Abstract

Either α- or β-phase LiNbO3 guides of high quality were obtained by proton exchange of x- and z-cut substrates in benzoic acid vapor. The second-harmonic-generation efficiency of z-cut samples was found to be similar to that of the substrate for 0.01Δne0.1. x-cut samples show second-harmonic-generation efficiency that is good for Δne0.03 and negligible for Δne0.03. All cuts exhibit low optical losses (<0.35 dB cm-1) for Δne0.03 and Δne0.09 and a high optical damage threshold for Δne>0.03.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
    [CrossRef]
  2. J. L. Jackel, A. M. Glass, G. E. Peterson, C. E. Rice, D. H. Olson, and J. J. Veselka, “Damage resistant LiNbO3 waveguides,” J. Appl. Phys. 55, 269–270 (1984).
    [CrossRef]
  3. E. Glavas, J. M. Cabrera, and P. D. Townsend, “A comparison of optical damage in different types of LiNbO3 waveguides,” J. Phys. D 22, 611–616 (1989).
    [CrossRef]
  4. J. L. Jackel, “Proton exchange: past present and future,” in Integrated Optical Circuits, K. Wong, ed., Proc. SPIE 1583, 54–63 (1991).
    [CrossRef]
  5. M. P. De Micheli, D. B. Ostrowsky, Yu. N. Korkishko, and P. Bassi, “Proton exchange waveguides in LiNbO3 and LiTaO3: structural and optical properties,” in Insulating Materials for Optoelectronics. New Developments, F. Agulló-López, ed. (World Scientific, London, 1995), Chap. 12.
  6. J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
    [CrossRef]
  7. M. De Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. LT-4, 743–745 (1986).
    [CrossRef]
  8. M. A. Arbore and M. M. Fejer, “Singly resonant optical parametric oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 22, 151–153 (1997).
    [CrossRef] [PubMed]
  9. W.-Y. Hsu, C. S. Willand, V. Gopalan, and M. C. Gupta, “Effect of proton exchange on the nonlinear optical properties of LiNbO3 and LiTaO3,” Appl. Phys. Lett. 61, 2263–2265 (1992).
    [CrossRef]
  10. F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
    [CrossRef]
  11. M. L. Bortz, L. A. Eyres, and M. M. Feyer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
    [CrossRef]
  12. V. A. Ganshin and Yu. N. Korkishko, “H:LiNbO3 waveguides: effects of annealing,” Opt. Commun. 86, 523–530 (1991).
    [CrossRef]
  13. C. Ziling, L. Pokrovskii, N. Terpugov, I. Savatinova, M. Kuneva, S. Tonchev, M. N. Armenise, and V. M. N. Passaro, “Optical and structural properties of annealed PE:LiNbO3 waveguides formed with pyrophosphoric and benzoic acids,” J. Appl. Phys. 73, 3125–3131 (1993).
    [CrossRef]
  14. A. Alcázar-de-Velasco, J. Rams, J. M. Cabrera, and F. Agulló-López, “Proton exchange waveguides on stoichiometric LiNbO3 substrates,” J. Appl. Phys. 82, 4752–4757 (1997).
    [CrossRef]
  15. J. Rams, J. Olivares, and J. M. Cabrera, “High-index proton-exchanged waveguides in z-cut LiNbO3 with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 70, 2076–2078 (1997).
    [CrossRef]
  16. M. J. Li, M. De Micheli, D. B. Ostrowsky, and M. Papuchon, “Réalisation sur LiNbO3 de guides d’ordes présentent une forte variation d’indice et de très faibles pertes,” Ann. Telecommun. 43, 73–77 (1988).
  17. K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. LT-3, 385–391 (1985).
    [CrossRef]
  18. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguides profiles by means of a non stationary mode index calculations,” Opt. Acta 33, 127–143 (1986).
    [CrossRef]
  19. P. G. Suchoski, T. K. Findakly, and F. J. Leonberger, “Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation,” Opt. Lett. 13, 1050–1052 (1988).
    [CrossRef] [PubMed]
  20. M. J. Li, M. P. De Micheli, D. B. Ostrowsky, and M. Papuchon, “High-index low-loss LiNbO3 waveguides,” Opt. Commun. 62, 17–20 (1987).
    [CrossRef]
  21. J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2470 (1993).
    [CrossRef]
  22. J. Olivares and J. M. Cabrera, “Modification of proton exchanged LiNbO3 layers for guiding modes with ordinary polarization,” Fiber Integr. Opt. 12, 277–285 (1993).
    [CrossRef]
  23. D. P. Birnie, “Analysis of diffusion in LiNbO3,” J. Mater. Sci. 28, 302–315 (1993).
    [CrossRef]
  24. S. T. Vohra and A. R. Mickelson, “Diffraction characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides,” J. Appl. Phys. 66, 5161–5174 (1989).
    [CrossRef]
  25. E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled planar LiNbO3 waveguides,” Electron. Lett. 25, 174–175 (1989).
    [CrossRef]
  26. E. J. Lim, H. M. Hertz, M. L. Bortz, and M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled LiNbO3 waveguide,” Appl. Phys. Lett. 59, 2207–2209 (1991).
    [CrossRef]

