Abstract

An experimental study of the holographic gratings recorded in nonannealed, thermally with time relaxed amorphous As2S3 films by 514.5-nm light in the presence of 632.8-nm readout light is carried out. The dependences of the maximal first-order diffraction efficiency on the holographic grating period was studied in a wide range of periods, from 0.40 to 70.0 µm. A peculiar oscillatory diffraction-efficiency temporal behavior occurring under certain conditions is reported. The obtained results are discussed in terms of photoinduced structural changes, relaxational structural changes, photoinduced anisotropy, and photoinduced recharging of the localized states in the bandgap. The diffraction-efficiency oscillations are explained by the model of annihilating defects and by multiwave mixing in a thin dynamic hologram.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription