Abstract

We report a strong electroabsorptive effect in a photorefractive polymeric composite of 1-n-butoxyl-2,5-dimethyl-4-(4-nitrophenylazo)benzene:poly (N-vinylcarbazole):2,4,7-trinitro-9-fluorenone with a weight ratio of 44:55:1. An electroabsorption coefficient as large as 27 cm-1 at 632.8 nm was measured with an applied field of 92.4 V/µm and an incident angle of 60° in air. This effect was found to depend strongly on the incident angle of the beam. With the quick translating technique, an orientationally enhanced electroabsorption grating was observed in the composite. Contributions to the electroabsorption grating were proved to be ∼1/3 from the variation of the magnitude and 2/3 from the variation of the direction of the total electric field inside the sample film.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
    [CrossRef]
  2. A. M. Cox, R. D. Blackbum, D. P. West, T. A. King, F. A. Wade, and D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
    [CrossRef]
  3. F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “High photorefractive performance of low glass-transition-temperature polymeric composite doped with bifunctional chromophore,” Appl. Phys. B: Lasers Opt. 67, 207–210 (1998).
    [CrossRef]
  4. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994).
    [CrossRef]
  5. D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Orlando, Fla., 1987), Vols. 1 and 2.
  6. F. Nishida and Y. Tomita, “Polarization anisotropies in the electric-field-dependent diffraction efficiency in azo dye doped photoconducting electro-optic polymer,” J. Appl. Phys. 81, 3348–3353 (1997).
    [CrossRef]
  7. F. Wang, Z. Chen, S. Wang, Z. Huang, Q. Gong, Z. Zhang, Y. Chen, and H. Chen, “Electrostrictive behavior observed in a low glass transition temperature photorefractive polymeric composite during two-beam coupling experiments,” Appl. Phys. Lett. 72, 2939–2941 (1998).
    [CrossRef]
  8. F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “Response time characteristics and holographic gratings in an azo-dye doped photorefractive polymeric composite,” Chin. Phys. Lett. 15, 355–357 (1998).
  9. K. Shutter and P. Günter, “Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7, 7, 8, 8, -tetracyanoquinodimethane,” J. Opt. Soc. Am. B 7, 2274–2278 (1990).
    [CrossRef]
  10. Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).
  11. Z. Chen, F. Wang, C. Yao, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “A fast response and short wavelength available nonlinear optical chromophore for photorefractive polymer composite,” Appl. Phys. Lett. (to be published).

1998 (3)

F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “High photorefractive performance of low glass-transition-temperature polymeric composite doped with bifunctional chromophore,” Appl. Phys. B: Lasers Opt. 67, 207–210 (1998).
[CrossRef]

F. Wang, Z. Chen, S. Wang, Z. Huang, Q. Gong, Z. Zhang, Y. Chen, and H. Chen, “Electrostrictive behavior observed in a low glass transition temperature photorefractive polymeric composite during two-beam coupling experiments,” Appl. Phys. Lett. 72, 2939–2941 (1998).
[CrossRef]

F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “Response time characteristics and holographic gratings in an azo-dye doped photorefractive polymeric composite,” Chin. Phys. Lett. 15, 355–357 (1998).

1997 (1)

F. Nishida and Y. Tomita, “Polarization anisotropies in the electric-field-dependent diffraction efficiency in azo dye doped photoconducting electro-optic polymer,” J. Appl. Phys. 81, 3348–3353 (1997).
[CrossRef]

1996 (1)

A. M. Cox, R. D. Blackbum, D. P. West, T. A. King, F. A. Wade, and D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
[CrossRef]

1994 (3)

1990 (1)

Bjorklund, G. C.

Blackbum, R. D.

A. M. Cox, R. D. Blackbum, D. P. West, T. A. King, F. A. Wade, and D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
[CrossRef]

Chen, H.

F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “High photorefractive performance of low glass-transition-temperature polymeric composite doped with bifunctional chromophore,” Appl. Phys. B: Lasers Opt. 67, 207–210 (1998).
[CrossRef]

F. Wang, Z. Chen, S. Wang, Z. Huang, Q. Gong, Z. Zhang, Y. Chen, and H. Chen, “Electrostrictive behavior observed in a low glass transition temperature photorefractive polymeric composite during two-beam coupling experiments,” Appl. Phys. Lett. 72, 2939–2941 (1998).
[CrossRef]

F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “Response time characteristics and holographic gratings in an azo-dye doped photorefractive polymeric composite,” Chin. Phys. Lett. 15, 355–357 (1998).