1997

M. A. Arbore and M. M. Fejer, “Singly resonant optical parametric oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 22, 151–153 (1997).
[CrossRef] [PubMed]

A. Alcázar-de-Velasco, J. Rams, J. M. Cabrera, and F. Agulló-López, “Proton exchange waveguides on stoichiometric LiNbO3 substrates,” J. Appl. Phys. 82, 4752–4757 (1997).
[CrossRef]

J. Rams, J. Olivares, and J. M. Cabrera, “High-index proton-exchanged waveguides in z-cut LiNbO3 with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 70, 2076–2078 (1997).
[CrossRef]

1996

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

1993

M. L. Bortz, L. A. Eyres, and M. M. Feyer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
[CrossRef]

C. Ziling, L. Pokrovskii, N. Terpugov, I. Savatinova, M. Kuneva, S. Tonchev, M. N. Armenise, and V. M. N. Passaro, “Optical and structural properties of annealed PE:LiNbO3 waveguides formed with pyrophosphoric and benzoic acids,” J. Appl. Phys. 73, 3125–3131 (1993).
[CrossRef]

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2470 (1993).
[CrossRef]

J. Olivares and J. M. Cabrera, “Modification of proton exchanged LiNbO3 layers for guiding modes with ordinary polarization,” Fiber Integr. Opt. 12, 277–285 (1993).
[CrossRef]

D. P. Birnie, “Analysis of diffusion in LiNbO3,” J. Mater. Sci. 28, 302–315 (1993).
[CrossRef]

1992

W.-Y. Hsu, C. S. Willand, V. Gopalan, and M. C. Gupta, “Effect of proton exchange on the nonlinear optical properties of LiNbO3 and LiTaO3,” Appl. Phys. Lett. 61, 2263–2265 (1992).
[CrossRef]

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
[CrossRef]

1991

J. L. Jackel, “Proton exchange: past present and future,” in Integrated Optical Circuits, K. Wong, ed., Proc. SPIE 1583, 54–63 (1991).
[CrossRef]

V. A. Ganshin and Yu. N. Korkishko, “H:LiNbO3 waveguides: effects of annealing,” Opt. Commun. 86, 523–530 (1991).
[CrossRef]

E. J. Lim, H. M. Hertz, M. L. Bortz, and M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled LiNbO3 waveguide,” Appl. Phys. Lett. 59, 2207–2209 (1991).
[CrossRef]

1989

S. T. Vohra and A. R. Mickelson, “Diffraction characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides,” J. Appl. Phys. 66, 5161–5174 (1989).
[CrossRef]

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled planar LiNbO3 waveguides,” Electron. Lett. 25, 174–175 (1989).
[CrossRef]

E. Glavas, J. M. Cabrera, and P. D. Townsend, “A comparison of optical damage in different types of LiNbO3 waveguides,” J. Phys. D 22, 611–616 (1989).
[CrossRef]

1988

M. J. Li, M. De Micheli, D. B. Ostrowsky, and M. Papuchon, “Réalisation sur LiNbO3 de guides d’ordes présentent une forte variation d’indice et de très faibles pertes,” Ann. Telecommun. 43, 73–77 (1988).

