Abstract

During holographic recording in pure (Pb5Ge3O11) and doped [(Pb1-xBax)5Ge3O11] lead germanate crystals, the diffraction efficiency is transiently enhanced at the initial stage. The enhancement is studied as a function of writing-beam intensity and of dark delay time between two successive recording processes and with open- or short-circuited crystal surfaces. Homogeneous pyroelectric fields that arise from heating of the crystals by cw illumination are revealed to be the main mechanism for diffraction efficiency enhancement. The combined effect of pyroelectric fields and charge compensation is analyzed and used for the explanation of the observed phenomena.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vols. I and II.
  2. N. V. Kukhtarev, V. B. Markov, S. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
    [CrossRef]
  3. V. L. Vinetskii and M. A. Itskovskii, “Pyroelectric mechanism of the holographic recording,” Ferroelectrics 18, 81 (1978).
    [CrossRef]
  4. S. Ducharme, “Pyroelectro-optic phase gratings,” Opt. Lett. 16, 1791 (1991).
    [CrossRef] [PubMed]
  5. K. Buse, “Thermal gratings and pyroelectrically produced charge redistribution in BaTiO3 and KNbO3,” J. Opt. Soc. Am. B 10, 1266 (1993).
    [CrossRef]
  6. W. W. Clark III, G. L. Wood, M. J. Miller, E. J. Sharp, G. J. Salamo, B. Monson, and R. R. Neurgaonkar, “Enhanced photorefractive beam fanning due to internal and external electric fields,” Appl. Opt. 29, 1249 (1990).
    [CrossRef]
  7. P. L. Ramazza and M. Zhao, “Experimental study of two-wave mixing amplification in Cu-doped KNSBN,” Opt. Commun. 102, 93 (1993).
    [CrossRef]
  8. N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Enhancement of photorefractive effect by homogeneous pyroelectric fields,” Appl. Phys. B: Lasers Opt. 66, 393 (1998).
    [CrossRef]
  9. W. Królikowski, M. Cronin-Golomb, and B. S. Chen, “Photorefractive effect in ferroelectric lead germanate,” Appl. Phys. Lett. 57, 7 (1990).
    [CrossRef]
  10. X. Yue, S. Mendricks, Y. Hu, H. Hesse, and D. Kip, “Photorefractive effect in doped Pb5Ge3O11 and in (Pb1−xBax)5Ge3O11,” J. Appl. Phys. 83, 3473 (1998).
    [CrossRef]
  11. M. C. Bashaw and J. F. Heanue, “Quasi-stabilized ionic gratings in photorefractive media for multiplex holography,” J. Opt. Soc. Am. B 14, 2024 (1997).
    [CrossRef]
  12. X. Yue, K. Buse, F. Mersch, E. Krätzig, and R. A. Rupp, “Diffraction efficiency enhancement of photorefractive gratings in Bi4Ti3O12 at low temperatures,” J. Opt. Soc. Am. B 15, 142 (1998).
    [CrossRef]
  13. C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167 (1991).
    [CrossRef]
  14. K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A: Mater. Sci. Process. 57, 161 (1993).
    [CrossRef]
  15. K.-H. Hellwig, ed., Landolt–Börnstein—Numerical Data and Functional Relationships in Science and Technology, New Series (Springer-Verlag, Berlin, New York, 1981), Vol. III/16.
  16. K. Buse, U. Van Stevendaal, R. Pankrath, and E. Krätzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O5:Ce crystals,” J. Opt. Soc. Am. B 13, 1461 (1996).
    [CrossRef]

1998 (3)

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Enhancement of photorefractive effect by homogeneous pyroelectric fields,” Appl. Phys. B: Lasers Opt. 66, 393 (1998).
[CrossRef]

X. Yue, S. Mendricks, Y. Hu, H. Hesse, and D. Kip, “Photorefractive effect in doped Pb5Ge3O11 and in (Pb1−xBax)5Ge3O11,” J. Appl. Phys. 83, 3473 (1998).
[CrossRef]

X. Yue, K. Buse, F. Mersch, E. Krätzig, and R. A. Rupp, “Diffraction efficiency enhancement of photorefractive gratings in Bi4Ti3O12 at low temperatures,” J. Opt. Soc. Am. B 15, 142 (1998).
[CrossRef]

1997 (1)

1996 (1)

1993 (3)

P. L. Ramazza and M. Zhao, “Experimental study of two-wave mixing amplification in Cu-doped KNSBN,” Opt. Commun. 102, 93 (1993).
[CrossRef]

K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A: Mater. Sci. Process. 57, 161 (1993).
[CrossRef]

K. Buse, “Thermal gratings and pyroelectrically produced charge redistribution in BaTiO3 and KNbO3,” J. Opt. Soc. Am. B 10, 1266 (1993).
[CrossRef]

1991 (2)

S. Ducharme, “Pyroelectro-optic phase gratings,” Opt. Lett. 16, 1791 (1991).
[CrossRef] [PubMed]

C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167 (1991).
[CrossRef]

1990 (2)

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

1978 (1)

V. L. Vinetskii and M. A. Itskovskii, “Pyroelectric mechanism of the holographic recording,” Ferroelectrics 18, 81 (1978).
[CrossRef]

Bashaw, M. C.

