Abstract

A pump–probe technique with picosecond resolution was used to record and derive the differential and excited-state absorption (ESA) spectra of a Co2+:LaMgAl11O19 (LMA) single crystal in the visible and near-infrared spectral regions. Time resolution allowed us to observe ESA bands that can be assigned to a  4T2(4F)4T1(4P) optical transition and to transitions from the thermally populated  2E(2G) excited state to doublet levels that arise from the  2F free-ion level of the tetrahedrally coordinated Co2+ ion. Intensity-dependent transmission measurements were also carried out at 1.34 and 1.54 µm. Passive Q switching of Nd3+:YAlO3 (1.34-µm) and of Er3+:glass (1.54-µm) lasers by use of the Co2+:LMA crystal as a saturable absorber was demonstrated. The pulse durations (energies) of the Q-switched Nd3+:YAlO3 and Er3+:glass lasers were found to be 75 ns (3.8 mJ) and 50 ns (4.5 mJ), respectively.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Donegan, J. F. Bergin, G. F. Imbush, and J. P. Remeika, “Luminescence from LiGa5O8,” J. Lumin. 31/32, 278–280 (1984); see also J. F. Donegan, T. J. Glynn, and G. F. Imbush, “FLN study of LiGa5O8,” J. Lumin. 45, 23–26 (1990); J. F. Donegan, F. G. Anderson, F. J. Bergin, T. J. Glynn, and G. F. Imbusch, “Optical and magnetic-circular-dichroism—optically detected–magnetic-resonance study of the Co2+ ion in LiGa5O8,” Phys. Rev. B PRBMDO 45, 563–573 (1992).
    [CrossRef]
  2. R. M. MacFarlane and J. C. Vial, “Photon-gated spectral hole burning in LiGa5O8,” Phys. Rev. B 34, 1–4 (1986).
    [CrossRef]
  3. H. Manaa and R. Moncorgé, “A new generation of laser active ions for tunable laser operation: the transition-metal ions in tetrahedral coordination,” J. Phys. Colloq. 7, 331–334 (1991).
  4. L. D. DeLoach, R. H. Page, G. D. Wilke, F. D. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
    [CrossRef]
  5. M. B. Camargo, R. D. Stultz, M. Birnbaum, and M. Kokta, “Co2+:YSGG saturable absorber Q switch for infrared erbium lasers,” Opt. Lett. 20, 339–341 (1995).
    [CrossRef] [PubMed]
  6. Ph. Thony, B. Ferrand, and E. Molva, “1.55-μm passively Q-switched microchip laser,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds, Vol. 19 of OSATrends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 150–154.
  7. M. Birnbaum, M. B. Camargo, S. Lee, F. Unlu, and R. D. Stultz, “Co2+:ZnSe saturable absorber Q-switch for the 1.54 μm Er3+:Yb3+:glass laser,” in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 148–151.
  8. R. M. Boiko, A. Okhrimchuk, and A. V. Shestakov, “Glass ceramics Co2+ saturable absorber Q-switch for 1.3–1.6 μm spectral region,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 185–188.
  9. A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).
    [CrossRef]
  10. R. Pappalardo, D. L. Wood, and R. C. Linares, “Optical absorption study of Co-doped oxide systems,” J. Chem. Phys. 35, 2041–2059 (1961).
    [CrossRef]
  11. D. L. Wood and J. P. Remeika, “Optical absorption of tetrahedral Co3+ and Co2+ in garnets,” J. Chem. Phys. 46, 3595–3602 (1967).
    [CrossRef]
  12. J. Ferguson, D. L. Wood, and L. G. Van Uitert, “Crystal-field spectra of d3, 7 ions. V. Tetrahedral Co2+ in ZnAl2O4 spinel,” J. Chem. Phys. 51, 2904–2910 (1969).
    [CrossRef]
  13. T. Abritta and F. H. Blak, “Luminescence study of ZnGa2O4:Co2+,” J. Lumin. 48/49, 558–560 (1991).
    [CrossRef]
  14. N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55, 265–269 (1993).
    [CrossRef]
  15. V. M. Orera, R. Merino, R. Cases, and R. Alcala, “Luminescence of tetrahedrally coordinated Co2+ in zirconia,” J. Phys. Condens. Matter 5, 3717–3726 (1993).
    [CrossRef]
  16. H. Weakliem, “Optical spectra of Ni2+, Co2+ and Cu2+ in tetrahedral sites in crystals,” J. Chem. Phys. 36, 2117–2140 (1962).
    [CrossRef]
  17. P. Koidl, “Optical absorption in ZnO,” Phys. Rev. B 15, 2493–2499 (1977).
    [CrossRef]
  18. R. Wyatt, in Optical Fiber Lasers and Amplifiers, P. W. France, ed. (CRC, Boca Raton, Fla., 1991), p. 92.
  19. W. Rudolph and H. Weber, “Analysis of saturable absorbers, interacting with gaussian pulses,” Opt. Commun. 34, 491–496 (1980).
    [CrossRef]