Chen, Y.

F. Wang, Z. Chen, S. Wang, Z. Huang, Q. Gong, Z. Zhang, Y. Chen, and H. Chen, “Electrostrictive behavior observed in a low glass transition temperature photorefractive polymeric composite during two-beam coupling experiments,” Appl. Phys. Lett. 72, 2939–2941 (1998).
[CrossRef]

F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “Response time characteristics and holographic gratings in an azo-dye doped photorefractive polymeric composite,” Chin. Phys. Lett. 15, 355–357 (1998).

F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “High photorefractive performance of low glass-transition-temperature polymeric composite doped with bifunctional chromophore,” Appl. Phys. B: Lasers Opt. 67, 207–210 (1998).
[CrossRef]

Chen, Z.

F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “High photorefractive performance of low glass-transition-temperature polymeric composite doped with bifunctional chromophore,” Appl. Phys. B: Lasers Opt. 67, 207–210 (1998).
[CrossRef]

F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “Response time characteristics and holographic gratings in an azo-dye doped photorefractive polymeric composite,” Chin. Phys. Lett. 15, 355–357 (1998).

F. Wang, Z. Chen, S. Wang, Z. Huang, Q. Gong, Z. Zhang, Y. Chen, and H. Chen, “Electrostrictive behavior observed in a low glass transition temperature photorefractive polymeric composite during two-beam coupling experiments,” Appl. Phys. Lett. 72, 2939–2941 (1998).
[CrossRef]

Cox, A. M.

A. M. Cox, R. D. Blackbum, D. P. West, T. A. King, F. A. Wade, and D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
[CrossRef]

Gong, Q.

F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “High photorefractive performance of low glass-transition-temperature polymeric composite doped with bifunctional chromophore,” Appl. Phys. B: Lasers Opt. 67, 207–210 (1998).
[CrossRef]

F. Wang, Z. Chen, S. Wang, Z. Huang, Q. Gong, Z. Zhang, Y. Chen, and H. Chen, “Electrostrictive behavior observed in a low glass transition temperature photorefractive polymeric composite during two-beam coupling experiments,” Appl. Phys. Lett. 72, 2939–2941 (1998).
[CrossRef]

F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “Response time characteristics and holographic gratings in an azo-dye doped photorefractive polymeric composite,” Chin. Phys. Lett. 15, 355–357 (1998).

Günter, P.

Hache, F.

Hall , Jr., H. K.

Huang, Z.

F. Wang, Z. Chen, S. Wang, Z. Huang, Q. Gong, Z. Zhang, Y. Chen, and H. Chen, “Electrostrictive behavior observed in a low glass transition temperature photorefractive polymeric composite during two-beam coupling experiments,” Appl. Phys. Lett. 72, 2939–2941 (1998).
[CrossRef]

F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “Response time characteristics and holographic gratings in an azo-dye doped photorefractive polymeric composite,” Chin. Phys. Lett. 15, 355–357 (1998).

F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “High photorefractive performance of low glass-transition-temperature polymeric composite doped with bifunctional chromophore,” Appl. Phys. B: Lasers Opt. 67, 207–210 (1998).
[CrossRef]

King, T. A.

A. M. Cox, R. D. Blackbum, D. P. West, T. A. King, F. A. Wade, and D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
[CrossRef]

Kippelen, B.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).

Leigh, D. A.

A. M. Cox, R. D. Blackbum, D. P. West, T. A. King, F. A. Wade, and D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
[CrossRef]

Lyon, S. R.

Meerholz, K.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Moerner, W. E.

Nishida, F.

F. Nishida and Y. Tomita, “Polarization anisotropies in the electric-field-dependent diffraction efficiency in azo dye doped photoconducting electro-optic polymer,” J. Appl. Phys. 81, 3348–3353 (1997).
[CrossRef]

Padias, A. B.

Peyghambarian, N.

Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Sandalphon,

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).

Shutter, K.

Silence, S. M.

Tomita, Y.

F. Nishida and Y. Tomita, “Polarization anisotropies in the electric-field-dependent diffraction efficiency in azo dye doped photoconducting electro-optic polymer,” J. Appl. Phys. 81, 3348–3353 (1997).
[CrossRef]

Volodin, B. L.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Wade, F. A.

A. M. Cox, R. D. Blackbum, D. P. West, T. A. King, F. A. Wade, and D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
[CrossRef]

Wang, F.

F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “High photorefractive performance of low glass-transition-temperature polymeric composite doped with bifunctional chromophore,” Appl. Phys. B: Lasers Opt. 67, 207–210 (1998).
[CrossRef]

F. Wang, Z. Chen, S. Wang, Z. Huang, Q. Gong, Z. Zhang, Y. Chen, and H. Chen, “Electrostrictive behavior observed in a low glass transition temperature photorefractive polymeric composite during two-beam coupling experiments,” Appl. Phys. Lett. 72, 2939–2941 (1998).
[CrossRef]

F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “Response time characteristics and holographic gratings in an azo-dye doped photorefractive polymeric composite,” Chin. Phys. Lett. 15, 355–357 (1998).

Wang, S.

F. Wang, Z. Chen, S. Wang, Z. Huang, Q. Gong, Z. Zhang, Y. Chen, and H. Chen, “Electrostrictive behavior observed in a low glass transition temperature photorefractive polymeric composite during two-beam coupling experiments,” Appl. Phys. Lett. 72, 2939–2941 (1998).
[CrossRef]

West, D. P.

A. M. Cox, R. D. Blackbum, D. P. West, T. A. King, F. A. Wade, and D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
[CrossRef]

Zhang, Z.

F. Wang, Z. Chen, S. Wang, Z. Huang, Q. Gong, Z. Zhang, Y. Chen, and H. Chen, “Electrostrictive behavior observed in a low glass transition temperature photorefractive polymeric composite during two-beam coupling experiments,” Appl. Phys. Lett. 72, 2939–2941 (1998).
[CrossRef]

Appl. Phys. B: Lasers Opt. (1)

F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “High photorefractive performance of low glass-transition-temperature polymeric composite doped with bifunctional chromophore,” Appl. Phys. B: Lasers Opt. 67, 207–210 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

A. M. Cox, R. D. Blackbum, D. P. West, T. A. King, F. A. Wade, and D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
[CrossRef]

F. Wang, Z. Chen, S. Wang, Z. Huang, Q. Gong, Z. Zhang, Y. Chen, and H. Chen, “Electrostrictive behavior observed in a low glass transition temperature photorefractive polymeric composite during two-beam coupling experiments,” Appl. Phys. Lett. 72, 2939–2941 (1998).
[CrossRef]

Chin. Phys. Lett. (1)

F. Wang, Z. Chen, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “Response time characteristics and holographic gratings in an azo-dye doped photorefractive polymeric composite,” Chin. Phys. Lett. 15, 355–357 (1998).

J. Appl. Phys. (1)

F. Nishida and Y. Tomita, “Polarization anisotropies in the electric-field-dependent diffraction efficiency in azo dye doped photoconducting electro-optic polymer,” J. Appl. Phys. 81, 3348–3353 (1997).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (London) (1)

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Opt. Lett. (1)

Other (2)

Z. Chen, F. Wang, C. Yao, Z. Huang, Q. Gong, Y. Chen, and H. Chen, “A fast response and short wavelength available nonlinear optical chromophore for photorefractive polymer composite,” Appl. Phys. Lett. (to be published).

D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Orlando, Fla., 1987), Vols. 1 and 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Chemical structures of (a) TNF, (b) PVK, (c) BDMNPAB.

Fig. 2
Fig. 2

Applied electric field dependence of the amplitudes of both absorption and index gratings.

Fig. 3
Fig. 3

EA coefficient as a function of the applied electric field at an incidence angle of 60° in air.

Fig. 4
Fig. 4

EA coefficient as a function of incidence angle for an applied electric field of 84 V/µm.

Fig. 5
Fig. 5

Variation of the total electric field Etotal. Clearly the direction varies periodically, and the amplitude varies as a sine function of the position.

Fig. 6
Fig. 6

Absorption spectrum of the sample film at an incidence angle of 60° with (solid curve) and without (dash curve) an applied field of 58.8 V/µm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I1(x)=I10 exp-αdcos θ1-2A cos2πxΛ+ΦA-2P sin2πxΛ+ΦP,
I2(x)=I20 exp-αdcos θ1-2A cos2πxΛ+ΦA+2P sin2πxΛ+ΦP,
P=πΔndλ cos θ,A=Δαd4 cos θ,
J+(x)A cos2πxΛ+ΦA=2-I1T10+I2T204,
J-(x)P cos2πxΛ+ΦP=-I1T10-I2T204,
T1,20I1,20 exp(-αd/cos θ).
Δα(E)=-lnIT(E)IT(0) cos θd,

Metrics