Buse, K.

Chen, B. S.

W. Królikowski, M. Cronin-Golomb, and B. S. Chen, “Photorefractive effect in ferroelectric lead germanate,” Appl. Phys. Lett. 57, 7 (1990).
[CrossRef]

Clark III, W. W.

Cronin-Golomb, M.

W. Królikowski, M. Cronin-Golomb, and B. S. Chen, “Photorefractive effect in ferroelectric lead germanate,” Appl. Phys. Lett. 57, 7 (1990).
[CrossRef]

Ducharme, S.

Gerwens, A.

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Enhancement of photorefractive effect by homogeneous pyroelectric fields,” Appl. Phys. B: Lasers Opt. 66, 393 (1998).
[CrossRef]

Gu, C.

C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167 (1991).
[CrossRef]

Heanue, J. F.

Hesse, H.

X. Yue, S. Mendricks, Y. Hu, H. Hesse, and D. Kip, “Photorefractive effect in doped Pb5Ge3O11 and in (Pb1−xBax)5Ge3O11,” J. Appl. Phys. 83, 3473 (1998).
[CrossRef]

Hong, J.

C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167 (1991).
[CrossRef]

Hu, Y.

X. Yue, S. Mendricks, Y. Hu, H. Hesse, and D. Kip, “Photorefractive effect in doped Pb5Ge3O11 and in (Pb1−xBax)5Ge3O11,” J. Appl. Phys. 83, 3473 (1998).
[CrossRef]

Itskovskii, M. A.

V. L. Vinetskii and M. A. Itskovskii, “Pyroelectric mechanism of the holographic recording,” Ferroelectrics 18, 81 (1978).
[CrossRef]

Kip, D.

X. Yue, S. Mendricks, Y. Hu, H. Hesse, and D. Kip, “Photorefractive effect in doped Pb5Ge3O11 and in (Pb1−xBax)5Ge3O11,” J. Appl. Phys. 83, 3473 (1998).
[CrossRef]

Korneev, N.

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Enhancement of photorefractive effect by homogeneous pyroelectric fields,” Appl. Phys. B: Lasers Opt. 66, 393 (1998).
[CrossRef]

Krätzig, E.

Królikowski, W.

W. Królikowski, M. Cronin-Golomb, and B. S. Chen, “Photorefractive effect in ferroelectric lead germanate,” Appl. Phys. Lett. 57, 7 (1990).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

Li, H. Y.

C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167 (1991).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

Mayorga, D.

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Enhancement of photorefractive effect by homogeneous pyroelectric fields,” Appl. Phys. B: Lasers Opt. 66, 393 (1998).
[CrossRef]

Mendricks, S.

X. Yue, S. Mendricks, Y. Hu, H. Hesse, and D. Kip, “Photorefractive effect in doped Pb5Ge3O11 and in (Pb1−xBax)5Ge3O11,” J. Appl. Phys. 83, 3473 (1998).
[CrossRef]

Mersch, F.

Miller, M. J.

Monson, B.

Neurgaonkar, R. R.

Odoulov, S.

N. V. Kukhtarev, V. B. Markov, S. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

Pankrath, R.

Psaltis, D.

C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167 (1991).
[CrossRef]

Ramazza, P. L.

P. L. Ramazza and M. Zhao, “Experimental study of two-wave mixing amplification in Cu-doped KNSBN,” Opt. Commun. 102, 93 (1993).
[CrossRef]

Ringhofer, K. H.

K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A: Mater. Sci. Process. 57, 161 (1993).
[CrossRef]

Rupp, R. A.

Salamo, G. J.

Sharp, E. J.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

Stepanov, S.

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Enhancement of photorefractive effect by homogeneous pyroelectric fields,” Appl. Phys. B: Lasers Opt. 66, 393 (1998).
[CrossRef]

Van Stevendaal, U.

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

V. L. Vinetskii and M. A. Itskovskii, “Pyroelectric mechanism of the holographic recording,” Ferroelectrics 18, 81 (1978).
[CrossRef]

Wood, G. L.

Yeh, P.

C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167 (1991).
[CrossRef]

Yue, X.