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, F. D. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

1995 (1)

1993 (2)

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55, 265–269 (1993).
[CrossRef]

V. M. Orera, R. Merino, R. Cases, and R. Alcala, “Luminescence of tetrahedrally coordinated Co2+ in zirconia,” J. Phys. Condens. Matter 5, 3717–3726 (1993).
[CrossRef]

1991 (2)

T. Abritta and F. H. Blak, “Luminescence study of ZnGa2O4:Co2+,” J. Lumin. 48/49, 558–560 (1991).
[CrossRef]

H. Manaa and R. Moncorgé, “A new generation of laser active ions for tunable laser operation: the transition-metal ions in tetrahedral coordination,” J. Phys. Colloq. 7, 331–334 (1991).

1986 (1)

R. M. MacFarlane and J. C. Vial, “Photon-gated spectral hole burning in LiGa5O8,” Phys. Rev. B 34, 1–4 (1986).
[CrossRef]

1981 (1)

A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).
[CrossRef]

1980 (1)

W. Rudolph and H. Weber, “Analysis of saturable absorbers, interacting with gaussian pulses,” Opt. Commun. 34, 491–496 (1980).
[CrossRef]

1977 (1)

P. Koidl, “Optical absorption in ZnO,” Phys. Rev. B 15, 2493–2499 (1977).
[CrossRef]

1969 (1)

J. Ferguson, D. L. Wood, and L. G. Van Uitert, “Crystal-field spectra of d3, 7 ions. V. Tetrahedral Co2+ in ZnAl2O4 spinel,” J. Chem. Phys. 51, 2904–2910 (1969).
[CrossRef]

1967 (1)

D. L. Wood and J. P. Remeika, “Optical absorption of tetrahedral Co3+ and Co2+ in garnets,” J. Chem. Phys. 46, 3595–3602 (1967).
[CrossRef]

1962 (1)

H. Weakliem, “Optical spectra of Ni2+, Co2+ and Cu2+ in tetrahedral sites in crystals,” J. Chem. Phys. 36, 2117–2140 (1962).
[CrossRef]

1961 (1)

R. Pappalardo, D. L. Wood, and R. C. Linares, “Optical absorption study of Co-doped oxide systems,” J. Chem. Phys. 35, 2041–2059 (1961).
[CrossRef]

Abritta, T.

T. Abritta and F. H. Blak, “Luminescence study of ZnGa2O4:Co2+,” J. Lumin. 48/49, 558–560 (1991).
[CrossRef]

Alcala, R.

V. M. Orera, R. Merino, R. Cases, and R. Alcala, “Luminescence of tetrahedrally coordinated Co2+ in zirconia,” J. Phys. Condens. Matter 5, 3717–3726 (1993).
[CrossRef]

Bernier, J. C.

A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).
[CrossRef]

Birnbaum, M.

Blak, F. H.

T. Abritta and F. H. Blak, “Luminescence study of ZnGa2O4:Co2+,” J. Lumin. 48/49, 558–560 (1991).
[CrossRef]

Camargo, M. B.

Cases, R.

V. M. Orera, R. Merino, R. Cases, and R. Alcala, “Luminescence of tetrahedrally coordinated Co2+ in zirconia,” J. Phys. Condens. Matter 5, 3717–3726 (1993).
[CrossRef]

DeLoach, L. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, F. D. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Ferguson, J.

J. Ferguson, D. L. Wood, and L. G. Van Uitert, “Crystal-field spectra of d3, 7 ions. V. Tetrahedral Co2+ in ZnAl2O4 spinel,” J. Chem. Phys. 51, 2904–2910 (1969).
[CrossRef]

Kahn, A.

A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).
[CrossRef]

Koidl, P.

P. Koidl, “Optical absorption in ZnO,” Phys. Rev. B 15, 2493–2499 (1977).
[CrossRef]

Kokta, M.

Krupke, W. F.

L. D. DeLoach, R. H. Page, G. D. Wilke, F. D. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Kuleshov, N. V.

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55, 265–269 (1993).
[CrossRef]

Lejus, A. M.

A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).
[CrossRef]

Linares, R. C.

R. Pappalardo, D. L. Wood, and R. C. Linares, “Optical absorption study of Co-doped oxide systems,” J. Chem. Phys. 35, 2041–2059 (1961).
[CrossRef]

MacFarlane, R. M.

R. M. MacFarlane and J. C. Vial, “Photon-gated spectral hole burning in LiGa5O8,” Phys. Rev. B 34, 1–4 (1986).
[CrossRef]

Madsac, M.

A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).
[CrossRef]

Manaa, H.

H. Manaa and R. Moncorgé, “A new generation of laser active ions for tunable laser operation: the transition-metal ions in tetrahedral coordination,” J. Phys. Colloq. 7, 331–334 (1991).

Merino, R.

V. M. Orera, R. Merino, R. Cases, and R. Alcala, “Luminescence of tetrahedrally coordinated Co2+ in zirconia,” J. Phys. Condens. Matter 5, 3717–3726 (1993).
[CrossRef]

Mikhailov, V. P.

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55, 265–269 (1993).
[CrossRef]

Moncorgé, R.

H. Manaa and R. Moncorgé, “A new generation of laser active ions for tunable laser operation: the transition-metal ions in tetrahedral coordination,” J. Phys. Colloq. 7, 331–334 (1991).

Orera, V. M.

V. M. Orera, R. Merino, R. Cases, and R. Alcala, “Luminescence of tetrahedrally coordinated Co2+ in zirconia,” J. Phys. Condens. Matter 5, 3717–3726 (1993).
[CrossRef]

Page, R. H.

L. D. DeLoach, R. H. Page, G. D. Wilke, F. D. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Pappalardo, R.

R. Pappalardo, D. L. Wood, and R. C. Linares, “Optical absorption study of Co-doped oxide systems,” J. Chem. Phys. 35, 2041–2059 (1961).
[CrossRef]

Payne, F. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, F. D. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Prokoshin, P. V.

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55, 265–269 (1993).
[CrossRef]

Remeika, J. P.

D. L. Wood and J. P. Remeika, “Optical absorption of tetrahedral Co3+ and Co2+ in garnets,” J. Chem. Phys. 46, 3595–3602 (1967).
[CrossRef]

Rudolph, W.

W. Rudolph and H. Weber, “Analysis of saturable absorbers, interacting with gaussian pulses,” Opt. Commun. 34, 491–496 (1980).
[CrossRef]

Scherbitsky, V. G.

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55, 265–269 (1993).
[CrossRef]

Stultz, R. D.

Théry, J.

A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).
[CrossRef]

Van Uitert, L. G.

J. Ferguson, D. L. Wood, and L. G. Van Uitert, “Crystal-field spectra of d3, 7 ions. V. Tetrahedral Co2+ in ZnAl2O4 spinel,” J. Chem. Phys. 51, 2904–2910 (1969).
[CrossRef]

Vial, J. C.

R. M. MacFarlane and J. C. Vial, “Photon-gated spectral hole burning in LiGa5O8,” Phys. Rev. B 34, 1–4 (1986).
[CrossRef]

Vivien, D.

A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).
[CrossRef]

Weakliem, H.

H. Weakliem, “Optical spectra of Ni2+, Co2+ and Cu2+ in tetrahedral sites in crystals,” J. Chem. Phys. 36, 2117–2140 (1962).
[CrossRef]

Weber, H.

W. Rudolph and H. Weber, “Analysis of saturable absorbers, interacting with gaussian pulses,” Opt. Commun. 34, 491–496 (1980).
[CrossRef]

Wilke, G. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, F. D. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Wood, D. L.

J. Ferguson, D. L. Wood, and L. G. Van Uitert, “Crystal-field spectra of d3, 7 ions. V. Tetrahedral Co2+ in ZnAl2O4 spinel,” J. Chem. Phys. 51, 2904–2910 (1969).
[CrossRef]

D. L. Wood and J. P. Remeika, “Optical absorption of tetrahedral Co3+ and Co2+ in garnets,” J. Chem. Phys. 46, 3595–3602 (1967).
[CrossRef]

R. Pappalardo, D. L. Wood, and R. C. Linares, “Optical absorption study of Co-doped oxide systems,” J. Chem. Phys. 35, 2041–2059 (1961).
[CrossRef]

Yumashev, K. V.

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55, 265–269 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, F. D. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

J. Appl. Phys. (1)

A. Kahn, A. M. Lejus, M. Madsac, J. Théry, D. Vivien, and J. C. Bernier, “Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19),” J. Appl. Phys. 52, 6864–6867 (1981).
[CrossRef]

J. Chem. Phys. (4)

R. Pappalardo, D. L. Wood, and R. C. Linares, “Optical absorption study of Co-doped oxide systems,” J. Chem. Phys. 35, 2041–2059 (1961).
[CrossRef]

D. L. Wood and J. P. Remeika, “Optical absorption of tetrahedral Co3+ and Co2+ in garnets,” J. Chem. Phys. 46, 3595–3602 (1967).
[CrossRef]

J. Ferguson, D. L. Wood, and L. G. Van Uitert, “Crystal-field spectra of d3, 7 ions. V. Tetrahedral Co2+ in ZnAl2O4 spinel,” J. Chem. Phys. 51, 2904–2910 (1969).
[CrossRef]

H. Weakliem, “Optical spectra of Ni2+, Co2+ and Cu2+ in tetrahedral sites in crystals,” J. Chem. Phys. 36, 2117–2140 (1962).
[CrossRef]

J. Lumin. (2)

T. Abritta and F. H. Blak, “Luminescence study of ZnGa2O4:Co2+,” J. Lumin. 48/49, 558–560 (1991).
[CrossRef]

N. V. Kuleshov, V. P. Mikhailov, V. G. Scherbitsky, P. V. Prokoshin, and K. V. Yumashev, “Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4,” J. Lumin. 55, 265–269 (1993).
[CrossRef]

J. Phys. Colloq. (1)

H. Manaa and R. Moncorgé, “A new generation of laser active ions for tunable laser operation: the transition-metal ions in tetrahedral coordination,” J. Phys. Colloq. 7, 331–334 (1991).

J. Phys. Condens. Matter (1)

V. M. Orera, R. Merino, R. Cases, and R. Alcala, “Luminescence of tetrahedrally coordinated Co2+ in zirconia,” J. Phys. Condens. Matter 5, 3717–3726 (1993).
[CrossRef]

Opt. Commun. (1)

W. Rudolph and H. Weber, “Analysis of saturable absorbers, interacting with gaussian pulses,” Opt. Commun. 34, 491–496 (1980).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

R. M. MacFarlane and J. C. Vial, “Photon-gated spectral hole burning in LiGa5O8,” Phys. Rev. B 34, 1–4 (1986).
[CrossRef]

P. Koidl, “Optical absorption in ZnO,” Phys. Rev. B 15, 2493–2499 (1977).
[CrossRef]

Other (5)

R. Wyatt, in Optical Fiber Lasers and Amplifiers, P. W. France, ed. (CRC, Boca Raton, Fla., 1991), p. 92.

Ph. Thony, B. Ferrand, and E. Molva, “1.55-μm passively Q-switched microchip laser,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds, Vol. 19 of OSATrends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 150–154.

M. Birnbaum, M. B. Camargo, S. Lee, F. Unlu, and R. D. Stultz, “Co2+:ZnSe saturable absorber Q-switch for the 1.54 μm Er3+:Yb3+:glass laser,” in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 148–151.

R. M. Boiko, A. Okhrimchuk, and A. V. Shestakov, “Glass ceramics Co2+ saturable absorber Q-switch for 1.3–1.6 μm spectral region,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 185–188.

J. F. Donegan, J. F. Bergin, G. F. Imbush, and J. P. Remeika, “Luminescence from LiGa5O8,” J. Lumin. 31/32, 278–280 (1984); see also J. F. Donegan, T. J. Glynn, and G. F. Imbush, “FLN study of LiGa5O8,” J. Lumin. 45, 23–26 (1990); J. F. Donegan, F. G. Anderson, F. J. Bergin, T. J. Glynn, and G. F. Imbusch, “Optical and magnetic-circular-dichroism—optically detected–magnetic-resonance study of the Co2+ ion in LiGa5O8,” Phys. Rev. B PRBMDO 45, 563–573 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Polarized GSA spectra of the Co2+:LMA crystals for samples 1 and 2.

Fig. 2
Fig. 2

Energy-level diagram of the Co2+ ion in LMA crystal in Td symmetry. Solid arrows, observed optical transitions.

Fig. 3
Fig. 3

(a) Differential absorption spectrum ΔOD=-log(T/T0) and corresponding GSA and luminescence (dashed curve) spectra for Co2+:LMA crystal sample 1. Experimental conditions: excitation with 15-ps laser pulses at 540 nm; delay time between pump and probe pulses, 45 ps; pump- and probe-beam polarization perpendicular to the c axis of the crystal. (b) σSEσESA Spectrum obtained after subtraction of the σGSA spectrum from the appropriately scaled ΔOD(λ) spectrum.

Fig. 4
Fig. 4

(a) Differential absorption spectrum ΔOD=-log(T/T0) and corresponding GSA spectrum of Co2+:LMA crystal sample 1. Experimental conditions: excitation with 15-ps pulses at 1.08 µm; delay time between pump and probe pulses, 30 ps; pump- and probe-beam polarization perpendicular to the c axis of the crystal. Inset, ΔOD at a wavelength of 540 nm versus delay time. (b) σESA spectrum obtained after subtraction of the σGSA spectrum from the appropriately scaled ΔOD(λ) spectrum.

Fig. 5
Fig. 5

Dependence of transmission on input fluence for Co2+:LMA crystal sample 1 with Q-switched (a) Nd3+:YAP and (b) Er3+:glass lasers operating at λ with pulse durations of 75 and 45 ns, respectively (laser light polarized perpendicular to the c axis of the crystal). Solid curves, results of fitting with the aid of Eq. (5).

Fig. 6
Fig. 6

(a) Schematic of the passively Q-switched 1.34-µm Nd3+:YAlO3 laser cavity with a Co2+:LMA saturable absorber. HT, highly transmitting, HR, highly reflecting. (b) Input–output characteristics of the 1.34-µm Nd3+:YAlO3 laser with Co2+:LMA Q switching. (c) Typical Q-switched laser pulse from the Nd3+:YAlO3 laser at 1.34 µm with Co2+:LMA.

Fig. 7
Fig. 7

(a) Schematic of the passively Q-switched 1.54-µm Er3+:glass laser cavity with a Co2+:LMA saturable absorber. (b) Typical Q-switched laser pulse from the Er3+:glass laser at 1.54 µm with Co2+:LMA. P, polarizer; HR, highly reflecting; M1, M2, mirrors.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ΔOD(λ)=-log(T/T0),
ΔOD(λ)=ΔNL[σESA(λ)-σGSA(λ)-σSE(λ)],
σEFF(λ)=σGSA(λ0)[ΔOD(λ)/ΔOD(λ0)-α(λ)/α(λ0)],
ΔOD(λ)=ΔNL[σESA(λ)-σGSA(λ)].
ln(T/T0)=(I0/IS)(1-T),

Metrics