Abstract

A pump–probe technique with picosecond resolution was used to record and derive the differential and excited-state absorption (ESA) spectra of a Co2+:LaMgAl11O19 (LMA) single crystal in the visible and near-infrared spectral regions. Time resolution allowed us to observe ESA bands that can be assigned to a 4T2(4F)→ 4T1(4P) optical transition and to transitions from the thermally populated 2E(2G) excited state to doublet levels that arise from the 2F free-ion level of the tetrahedrally coordinated Co2+ ion. Intensity-dependent transmission measurements were also carried out at 1.34 and 1.54 µm. Passive Q switching of Nd3+:YAlO3 (1.34-µm) and of Er3+:glass (1.54-µm) lasers by use of the Co2+:LMA crystal as a saturable absorber was demonstrated. The pulse durations (energies) of the Q-switched Nd3+:YAlO3 and Er3+:glass lasers were found to be 75 ns (3.8 mJ) and 50 ns (4.5 mJ), respectively.

© 1999 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Donegan, J. F. Bergin, G. F. Imbush, and J. P. Remeika, “Luminescence from LiGa5O8,” J. Lumin. 31/32, 278–280 (1984); see also J. F. Donegan, T. J. Glynn, and G. F. Imbush, “FLN study of LiGa5O8,” J. Lumin. 45, 23–26 (1990); J. F. Donegan, F. G. Anderson, F. J. Bergin, T. J. Glynn, and G. F. Imbusch, “Optical and magnetic-circular-dichroism—optically detected–magnetic-resonance study of the Co2+ ion in LiGa5O8,” Phys. Rev. B PRBMDO 45, 563–573 (1992).
  2. R. M. MacFarlane and J. C. Vial, “Photon-gated spectral hole burning in LiGa5O8,” Phys. Rev. B 34, 1–4 (1986).
  3. H. Manaa and R. Moncorgé, “A new generation of laser active ions for tunable laser operation: the transition-metal ions in tetrahedral coordination,” J. Phys. Colloq. 7, 331–334 (1991).
  4. L. D. DeLoach, R. H. Page, G. D. Wilke, F. D. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
  5. M. B. Camargo, R. D. Stultz, M. Birnbaum, and M. Kokta, “Co2+:YSGG saturable absorber Q switch for infrared erbium lasers,” Opt. Lett. 20, 339–341 (1995).
  6. Ph. Thony, B. Ferrand, and E. Molva, “1.55-μm passively Q-switched microchip laser,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds, Vol. 19 of OSATrends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 150–154.
  7. M. Birnbaum, M. B. Camargo, S. Lee, F. Unlu, and R. D. Stultz, “Co2+:ZnSe saturable absorber Q-switch for the 1.54 μm Er3+:Yb3+:glass laser,” in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 148–151.
  8. R. M. Boiko, A. Okhrimchuk, and A. V. Shestakov, “Glass ceramics Co2+ saturable absorber Q-switch for 1.3–1.6 μm spectral region,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 185–188.
  9. A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).
  10. R. Pappalardo, D. L. Wood, and R. C. Linares, “Optical absorption study of Co-doped oxide systems,” J. Chem. Phys. 35, 2041–2059 (1961).
  11. D. L. Wood and J. P. Remeika, “Optical absorption of tetrahedral Co3+ and Co2+ in garnets,” J. Chem. Phys. 46, 3595–3602 (1967).
  12. J. Ferguson, D. L. Wood, and L. G. Van Uitert, “Crystal-field spectra of d3, 7 ions. V. Tetrahedral Co2+ in ZnAl2O4 spinel,” J. Chem. Phys. 51, 2904–2910 (1969).
  13. T. Abritta and F. H. Blak, “Luminescence study of ZnGa2O4:Co2+,” J. Lumin. 48/49, 558–560 (1991).
  14. N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55, 265–269 (1993).
  15. V. M. Orera, R. Merino, R. Cases, and R. Alcala, “Luminescence of tetrahedrally coordinated Co2+ in zirconia,” J. Phys. Condens. Matter 5, 3717–3726 (1993).
  16. H. Weakliem, “Optical spectra of Ni2+, Co2+ and Cu2+ in tetrahedral sites in crystals,” J. Chem. Phys. 36, 2117–2140 (1962).
  17. P. Koidl, “Optical absorption in ZnO,” Phys. Rev. B 15, 2493–2499 (1977).
  18. R. Wyatt, in Optical Fiber Lasers and Amplifiers, P. W. France, ed. (CRC, Boca Raton, Fla., 1991), p. 92.
  19. W. Rudolph and H. Weber, “Analysis of saturable absorbers, interacting with gaussian pulses,” Opt. Commun. 34, 491–496 (1980).