X. Yue, S. Mendricks, Y. Hu, H. Hesse, and D. Kip, “Photorefractive effect in doped Pb5Ge3O11 and in (Pb1−xBax)5Ge3O11,” J. Appl. Phys. 83, 3473 (1998).
[CrossRef]

X. Yue, K. Buse, F. Mersch, E. Krätzig, and R. A. Rupp, “Diffraction efficiency enhancement of photorefractive gratings in Bi4Ti3O12 at low temperatures,” J. Opt. Soc. Am. B 15, 142 (1998).
[CrossRef]

Zhao, M.

P. L. Ramazza and M. Zhao, “Experimental study of two-wave mixing amplification in Cu-doped KNSBN,” Opt. Commun. 102, 93 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A: Mater. Sci. Process. (1)

K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A: Mater. Sci. Process. 57, 161 (1993).
[CrossRef]

Appl. Phys. B: Lasers Opt. (1)

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Enhancement of photorefractive effect by homogeneous pyroelectric fields,” Appl. Phys. B: Lasers Opt. 66, 393 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

W. Królikowski, M. Cronin-Golomb, and B. S. Chen, “Photorefractive effect in ferroelectric lead germanate,” Appl. Phys. Lett. 57, 7 (1990).
[CrossRef]

Ferroelectrics (2)

N. V. Kukhtarev, V. B. Markov, S. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

V. L. Vinetskii and M. A. Itskovskii, “Pyroelectric mechanism of the holographic recording,” Ferroelectrics 18, 81 (1978).
[CrossRef]

J. Appl. Phys. (2)

X. Yue, S. Mendricks, Y. Hu, H. Hesse, and D. Kip, “Photorefractive effect in doped Pb5Ge3O11 and in (Pb1−xBax)5Ge3O11,” J. Appl. Phys. 83, 3473 (1998).
[CrossRef]

C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167 (1991).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

P. L. Ramazza and M. Zhao, “Experimental study of two-wave mixing amplification in Cu-doped KNSBN,” Opt. Commun. 102, 93 (1993).
[CrossRef]

Opt. Lett. (1)

Other (2)

P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vols. I and II.

K.-H. Hellwig, ed., Landolt–Börnstein—Numerical Data and Functional Relationships in Science and Technology, New Series (Springer-Verlag, Berlin, New York, 1981), Vol. III/16.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Evolution of diffracted beam intensity Id during holographic recording in sample PBGO:0.02. The intensities of the writing beams are 16 and 1 W/cm2. Solid curve: A, dark; B, recording; C, optical erasure; D, recording directly after optical erasure; E, dark decay of the recorded grating. Dotted curve: A, dark; B–E, one recording process.

Fig. 2
Fig. 2

Enhancement factor M as a function of intensity I0 of both writing beams. Here M is defined as the ratio between maximum and steady-state diffracted intensity. The solid curve is a fit according to Eq. (9).

Fig. 3
Fig. 3

Enhancement factor M of the photorefractive grating as a function of dark delay time td in PBGO:0.02. The intensities of the writing beams and the writing time before dark delay are I0 and tp, respectively. The solid curve is a fit according to Eq. (11).

Fig. 4
Fig. 4

Evolution of diffracted beam intensity Id for short-circuited and open-circuited holographic recording in sample PBGO:0.02. The intensity of the writing beams is I0 =8 W/cm2.

Fig. 5
Fig. 5

Evolution of the pyroelectric current density j before (area A of Fig. 1), during (area B), and after (area C) homogeneous illumination of sample PGO.

Fig. 6
Fig. 6

Calculated evolution of pyroelectric field Epyro during homogeneous illumination of lead germanate crystals. The beam intensity is I0=4 W/cm2, the thickness of the crystals is taken as d=2.4 mm, the absorption coefficient is α=2 cm-1, the pyroelectric coefficient is Ps/T=-1.1×10-4 C K-1 m-2, the heat capacity is cp=530 J K-1 kg-1, and the values of the photoconductivity are given in the inset.

Tables (1)

Tables Icon

Table 1 Descriptions of Our Samples and Some of Their Physical Parametersa

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Epyro=-(Ps/T)(0)-1(T-T0),
dTdt=[P-hcA(T-T0)]/cpm,
T-T0=kτHI0[1-exp(-t/τH)],
j=(Ps/T)I0[1-exp(-αd)]/cpdρ,
Epyro(t)=γτHI0[1-exp(-t/τH)]exp(-t/τM),
tm=τH ln(1+τM/τH).
Esc=-Epyro(t)-iEdiff,Ediff=KkBT0/e,
η=πn3reffd2λ cos θ2(Epyro2+Ediff2).
M=1+{ξτHI0[1-exp(-1.2 I0-0.6/τH)]}2,
ΔT=ΔT0[1-exp(-td/τH)][1-exp(-t/τH)].
M=1+{ξI0[1-exp(-τM/τH)][1-exp(-td/τH)]}2,

Metrics