 1543–1545 (1995).
[CrossRef]

Kannari, F.

Kawahara, M.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

Kawai, S.

H. Masuda, S. Kawai, K. I. Suzuki, and K. Aida, “Ultrawide 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fiber amplifiers and distributed Raman amplifiers,” IEEE Photonics Technol. Lett. 10, 516–518 (1998).
[CrossRef]

Khurgin, J. B.

Kim, Y. S.

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[CrossRef]

Kindt, S.

Koza, M. A.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Kulp, T. J.

Kuwatsuka, H.

B. E. Little, H. Kuwatsuka, and H. Ishikawa, “Nondegenerate four-wave mixing efficiencies in DFB laser wavelength converters,” IEEE Photonics Technol. Lett. 10, 591–521 (1998).
[CrossRef]

Lawrence, G. L.

G. L. Lawrence and J. Edwards, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–374 (1984).
[CrossRef]

Lee, S. J.

Little, B. E.

B. E. Little, H. Kuwatsuka, and H. Ishikawa, “Nondegenerate four-wave mixing efficiencies in DFB laser wavelength converters,” IEEE Photonics Technol. Lett. 10, 591–521 (1998).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Marte, M. A. M.

M. A. M. Marte, “Competing nonlinearities,” Phys. Rev. A 49, R3166–R3169 (1994).
[CrossRef] [PubMed]

Masuda, H.

H. Masuda, S. Kawai, K. I. Suzuki, and K. Aida, “Ultrawide 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fiber amplifiers and distributed Raman amplifiers,” IEEE Photonics Technol. Lett. 10, 516–518 (1998).
[CrossRef]

Mecozzi, A.

A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 31, 689–699 (1995).
[CrossRef]

Miller, B. I.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Broadband wavelength conversion with amplification by four-wave mixing in semiconductor travelling wave amplifiers,” Electron. Lett. 30, 859–860 (1994).
[CrossRef]

Myers, L. E.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical paramet-ric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
[CrossRef]

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[CrossRef] [PubMed]

Nakata, T.

Newkirk, M. A.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Broadband wavelength conversion with amplification by four-wave mixing in semiconductor travelling wave amplifiers,” Electron. Lett. 30, 859–860 (1994).
[CrossRef]

Oberman, K.

Okayama, H.

C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasi-phase-matched difference frequency generation,” Jpn. J. Appl. Phys., Part 1 34L, 1543–1545 (1995).
[CrossRef]

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

Park, N.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Broadband wavelength conversion with amplification by four-wave mixing in semiconductor travelling wave amplifiers,” Electron. Lett. 30, 859–860 (1994).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. Lett. 127, 1918–1939 (1962).

Petermann, K.

Powers, P. E.

Puech, K.

Rajhel, A.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Richardson, D. J.

Roditi, E.

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
[CrossRef]

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave-mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
[CrossRef]

Ross, G. W.

Scotti, S.

A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 31, 689–699 (1995).
[CrossRef]

Sheik-Bahae, M.

G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “Coherent interactions for all-optical signal pro-cessing via quadratic nonlinearities,” IEEE J. Quantum Electron. 31, 673–681 (1995).
[CrossRef]

Sherwood, J. N.

Shinozaki, K.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

Smith, P. G. R.

Smith, R. T.

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[CrossRef]

Spano, P.

A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 31, 689–699 (1995).
[CrossRef]

Sphicopoulos, T.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave-mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
[CrossRef]

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
[CrossRef]

Stegeman, G. I.

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “Coherent interactions for all-optical signal pro-cessing via quadratic nonlinearities,” IEEE J. Quantum Electron. 31, 673–681 (1995).
[CrossRef]

Suzuki, K. I.

H. Masuda, S. Kawai, K. I. Suzuki, and K. Aida, “Ultrawide 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fiber amplifiers and distributed Raman amplifiers,” IEEE Photonics Technol. Lett. 10, 516–518 (1998).
[CrossRef]

Syvridis, D.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave-mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
[CrossRef]

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
[CrossRef]

Takeoka, M.

Tan, H.

H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
[CrossRef]

Taverner, D.

Tomaselli, A.

H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
[CrossRef]

Tomkos, I.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave-mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
[CrossRef]

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
[CrossRef]

Uchida, A.

Vahala, K. J.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Broadband wavelength conversion with amplification by four-wave mixing in semiconductor travelling wave amplifiers,” Electron. Lett. 30, 859–860 (1994).
[CrossRef]

Van Stryland, E.

G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “Coherent interactions for all-optical signal pro-cessing via quadratic nonlinearities,” IEEE J. Quantum Electron. 31, 673–681 (1995).
[CrossRef]

Watanabe, K.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

Xu, C. Q.

C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasi-phase-matched difference frequency generation,” Jpn. J. Appl. Phys., Part 1 34L, 1543–1545 (1995).
[CrossRef]

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, C. Flytzanis, and N. Bloembergen, “Anisotropic three-wave and double two-wave frequency mixing in GaAs,” Phys. Rev. Lett. 29, 865–868 (1972).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
[CrossRef]

Zacharopoulos, I.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave-mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
[CrossRef]

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
[CrossRef]

Zhou, J.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Broadband wavelength conversion with amplification by four-wave mixing in semiconductor travelling wave amplifiers,” Electron. Lett. 30, 859–860 (1994).
[CrossRef]

Appl. Phys. Lett. (6)

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
[CrossRef]

H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
[CrossRef]

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
[CrossRef]

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave-mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
[CrossRef]

Electron. Lett. (1)

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Broadband wavelength conversion with amplification by four-wave mixing in semiconductor travelling wave amplifiers,” Electron. Lett. 30, 859–860 (1994).
[CrossRef]

IEEE J. Quantum Electron. (5)

A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 31, 689–699 (1995).
[CrossRef]

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical paramet-ric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “Coherent interactions for all-optical signal pro-cessing via quadratic nonlinearities,” IEEE J. Quantum Electron. 31, 673–681 (1995).
[CrossRef]

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
[CrossRef]

H. Masuda, S. Kawai, K. I. Suzuki, and K. Aida, “Ultrawide 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fiber amplifiers and distributed Raman amplifiers,” IEEE Photonics Technol. Lett. 10, 516–518 (1998).
[CrossRef]

B. E. Little, H. Kuwatsuka, and H. Ishikawa, “Nondegenerate four-wave mixing efficiencies in DFB laser wavelength converters,” IEEE Photonics Technol. Lett. 10, 591–521 (1998).
[CrossRef]

J. Appl. Phys. (1)

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[CrossRef]

J. Lightwave Technol. (3)

Jpn. J. Appl. Phys., Part 1 (1)

C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasi-phase-matched difference frequency generation,” Jpn. J. Appl. Phys., Part 1 34L, 1543–1545 (1995).
[CrossRef]

Opt. Lett. (7)

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μm-band wavelength conversion based on difference frequency mixing in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004–1006 (1998).
[CrossRef]

P. E. Britton, D. Taverner, K. Puech, D. J. Richardson, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Optical parametric oscillation in periodically poled lithium niobate driven by a diode-pumped Q-switched erbium fiber laser,” Opt. Lett. 23, 582–584 (1998).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[CrossRef] [PubMed]

P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
[CrossRef]

M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
[CrossRef] [PubMed]

G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, “Frequency shifting through cascade second-order processes in an N-(4-nitrophenyl)-L-prolinol crystal,” Opt. Lett. 23, 439–441 (1998).
[CrossRef]

O. Gorbounova, Y. J. Ding, J. B. Khurgin, S. J. Lee, and A. E. Craig, “Optical frequency shifters based on cascaded second-order nonlinear processes,” Opt. Lett. 21, 558–560 (1996).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

G. L. Lawrence and J. Edwards, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–374 (1984).
[CrossRef]

Phys. Rev. A (1)

M. A. M. Marte, “Competing nonlinearities,” Phys. Rev. A 49, R3166–R3169 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

E. Yablonovitch, C. Flytzanis, and N. Bloembergen, “Anisotropic three-wave and double two-wave frequency mixing in GaAs,” Phys. Rev. Lett. 29, 865–868 (1972).
[CrossRef]

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. Lett. 127, 1918–1939 (1962).

Other (3)

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996); G. Assanto, “Quadratic cascading: effects and applications,” in Beam Shaping and Control with Nonlinear Optics, F. Kajzar and R. Reinisch, eds. (Plenum, New York, 1997), pp. 341–374.
[CrossRef]

M. H. Chou, M. A. Arbore, M. M. Fejer, A. Galvanauskas, and D. Harter, “Efficient generation of infrared light in LiNbO3 waveguides with integrated coupling structures,” in Nonlinear Guided Waves and Their Applications, Vol. 5 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 54–56.

K. Parameswaran, E. L. Ginzton Laboratory, Stanford University, Stanford, Calif. 94305 (personal communication, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Sketch of the shifter in (a) the single-pass and (b) the double-pass configurations: ωP, pump; ωP-δω, and ωP+δω, input and output signal carriers, respectively; L, overall device length.

Fig. 2
Fig. 2

Single-pass λSλC cw conversion efficiency (ηP) (in decibels) versus input wavelength λS for three waveguide lengths, with ΔβPP=0 and ΔβSC(λS) given by the waveguide dispersion and κPPωP=κSCωP=0.88 (W-1/2 cm-1). Injected powers are PP=300 mW and PS=1 mW. Dotted curves from Eqs. (3), include only the ωP+ωP=2ωP and 2ωP=ωS+ωC interactions. Solid curves account for signal-pump interactions and break near 1.55 µm because the model is invalid in λSλP. The parameters ΔβPS(λS), ΔβPC(λS), and κPSκPC are derived from waveguide modal analysis.

Fig. 3
Fig. 3

Single-pass (dashed curve) and double-pass (solid curve) cw signal conversion efficiencies normalized to their maximum values ηP/ηmaxP versus pump wavelength offset from exact quasi-phase matching: δλP=λP-1.55 µm, calculated for L=1 cm, PP=100 mW, PS=1 mW, λS=1.54 µm, T=T0=25 °C, and Λ=Λ0=14.29 µm. Dotted curve, the SHG tuning curve.

Fig. 4
Fig. 4

Same as Fig. 2 but for the double-pass geometry [Fig. 1(b)]. Solid curves from Eqs. (4) and (5) coincide with the efficiency curves obtained from the simplified expression [Eq. (8)]. Dotted curves are obtained from Eq. (8) with a parabolic fit of the DFG mismatch on the signal offset from λP.

Fig. 5
Fig. 5

Output signal wavelength λC versus temperature T for a fixed input wavelength λS=1.556 µm and QPM period Λ=Λ0. Both thermo-optic correction of the effective indices and thermal expansion of the material were taken into account.

Fig. 6
Fig. 6

Single-pass isoefficiency curves (κPPωP=κSCωP=0.88 W-1/2 cm-1, ΔβPP=0, and λS=1.53 µm) versus device length L and cw pump power PP. The curves are spaced by 4 dB, and the markers are efficiencies (in decibels). The signal power is PS=1 mW.

Fig. 7
Fig. 7

Same as Fig. 6 but for the double-pass shifter. The additional dashed curves are given by Eq. (8): For efficiencies of <4 dB they overlap the solid curves from numerical integration of Eqs. (4) and (5).

Fig. 8
Fig. 8

Double-pass isoefficiencies versus length L and peak pump power PP in the pulsed case. Gaussian signal and pump pulses of equal widths were assumed. The solid curves result from integration of Eqs. (4) and (5); the dashed curves are cw efficiencies corrected by the factor in Eq. (10). The curves are spaced by 4 dB, and the markers are efficiencies (in decibels). Here PS=1 mW and λS=1.53 µm.

Fig. 9
Fig. 9

Effect of losses: Contour plot of the double-pass cw efficiency reduction (ΔηdB=ηα(dB)-η0(dB)) with respect to the values from Fig. 7 associated with propagation losses (α=0.4 dB/cm at all wavelengths (λP, λP/2, λS, λC). The curves are spaced by 0.5 dB.

Fig. 10
Fig. 10

cw Conversion efficiency η=PC/PS (λSλC) versus signal wavelength λS in the presence of additional input at λS=1.54 µm. Upper (lower) curves, double-pass (single-pass) shifters for L=3 cm and PP=300 mW. The input power at λS is fixed at PS=1 mW for various powers of the disturbing signal: PS=0 (solid curves), 1 mW (dashed–dotted curves), 5 mW (dotted curves), 10 mW (small dotted curves), 20 mW (dashed curves).

Fig. 11
Fig. 11

Same as Fig. 10 but for L=2 cm.

Fig. 12
Fig. 12

Contour plot of the difference in conversion efficiencies ηDFG(dB)-ηSHG+DFG(dB) between the DFG and the SHG+DFG [Fig. 1(b)] schemes in the lossless case (α=0) for PS=1 mW λS=1.53 µm.

Tables (1)

Tables Icon

Table 1 Higher-Order Second-Harmonic-Mode Interactions

Equations (55)

Equations on this page are rendered with MathJax. Learn more.

ne(ψ, ζ, λ, T)=nb(λ, T)+Δne(λ)exp[-(ζ/d)2]exp {-(ψ/w)2].
ΔβPP=βTM00(PP)(2ωP)-2βTM00(P)(ωP)-2π/Λ0=4πλP(NPP-NP-λP/2Λ0)=0,
κPP=2μ0/c/NPPNP2 deff/SPP,
SPP=|fP(ψ, ζ)|2dψdζ2|fPP(ψ, ζ)|2dψdζ1d33d(ψ, ζ)fPP*(ψ, ζ)fP2(ψ, ζ)dψdζ.
κSC=2μ0/c/NPPNCNSdeff/SSCκPP.
ΔβSC(δω)=βTM00(PP)(2ωP)-βTM00(S)(ωP-δω)-βTM00(C)(ωP+δω)-2π/Λ.
ΔβSC(δω)=ΔβSC(δω=0)-δω[-βTM00(S)(ω)/ω|ωP+βTM00(C)(ω)/ω|ωP]+O(δω)2,
ΔβSC|/cm-845.04(δλ|μm)2,|δλ|<50nm.
dΨPdξ=-iωPκPPΨP*ΨPP exp(-iΔβPPξ)-αP/2ΨP,
dΨSdξ=-iωSκSCΨC*ΨPP exp(-iΔβSCξ)-αS/2ΨS,
dΨCdξ=-iωCκSCΨS*ΨPP exp(-iΔβSCξ)-αC/2ΨC,
dΨPPdξ=-iωPκPPΨP2 exp(+iΔβPPξ)
-i2ωPκSCΨSΨC exp(+iΔβSCξ)-αPP/2ΨPP,
dΨPdξ=-iωPκPPΨP*ΨPP exp(-iΔβPPξ)-αP/2ΨP,
dΨPPdξ=-iωPκPPΨP2 exp(+iΔβPPξ)-αPP/2ΨPP,
dΨSdξ=-iωSκSCΨC*ΨPP exp(-iΔβSCξ)-αS/2ΨS,
dΨCdξ=-iωCκSCΨS*ΨPP exp(-iΔβSCξ)-αC/2ΨC,
dΨPPdξ=-i2ωPκSCΨSΨC exp(+iΔβSCξ)-αPP/2ΨPP,
η(SC)P=PC/PS [η(SC)W=WC/WS].
ψPP(ξ)=-iPP tanh(ωPκPPξPP).
|ψPP(ξ=L)|2=PPP(L)=PP tanh2(ωPκPPLPP).
PC=|ψC(ξ=0)|2=PSωCωSgb2 sinh2(bL),
η(SC)P=ωC2κSC2PP tanh2(ωPκPPLPP)[sinh(bL)/b]2.
PC=ωP2ωC2κPP2κSC2L4PP2PS.
η(SC)W=-+PC(t)dt-+PS(t)dt,
PP(t)=Pp max fP(t),
PS(t)=Ps max fS(t),
PC(t)=ωP2ωC2κPP2κSC2L4Pp max2fP2(t)Ps maxfS(t)=ηP(Pp max)fP2(t)fS(t)Ps max,
ηP(Pp max)=ωP2ωC2κPP2κSC2L4Pp max.
η(SC)W=ηP(Pp max)-+fP2(t)fS(t)dt-+fS(t)dt.
η(SC)W=ηP(Pp max)(1+2τS2/τP2)-1/2.
TM00(ωP)+TM00(ωS)TM00(2ωP-δω),
TM00(ωP)+TM00(ωC)TM00(2ωP+δω),
ΔβPP(δωP; Λ, T)=ΔβPP(δωP=0; Λ, T)-2δωP[βTM00(PP)/ω|2ωP-βTM00(P)/ω|ωP]+O(δωP)2,
PC=CPSH0PSCoPSH0PS=ηoPS,
PC=CPSH0PSCoPSH0PS=ηoPS.
ΔPSH=2PC=2CoPSH0PS.
PSH=Co(PSH0-ΔPSH)=ηo(1-2CoPS).
PC=CoPSHPS=ηo(1-2CoPS)PS,
PC=ηo(1-2ηoPS/PSH0)PS.
Δη=ηo-PC/PS=2ηoPS/PSH0.
dΨPdξ=-iωPκPPΨP*ΨPP exp(-iΔβPPξ)-iωPκPSΨS*ΨPS exp(-iΔβPSξ)-iωPκPCΨC*ΨPC exp(-iΔβPCξ)+-iωPκPSΨS*ΨPS exp(-iΔβPSξ)-iωPκPCΨC*ΨPC exp(-iΔβPCξ),
dΨSdξ=-iωSκSCΨC*ΨPP exp(-iΔβSCξ)-iωSκPSΨS*ΨPS exp(-iΔβPSξ)-iωSκSCΨC*ΨSC exp(-iΔβSCξ)-iωSκSSΨS*ΨSS exp(-iΔβSSξ),
dΨCdξ=-iωCκSCΨS*ΨPP exp(-iΔβSCξ)-iωCκPCΨP*ΨPC exp(-iΔβPCξ)-iωCκCCΨC*ΨCC exp(-iΔβCCξ)-iωCκCSΨS*ΨCS exp(-iΔβCSξ),
dΨSdξ=-iωSκSCΨC*ΨPP exp(-iΔβSCξ)-iωSκPSΨP*ΨPS exp(-iΔβPSξ)-iωSκSCΨC*ΨSC exp(-iΔβSCξ)-iωSκSSΨS*ΨSS exp(-iΔβSSξ),
dΨCdξ=-iωCκSCΨP*ΨPP exp(-iΔβSCξ)-iωCκPCΨC*ΨPC exp(-iΔβPCξ)-iωCκCCΨC*ΨCC exp(iΔβCCξ)-iωCκCSΨS*ΨCS exp(-iΔβCSξ),
dΨSCdξ=-i(ωS+ωC)κSCΨSΨC exp(+iΔβSCξ),
dΨSCdξ=-i(ωS+ωC)κSCΨSΨC exp(+iΔβSCξ),
dΨSSdξ=-i(ωS+ωS)κSSΨSΨS exp(+iΔβSSξ),
dΨCCdξ=-i(ωC+ωC)κCCΨCΨC exp(+iΔβCCξ),
dΨPSdξ=-i(ωP+ωS)κPSΨPΨS exp(+iΔβPSξ),
dΨPSdξ=-i(ωP+ωS)κPSΨPΨS exp(+iΔβPSξ),
dΨPCdξ=-i(ωP+ωC)κPCΨPΨC exp(+iΔβPCξ),
dΨPCdξ=-i(ωP+ωC)κPCΨPΨC exp(+iΔβPCξ),
dΨPPdξ=-iωPκPPΨP2 exp(+iΔβPPξ)-i2ωPκSCΨSΨC exp(+iΔβSCξ)-i2ωPκSCΨSΨC exp(+iΔβSCξ).

Metrics