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, F. D. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).

1995 (1)

1993 (2)

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55, 265–269 (1993).

V. M. Orera, R. Merino, R. Cases, and R. Alcala, “Luminescence of tetrahedrally coordinated Co2+ in zirconia,” J. Phys. Condens. Matter 5, 3717–3726 (1993).

1991 (2)

T. Abritta and F. H. Blak, “Luminescence study of ZnGa2O4:Co2+,” J. Lumin. 48/49, 558–560 (1991).

H. Manaa and R. Moncorgé, “A new generation of laser active ions for tunable laser operation: the transition-metal ions in tetrahedral coordination,” J. Phys. Colloq. 7, 331–334 (1991).

1986 (1)

R. M. MacFarlane and J. C. Vial, “Photon-gated spectral hole burning in LiGa5O8,” Phys. Rev. B 34, 1–4 (1986).

1981 (1)

A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).

1980 (1)

W. Rudolph and H. Weber, “Analysis of saturable absorbers, interacting with gaussian pulses,” Opt. Commun. 34, 491–496 (1980).

1977 (1)

P. Koidl, “Optical absorption in ZnO,” Phys. Rev. B 15, 2493–2499 (1977).

1969 (1)

J. Ferguson, D. L. Wood, and L. G. Van Uitert, “Crystal-field spectra of d3, 7 ions. V. Tetrahedral Co2+ in ZnAl2O4 spinel,” J. Chem. Phys. 51, 2904–2910 (1969).

1967 (1)

D. L. Wood and J. P. Remeika, “Optical absorption of tetrahedral Co3+ and Co2+ in garnets,” J. Chem. Phys. 46, 3595–3602 (1967).

1962 (1)

H. Weakliem, “Optical spectra of Ni2+, Co2+ and Cu2+ in tetrahedral sites in crystals,” J. Chem. Phys. 36, 2117–2140 (1962).

1961 (1)

R. Pappalardo, D. L. Wood, and R. C. Linares, “Optical absorption study of Co-doped oxide systems,” J. Chem. Phys. 35, 2041–2059 (1961).

Abritta, T.

T. Abritta and F. H. Blak, “Luminescence study of ZnGa2O4:Co2+,” J. Lumin. 48/49, 558–560 (1991).

Alcala, R.

V. M. Orera, R. Merino, R. Cases, and R. Alcala, “Luminescence of tetrahedrally coordinated Co2+ in zirconia,” J. Phys. Condens. Matter 5, 3717–3726 (1993).

Bernier, J. C.

A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).

Birnbaum, M.

Blak, F. H.

T. Abritta and F. H. Blak, “Luminescence study of ZnGa2O4:Co2+,” J. Lumin. 48/49, 558–560 (1991).

Camargo, M. B.

Cases, R.

V. M. Orera, R. Merino, R. Cases, and R. Alcala, “Luminescence of tetrahedrally coordinated Co2+ in zirconia,” J. Phys. Condens. Matter 5, 3717–3726 (1993).

DeLoach, L. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, F. D. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).

Ferguson, J.

J. Ferguson, D. L. Wood, and L. G. Van Uitert, “Crystal-field spectra of d3, 7 ions. V. Tetrahedral Co2+ in ZnAl2O4 spinel,” J. Chem. Phys. 51, 2904–2910 (1969).

Kahn, A.

A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).

Koidl, P.

P. Koidl, “Optical absorption in ZnO,” Phys. Rev. B 15, 2493–2499 (1977).

Kokta, M.

Krupke, W. F.

L. D. DeLoach, R. H. Page, G. D. Wilke, F. D. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).

Kuleshov, N. V.

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55, 265–269 (1993).

Lejus, A. M.

A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).

Linares, R. C.

R. Pappalardo, D. L. Wood, and R. C. Linares, “Optical absorption study of Co-doped oxide systems,” J. Chem. Phys. 35, 2041–2059 (1961).

MacFarlane, R. M.

R. M. MacFarlane and J. C. Vial, “Photon-gated spectral hole burning in LiGa5O8,” Phys. Rev. B 34, 1–4 (1986).

Madsac, M.

A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).

Manaa, H.

H. Manaa and R. Moncorgé, “A new generation of laser active ions for tunable laser operation: the transition-metal ions in tetrahedral coordination,” J. Phys. Colloq. 7, 331–334 (1991).

Merino, R.

V. M. Orera, R. Merino, R. Cases, and R. Alcala, “Luminescence of tetrahedrally coordinated Co2+ in zirconia,” J. Phys. Condens. Matter 5, 3717–3726 (1993).

Mikhailov, V. P.

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55, 265–269 (1993).

Moncorgé, R.

H. Manaa and R. Moncorgé, “A new generation of laser active ions for tunable laser operation: the transition-metal ions in tetrahedral coordination,” J. Phys. Colloq. 7, 331–334 (1991).

Orera, V. M.

V. M. Orera, R. Merino, R. Cases, and R. Alcala, “Luminescence of tetrahedrally coordinated Co2+ in zirconia,” J. Phys. Condens. Matter 5, 3717–3726 (1993).

Page, R. H.

L. D. DeLoach, R. H. Page, G. D. Wilke, F. D. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).

Pappalardo, R.

R. Pappalardo, D. L. Wood, and R. C. Linares, “Optical absorption study of Co-doped oxide systems,” J. Chem. Phys. 35, 2041–2059 (1961).

Payne, F. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, F. D. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).

Prokoshin, P. V.

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55, 265–269 (1993).

Remeika, J. P.

D. L. Wood and J. P. Remeika, “Optical absorption of tetrahedral Co3+ and Co2+ in garnets,” J. Chem. Phys. 46, 3595–3602 (1967).

Rudolph, W.

W. Rudolph and H. Weber, “Analysis of saturable absorbers, interacting with gaussian pulses,” Opt. Commun. 34, 491–496 (1980).

Scherbitsky, V. G.

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55, 265–269 (1993).

Stultz, R. D.

Théry, J.

A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).

Van Uitert, L. G.

J. Ferguson, D. L. Wood, and L. G. Van Uitert, “Crystal-field spectra of d3, 7 ions. V. Tetrahedral Co2+ in ZnAl2O4 spinel,” J. Chem. Phys. 51, 2904–2910 (1969).

Vial, J. C.

R. M. MacFarlane and J. C. Vial, “Photon-gated spectral hole burning in LiGa5O8,” Phys. Rev. B 34, 1–4 (1986).

Vivien, D.

A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).

Weakliem, H.

H. Weakliem, “Optical spectra of Ni2+, Co2+ and Cu2+ in tetrahedral sites in crystals,” J. Chem. Phys. 36, 2117–2140 (1962).

Weber, H.

W. Rudolph and H. Weber, “Analysis of saturable absorbers, interacting with gaussian pulses,” Opt. Commun. 34, 491–496 (1980).

Wilke, G. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, F. D. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).

Wood, D. L.

J. Ferguson, D. L. Wood, and L. G. Van Uitert, “Crystal-field spectra of d3, 7 ions. V. Tetrahedral Co2+ in ZnAl2O4 spinel,” J. Chem. Phys. 51, 2904–2910 (1969).