P. G. Suchoski, T. K. Findakly, and F. J. Leonberger, “Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation,” Opt. Lett. 13, 1050–1052 (1988).
[CrossRef] [PubMed]

1987

M. J. Li, M. P. De Micheli, D. B. Ostrowsky, and M. Papuchon, “High-index low-loss LiNbO3 waveguides,” Opt. Commun. 62, 17–20 (1987).
[CrossRef]

1986

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguides profiles by means of a non stationary mode index calculations,” Opt. Acta 33, 127–143 (1986).
[CrossRef]

M. De Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. LT-4, 743–745 (1986).
[CrossRef]

1985

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. LT-3, 385–391 (1985).
[CrossRef]

1984

J. L. Jackel, A. M. Glass, G. E. Peterson, C. E. Rice, D. H. Olson, and J. J. Veselka, “Damage resistant LiNbO3 waveguides,” J. Appl. Phys. 55, 269–270 (1984).
[CrossRef]

1982

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

Agulló-López, F.

A. Alcázar-de-Velasco, J. Rams, J. M. Cabrera, and F. Agulló-López, “Proton exchange waveguides on stoichiometric LiNbO3 substrates,” J. Appl. Phys. 82, 4752–4757 (1997).
[CrossRef]

Alcázar-de-Velasco, A.

A. Alcázar-de-Velasco, J. Rams, J. M. Cabrera, and F. Agulló-López, “Proton exchange waveguides on stoichiometric LiNbO3 substrates,” J. Appl. Phys. 82, 4752–4757 (1997).
[CrossRef]

Arbore, M. A.

Armenise, M. N.

C. Ziling, L. Pokrovskii, N. Terpugov, I. Savatinova, M. Kuneva, S. Tonchev, M. N. Armenise, and V. M. N. Passaro, “Optical and structural properties of annealed PE:LiNbO3 waveguides formed with pyrophosphoric and benzoic acids,” J. Appl. Phys. 73, 3125–3131 (1993).
[CrossRef]

Barety, J. P.

M. De Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. LT-4, 743–745 (1986).
[CrossRef]

Birnie, D. P.

D. P. Birnie, “Analysis of diffusion in LiNbO3,” J. Mater. Sci. 28, 302–315 (1993).
[CrossRef]

Bortz, M. L.

M. L. Bortz, L. A. Eyres, and M. M. Feyer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
[CrossRef]

E. J. Lim, H. M. Hertz, M. L. Bortz, and M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled LiNbO3 waveguide,” Appl. Phys. Lett. 59, 2207–2209 (1991).
[CrossRef]

Byer, R. L.

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled planar LiNbO3 waveguides,” Electron. Lett. 25, 174–175 (1989).
[CrossRef]

Cabrera, J. M.

A. Alcázar-de-Velasco, J. Rams, J. M. Cabrera, and F. Agulló-López, “Proton exchange waveguides on stoichiometric LiNbO3 substrates,” J. Appl. Phys. 82, 4752–4757 (1997).
[CrossRef]

J. Rams, J. Olivares, and J. M. Cabrera, “High-index proton-exchanged waveguides in z-cut LiNbO3 with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 70, 2076–2078 (1997).
[CrossRef]

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2470 (1993).
[CrossRef]

J. Olivares and J. M. Cabrera, “Modification of proton exchanged LiNbO3 layers for guiding modes with ordinary polarization,” Fiber Integr. Opt. 12, 277–285 (1993).
[CrossRef]

E. Glavas, J. M. Cabrera, and P. D. Townsend, “A comparison of optical damage in different types of LiNbO3 waveguides,” J. Phys. D 22, 611–616 (1989).
[CrossRef]

Canali, C.

M. De Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. LT-4, 743–745 (1986).
[CrossRef]

Carnera, A.

M. De Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. LT-4, 743–745 (1986).
[CrossRef]

Carrascosa, M.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

Chandler, P. J.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguides profiles by means of a non stationary mode index calculations,” Opt. Acta 33, 127–143 (1986).
[CrossRef]

Chiang, K. S.

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. LT-3, 385–391 (1985).
[CrossRef]

De Micheli, M.

M. J. Li, M. De Micheli, D. B. Ostrowsky, and M. Papuchon, “Réalisation sur LiNbO3 de guides d’ordes présentent une forte variation d’indice et de très faibles pertes,” Ann. Telecommun. 43, 73–77 (1988).

M. De Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. LT-4, 743–745 (1986).
[CrossRef]

De Micheli, M. P.

M. J. Li, M. P. De Micheli, D. B. Ostrowsky, and M. Papuchon, “High-index low-loss LiNbO3 waveguides,” Opt. Commun. 62, 17–20 (1987).
[CrossRef]

Diéguez, E.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

Eyres, L. A.

M. L. Bortz, L. A. Eyres, and M. M. Feyer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
[CrossRef]

Fejer, M. M.

M. A. Arbore and M. M. Fejer, “Singly resonant optical parametric oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 22, 151–153 (1997).
[CrossRef] [PubMed]

E. J. Lim, H. M. Hertz, M. L. Bortz, and M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled LiNbO3 waveguide,” Appl. Phys. Lett. 59, 2207–2209 (1991).
[CrossRef]

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled planar LiNbO3 waveguides,” Electron. Lett. 25, 174–175 (1989).
[CrossRef]

Feyer, M. M.

M. L. Bortz, L. A. Eyres, and M. M. Feyer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
[CrossRef]

Findakly, T. K.

Ganshin, V. A.

V. A. Ganshin and Yu. N. Korkishko, “H:LiNbO3 waveguides: effects of annealing,” Opt. Commun. 86, 523–530 (1991).
[CrossRef]

Glass, A. M.

J. L. Jackel, A. M. Glass, G. E. Peterson, C. E. Rice, D. H. Olson, and J. J. Veselka, “Damage resistant LiNbO3 waveguides,” J. Appl. Phys. 55, 269–270 (1984).
[CrossRef]

Glavas, E.

E. Glavas, J. M. Cabrera, and P. D. Townsend, “A comparison of optical damage in different types of LiNbO3 waveguides,” J. Phys. D 22, 611–616 (1989).
[CrossRef]

Gopalan, V.

W.-Y. Hsu, C. S. Willand, V. Gopalan, and M. C. Gupta, “Effect of proton exchange on the nonlinear optical properties of LiNbO3 and LiTaO3,” Appl. Phys. Lett. 61, 2263–2265 (1992).
[CrossRef]

Gupta, M. C.

W.-Y. Hsu, C. S. Willand, V. Gopalan, and M. C. Gupta, “Effect of proton exchange on the nonlinear optical properties of LiNbO3 and LiTaO3,” Appl. Phys. Lett. 61, 2263–2265 (1992).
[CrossRef]

Hertz, H. M.

E. J. Lim, H. M. Hertz, M. L. Bortz, and M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled LiNbO3 waveguide,” Appl. Phys. Lett. 59, 2207–2209 (1991).
[CrossRef]

Hsiung, H.

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
[CrossRef]

Hsu, W.-Y.

W.-Y. Hsu, C. S. Willand, V. Gopalan, and M. C. Gupta, “Effect of proton exchange on the nonlinear optical properties of LiNbO3 and LiTaO3,” Appl. Phys. Lett. 61, 2263–2265 (1992).
[CrossRef]

Jackel, J. L.

J. L. Jackel, “Proton exchange: past present and future,” in Integrated Optical Circuits, K. Wong, ed., Proc. SPIE 1583, 54–63 (1991).
[CrossRef]

J. L. Jackel, A. M. Glass, G. E. Peterson, C. E. Rice, D. H. Olson, and J. J. Veselka, “Damage resistant LiNbO3 waveguides,” J. Appl. Phys. 55, 269–270 (1984).
[CrossRef]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

Korkishko, Yu. N.

V. A. Ganshin and Yu. N. Korkishko, “H:LiNbO3 waveguides: effects of annealing,” Opt. Commun. 86, 523–530 (1991).
[CrossRef]

Kuneva, M.

C. Ziling, L. Pokrovskii, N. Terpugov, I. Savatinova, M. Kuneva, S. Tonchev, M. N. Armenise, and V. M. N. Passaro, “Optical and structural properties of annealed PE:LiNbO3 waveguides formed with pyrophosphoric and benzoic acids,” J. Appl. Phys. 73, 3125–3131 (1993).
[CrossRef]

Lama, F. L.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguides profiles by means of a non stationary mode index calculations,” Opt. Acta 33, 127–143 (1986).
[CrossRef]

Laurell, F.

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
[CrossRef]

Leonberger, F. J.

Li, M. J.

M. J. Li, M. De Micheli, D. B. Ostrowsky, and M. Papuchon, “Réalisation sur LiNbO3 de guides d’ordes présentent une forte variation d’indice et de très faibles pertes,” Ann. Telecommun. 43, 73–77 (1988).

M. J. Li, M. P. De Micheli, D. B. Ostrowsky, and M. Papuchon, “High-index low-loss LiNbO3 waveguides,” Opt. Commun. 62, 17–20 (1987).
[CrossRef]

Lim, E. J.

E. J. Lim, H. M. Hertz, M. L. Bortz, and M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled LiNbO3 waveguide,” Appl. Phys. Lett. 59, 2207–2209 (1991).
[CrossRef]

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled planar LiNbO3 waveguides,” Electron. Lett. 25, 174–175 (1989).
[CrossRef]

Mazzi, G.

M. De Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. LT-4, 743–745 (1986).
[CrossRef]

Mickelson, A. R.

S. T. Vohra and A. R. Mickelson, “Diffraction characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides,” J. Appl. Phys. 66, 5161–5174 (1989).
[CrossRef]

Müller, R.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

Olivares, J.

J. Rams, J. Olivares, and J. M. Cabrera, “High-index proton-exchanged waveguides in z-cut LiNbO3 with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 70, 2076–2078 (1997).
[CrossRef]

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2470 (1993).
[CrossRef]

J. Olivares and J. M. Cabrera, “Modification of proton exchanged LiNbO3 layers for guiding modes with ordinary polarization,” Fiber Integr. Opt. 12, 277–285 (1993).
[CrossRef]

Olson, D. H.

J. L. Jackel, A. M. Glass, G. E. Peterson, C. E. Rice, D. H. Olson, and J. J. Veselka, “Damage resistant LiNbO3 waveguides,” J. Appl. Phys. 55, 269–270 (1984).
[CrossRef]

Ostrowsky, D. B.

M. J. Li, M. De Micheli, D. B. Ostrowsky, and M. Papuchon, “Réalisation sur LiNbO3 de guides d’ordes présentent une forte variation d’indice et de très faibles pertes,” Ann. Telecommun. 43, 73–77 (1988).

M. J. Li, M. P. De Micheli, D. B. Ostrowsky, and M. Papuchon, “High-index low-loss LiNbO3 waveguides,” Opt. Commun. 62, 17–20 (1987).
[CrossRef]

M. De Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. LT-4, 743–745 (1986).
[CrossRef]

Papuchon, M.

M. J. Li, M. De Micheli, D. B. Ostrowsky, and M. Papuchon, “Réalisation sur LiNbO3 de guides d’ordes présentent une forte variation d’indice et de très faibles pertes,” Ann. Telecommun. 43, 73–77 (1988).

M. J. Li, M. P. De Micheli, D. B. Ostrowsky, and M. Papuchon, “High-index low-loss LiNbO3 waveguides,” Opt. Commun. 62, 17–20 (1987).
[CrossRef]

M. De Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. LT-4, 743–745 (1986).
[CrossRef]

Passaro, V. M. N.

C. Ziling, L. Pokrovskii, N. Terpugov, I. Savatinova, M. Kuneva, S. Tonchev, M. N. Armenise, and V. M. N. Passaro, “Optical and structural properties of annealed PE:LiNbO3 waveguides formed with pyrophosphoric and benzoic acids,” J. Appl. Phys. 73, 3125–3131 (1993).
[CrossRef]

Peterson, G. E.

J. L. Jackel, A. M. Glass, G. E. Peterson, C. E. Rice, D. H. Olson, and J. J. Veselka, “Damage resistant LiNbO3 waveguides,” J. Appl. Phys. 55, 269–270 (1984).
[CrossRef]

Pokrovskii, L.

C. Ziling, L. Pokrovskii, N. Terpugov, I. Savatinova, M. Kuneva, S. Tonchev, M. N. Armenise, and V. M. N. Passaro, “Optical and structural properties of annealed PE:LiNbO3 waveguides formed with pyrophosphoric and benzoic acids,” J. Appl. Phys. 73, 3125–3131 (1993).
[CrossRef]

Rams, J.

A. Alcázar-de-Velasco, J. Rams, J. M. Cabrera, and F. Agulló-López, “Proton exchange waveguides on stoichiometric LiNbO3 substrates,” J. Appl. Phys. 82, 4752–4757 (1997).
[CrossRef]

J. Rams, J. Olivares, and J. M. Cabrera, “High-index proton-exchanged waveguides in z-cut LiNbO3 with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 70, 2076–2078 (1997).
[CrossRef]

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

Rice, C. E.

J. L. Jackel, A. M. Glass, G. E. Peterson, C. E. Rice, D. H. Olson, and J. J. Veselka, “Damage resistant LiNbO3 waveguides,” J. Appl. Phys. 55, 269–270 (1984).
[CrossRef]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

Roelofs, M. G.

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
[CrossRef]

Savatinova, I.

C. Ziling, L. Pokrovskii, N. Terpugov, I. Savatinova, M. Kuneva, S. Tonchev, M. N. Armenise, and V. M. N. Passaro, “Optical and structural properties of annealed PE:LiNbO3 waveguides formed with pyrophosphoric and benzoic acids,” J. Appl. Phys. 73, 3125–3131 (1993).
[CrossRef]

Suchoski, P. G.

Terpugov, N.

C. Ziling, L. Pokrovskii, N. Terpugov, I. Savatinova, M. Kuneva, S. Tonchev, M. N. Armenise, and V. M. N. Passaro, “Optical and structural properties of annealed PE:LiNbO3 waveguides formed with pyrophosphoric and benzoic acids,” J. Appl. Phys. 73, 3125–3131 (1993).
[CrossRef]

Tonchev, S.

C. Ziling, L. Pokrovskii, N. Terpugov, I. Savatinova, M. Kuneva, S. Tonchev, M. N. Armenise, and V. M. N. Passaro, “Optical and structural properties of annealed PE:LiNbO3 waveguides formed with pyrophosphoric and benzoic acids,” J. Appl. Phys. 73, 3125–3131 (1993).
[CrossRef]

Townsend, P. D.

E. Glavas, J. M. Cabrera, and P. D. Townsend, “A comparison of optical damage in different types of LiNbO3 waveguides,” J. Phys. D 22, 611–616 (1989).
[CrossRef]

Veselka, J. J.

J. L. Jackel, A. M. Glass, G. E. Peterson, C. E. Rice, D. H. Olson, and J. J. Veselka, “Damage resistant LiNbO3 waveguides,” J. Appl. Phys. 55, 269–270 (1984).
[CrossRef]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

Vohra, S. T.

S. T. Vohra and A. R. Mickelson, “Diffraction characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides,” J. Appl. Phys. 66, 5161–5174 (1989).
[CrossRef]

Willand, C. S.

W.-Y. Hsu, C. S. Willand, V. Gopalan, and M. C. Gupta, “Effect of proton exchange on the nonlinear optical properties of LiNbO3 and LiTaO3,” Appl. Phys. Lett. 61, 2263–2265 (1992).
[CrossRef]

Ziling, C.

C. Ziling, L. Pokrovskii, N. Terpugov, I. Savatinova, M. Kuneva, S. Tonchev, M. N. Armenise, and V. M. N. Passaro, “Optical and structural properties of annealed PE:LiNbO3 waveguides formed with pyrophosphoric and benzoic acids,” J. Appl. Phys. 73, 3125–3131 (1993).
[CrossRef]

Adv. Phys.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

Ann. Telecommun.

M. J. Li, M. De Micheli, D. B. Ostrowsky, and M. Papuchon, “Réalisation sur LiNbO3 de guides d’ordes présentent une forte variation d’indice et de très faibles pertes,” Ann. Telecommun. 43, 73–77 (1988).

Appl. Phys. Lett.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

W.-Y. Hsu, C. S. Willand, V. Gopalan, and M. C. Gupta, “Effect of proton exchange on the nonlinear optical properties of LiNbO3 and LiTaO3,” Appl. Phys. Lett. 61, 2263–2265 (1992).
[CrossRef]

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
[CrossRef]

M. L. Bortz, L. A. Eyres, and M. M. Feyer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
[CrossRef]

J. Rams, J. Olivares, and J. M. Cabrera, “High-index proton-exchanged waveguides in z-cut LiNbO3 with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 70, 2076–2078 (1997).
[CrossRef]

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2470 (1993).
[CrossRef]

E. J. Lim, H. M. Hertz, M. L. Bortz, and M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled LiNbO3 waveguide,” Appl. Phys. Lett. 59, 2207–2209 (1991).
[CrossRef]

Electron. Lett.

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled planar LiNbO3 waveguides,” Electron. Lett. 25, 174–175 (1989).
[CrossRef]

Fiber Integr. Opt.

J. Olivares and J. M. Cabrera, “Modification of proton exchanged LiNbO3 layers for guiding modes with ordinary polarization,” Fiber Integr. Opt. 12, 277–285 (1993).
[CrossRef]

J. Appl. Phys.

S. T. Vohra and A. R. Mickelson, “Diffraction characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides,” J. Appl. Phys. 66, 5161–5174 (1989).
[CrossRef]

J. L. Jackel, A. M. Glass, G. E. Peterson, C. E. Rice, D. H. Olson, and J. J. Veselka, “Damage resistant LiNbO3 waveguides,” J. Appl. Phys. 55, 269–270 (1984).
[CrossRef]

C. Ziling, L. Pokrovskii, N. Terpugov, I. Savatinova, M. Kuneva, S. Tonchev, M. N. Armenise, and V. M. N. Passaro, “Optical and structural properties of annealed PE:LiNbO3 waveguides formed with pyrophosphoric and benzoic acids,” J. Appl. Phys. 73, 3125–3131 (1993).
[CrossRef]

A. Alcázar-de-Velasco, J. Rams, J. M. Cabrera, and F. Agulló-López, “Proton exchange waveguides on stoichiometric LiNbO3 substrates,” J. Appl. Phys. 82, 4752–4757 (1997).
[CrossRef]

J. Lightwave Technol.

M. De Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. LT-4, 743–745 (1986).
[CrossRef]

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. LT-3, 385–391 (1985).
[CrossRef]

J. Mater. Sci.

D. P. Birnie, “Analysis of diffusion in LiNbO3,” J. Mater. Sci. 28, 302–315 (1993).
[CrossRef]

J. Phys. D

E. Glavas, J. M. Cabrera, and P. D. Townsend, “A comparison of optical damage in different types of LiNbO3 waveguides,” J. Phys. D 22, 611–616 (1989).
[CrossRef]

Opt. Acta

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguides profiles by means of a non stationary mode index calculations,” Opt. Acta 33, 127–143 (1986).
[CrossRef]

Opt. Commun.

V. A. Ganshin and Yu. N. Korkishko, “H:LiNbO3 waveguides: effects of annealing,” Opt. Commun. 86, 523–530 (1991).
[CrossRef]

M. J. Li, M. P. De Micheli, D. B. Ostrowsky, and M. Papuchon, “High-index low-loss LiNbO3 waveguides,” Opt. Commun. 62, 17–20 (1987).
[CrossRef]

Opt. Lett.

Proc. SPIE

J. L. Jackel, “Proton exchange: past present and future,” in Integrated Optical Circuits, K. Wong, ed., Proc. SPIE 1583, 54–63 (1991).
[CrossRef]

Other

M. P. De Micheli, D. B. Ostrowsky, Yu. N. Korkishko, and P. Bassi, “Proton exchange waveguides in LiNbO3 and LiTaO3: structural and optical properties,” in Insulating Materials for Optoelectronics. New Developments, F. Agulló-López, ed. (World Scientific, London, 1995), Chap. 12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sealed ampoule with a bottleneck in the middle and furnace geometry for achieving proton exchange in BA vapor.

Fig. 2
Fig. 2

Index profiles of vapor guides prepared at a temperature of 300 °C for 24 h on z-cut (solid curve) and x-cut (dotted curve) substrates. Experimental mode indices of the z-cut profile are represented as horizontal lines.

Fig. 3
Fig. 3

(a) Effective index of the fundamental mode (λ=632.8 nm) of an x-cut guide exchanged at 300 °C as a function of the exchange time. (b) Area under the α-phase (circles) and the β-phase (square) components of the OH- absorption spectrum as a function of the exchange time.

Fig. 4
Fig. 4

Infrared spectra of the OH- absorption from z-cut vapor guides prepared at a temperature of 300 °C for different exchange times, indicated in the figure in minutes. The substrate spectrum (whose position is indicated by an arrow) has been subtracted from all spectra.

Fig. 5
Fig. 5

Second-harmonic intensity (relative to the substrate value) generated by x-cut guides exchanged in vapor at 300 °C as a function of the exchange time. The regions corresponding to α- and β-phase guides according to Fig. 4 are indicated.

Fig. 6
Fig. 6

Second-harmonic intensity (relative to the substrate value) generated by z-cut guides exchanged in vapor at 300 °C as a function of the exchange time. The regions corresponding to α- and β-phase guides are indicated. Open circles indicate intensity values after correcting from the β-phase material absorption.

Metrics