D. L. Wood and J. P. Remeika, “Optical absorption of tetrahedral Co3+ and Co2+ in garnets,” J. Chem. Phys. 46, 3595–3602 (1967).

R. Pappalardo, D. L. Wood, and R. C. Linares, “Optical absorption study of Co-doped oxide systems,” J. Chem. Phys. 35, 2041–2059 (1961).

Yumashev, K. V.

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55, 265–269 (1993).

IEEE J. Quantum Electron. (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, F. D. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).

J. Appl. Phys. (1)

A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).

J. Chem. Phys. (4)

R. Pappalardo, D. L. Wood, and R. C. Linares, “Optical absorption study of Co-doped oxide systems,” J. Chem. Phys. 35, 2041–2059 (1961).

D. L. Wood and J. P. Remeika, “Optical absorption of tetrahedral Co3+ and Co2+ in garnets,” J. Chem. Phys. 46, 3595–3602 (1967).

J. Ferguson, D. L. Wood, and L. G. Van Uitert, “Crystal-field spectra of d3, 7 ions. V. Tetrahedral Co2+ in ZnAl2O4 spinel,” J. Chem. Phys. 51, 2904–2910 (1969).

H. Weakliem, “Optical spectra of Ni2+, Co2+ and Cu2+ in tetrahedral sites in crystals,” J. Chem. Phys. 36, 2117–2140 (1962).

J. Lumin. (2)

T. Abritta and F. H. Blak, “Luminescence study of ZnGa2O4:Co2+,” J. Lumin. 48/49, 558–560 (1991).

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55, 265–269 (1993).

J. Phys. Colloq. (1)

H. Manaa and R. Moncorgé, “A new generation of laser active ions for tunable laser operation: the transition-metal ions in tetrahedral coordination,” J. Phys. Colloq. 7, 331–334 (1991).

J. Phys. Condens. Matter (1)

V. M. Orera, R. Merino, R. Cases, and R. Alcala, “Luminescence of tetrahedrally coordinated Co2+ in zirconia,” J. Phys. Condens. Matter 5, 3717–3726 (1993).

Opt. Commun. (1)

W. Rudolph and H. Weber, “Analysis of saturable absorbers, interacting with gaussian pulses,” Opt. Commun. 34, 491–496 (1980).

Opt. Lett. (1)

Phys. Rev. B (2)

R. M. MacFarlane and J. C. Vial, “Photon-gated spectral hole burning in LiGa5O8,” Phys. Rev. B 34, 1–4 (1986).

P. Koidl, “Optical absorption in ZnO,” Phys. Rev. B 15, 2493–2499 (1977).

Other (5)

R. Wyatt, in Optical Fiber Lasers and Amplifiers, P. W. France, ed. (CRC, Boca Raton, Fla., 1991), p. 92.

Ph. Thony, B. Ferrand, and E. Molva, “1.55-μm passively Q-switched microchip laser,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds, Vol. 19 of OSATrends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 150–154.

M. Birnbaum, M. B. Camargo, S. Lee, F. Unlu, and R. D. Stultz, “Co2+:ZnSe saturable absorber Q-switch for the 1.54 μm Er3+:Yb3+:glass laser,” in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 148–151.

R. M. Boiko, A. Okhrimchuk, and A. V. Shestakov, “Glass ceramics Co2+ saturable absorber Q-switch for 1.3–1.6 μm spectral region,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 185–188.

J. F. Donegan, J. F. Bergin, G. F. Imbush, and J. P. Remeika, “Luminescence from LiGa5O8,” J. Lumin. 31/32, 278–280 (1984); see also J. F. Donegan, T. J. Glynn, and G. F. Imbush, “FLN study of LiGa5O8,” J. Lumin. 45, 23–26 (1990); J. F. Donegan, F. G. Anderson, F. J. Bergin, T. J. Glynn, and G. F. Imbusch, “Optical and magnetic-circular-dichroism—optically detected–magnetic-resonance study of the Co2+ ion in LiGa5O8,” Phys. Rev. B PRBMDO 45, 563–573 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics