Abstract

We apply the side-illumination fluorescence (SIF) measurement to determine the linear absorption spectrum in the fluorescence emission range and to study the excited states of dye molecules in polymer fibers. These studies demonstrate that the dye is the main contributor to light absorption in the 720–840-nm range in squaraine-dye-doped polymer fibers and reveal a J-like aggregate absorption spectrum in the 780–810-nm range. We also determine that a two-level model, which accounts for inhomogeneous broadening, describes the dominant excited state of poly(methyl methacrylate) fibers doped with PSQ and HSQ dyes more effectively than does the standard Lorentzian or Gaussian two-level model. We conclude that the SIF method is a useful, nondestructive, and accurate method for measuring off-resonance absorption.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Kruhlak and M. G. Kuzyk, “Side-illumination fluorescence spectroscopy. I. Principles,” J. Opt. Soc. Am. B 16, 1749–1755 (1999).
    [CrossRef]
  2. D. W. Garvey, K. Zimmerman, P. Young, J. Tostenrude, J. S. Townsend, Z. Zhou, M. Lobel, M. Dayton, R. Wittorf, and M. G. Kuzyk, “Single-mode nonlinear-optical polymer fibers,” J. Opt. Soc. Am. B 13, 2017–2023 (1996).
    [CrossRef]
  3. C. W. Dirk, H. E. Katz, M. L. Schilling, and L. A. King, “Use of thiazole rings to enhance molecular second-order nonlinear optical susceptibilities,” Chem. Mater. 2, 700–705 (1990).
    [CrossRef]
  4. M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–858 (1990).
    [CrossRef]
  5. Q. L. Zhou, R. F. Shi, O. Zamani-Kamari, and A. F. Garito, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Nonlinear Opt. 6, 145–154 (1993).
  6. J. H. Andrews, J. D. V. Karydarov, K. D. Singer, D. L. Hull, and K. C. Chuang, “Characterization of excited states of centrosymmetric and noncentrosymmetric squaraines by third-harmonic spectral dispersion,” J. Opt. Soc. Am. B 12, 2360–2371 (1995).
    [CrossRef]
  7. D. W. Garvey, Q. Li, M. G. Kuzyk, C. W. Dirk, and S. Martinez, “Sagnac interferometric intensity-dependent refractive-index measurements of polymer optical fiber,” Opt. Lett. 21, 104–06 (1995).
    [CrossRef]
  8. C. Poga, T. M. Brown, M. G. Kuyzk, and Carl W. Dirk, “Characterization of the excited states of a squaraine molecule with quadratic electrosorption spectroscopy,” J. Opt. Soc. Am. B 12, 531–43 (1995).
    [CrossRef]
  9. K. S. Mathis, M. G. Kuzyk, C. W. Dirk, A. Tan, S. Martinez, and G. Gampos, “Mechanisms of the nonlinear optical properties of squaraine dyes in poly(methyl methacrylate) polymer,” J. Opt. Soc. Am. B 15, 871–883 (1998).
    [CrossRef]
  10. R. J. Kruhlak and M. G. Kuzyk, “Loss spectroscopy through side-illumination fluorescence (SIF) in dye-doped polymer optical fibers,” in Third-Order Nonlinear Materials, M. G. Kuzyk, ed., Proc. SPIE 3473, 57–65 (1998).
    [CrossRef]
  11. T. Kaino, “Absorption losses of low loss plastic optical fibers,” Jpn. J. Appl. Phys. 24, 1661–1665 (1985).
    [CrossRef]
  12. S. Kim, M. Furuki, L. S. Pu, H. Nakahara, and K. Fukuda, “Unique monolayer assembly of squarylium dye with short alkyl chains,” J. Chem. Soc. Chem. Commun. 1201–1203 (1987).
  13. M. Iwamoto, Y. Majima, F. Hirayama, M. Furuki, and L. S. Pu, “Generation of the displacement current by the transformation of J-aggregates in spreading monolayers of squarylium dye,” Chem. Phys. Lett. 195, 45–49 (1992).
    [CrossRef]
  14. G. J. Ashwell, P. C. Williamson, A. Green, G. S. Bahra, and C. R. Brown, “Aggregation-induced linear and non-linear optical properties of four hydroxy-substituted analogues of 2, 4-bis[4-(dibutylamino)phenyl]squaraine,” Aust. J. Chem. 51, 599–604 (1998).
    [CrossRef]
  15. G. J. Ashwell, P. Leeson, G. S. Bahra, and C. R. Brown, “Aggregation-induced second-harmonic generation,” J. Opt. Soc. Am. B 15, 484–488 (1998).
    [CrossRef]
  16. F. Ghebremichael and M. G. Kuzyk, “Optical second-harmonic generation as a probe of the temperature dependence of the distribution of sites in a poly(methyl methacrylate) polymer doped with Disperse Red 1 azo dye,” J. Appl. Phys. 77, 2896–2901 (1995).
    [CrossRef]
  17. K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest–host polymers,” J. Appl. Phys. 75, 1267–1285 (1994).
    [CrossRef]
  18. K. D. Singer and L. A. King, “Relaxation phenomena in polymer nonlinear optical materials,” J. Appl. Phys. 70, 3251–3255 (1991).
    [CrossRef]
  19. W. Köhler, D. R. Robello, P. T. Dao, C. S. Willand, and D. J. Williams, “Second harmonic generation and thermally stimulated current measurements: a study of some novel polymers for nonlinear optics,” J. Chem. Phys. 93, 9157–9166 (1990).
    [CrossRef]
  20. M. Abramowitz and I. E. Stegun, eds., Handbook of Mathematical Functions (U.S. Government Printing Office, Washington, D.C., 1972).
  21. G. Herzberg, Spectra of Diatomic Molecules, 2nd ed. (Van Nostrand, New York, 1950), Vol. 1.

1999

1998

G. J. Ashwell, P. Leeson, G. S. Bahra, and C. R. Brown, “Aggregation-induced second-harmonic generation,” J. Opt. Soc. Am. B 15, 484–488 (1998).
[CrossRef]

K. S. Mathis, M. G. Kuzyk, C. W. Dirk, A. Tan, S. Martinez, and G. Gampos, “Mechanisms of the nonlinear optical properties of squaraine dyes in poly(methyl methacrylate) polymer,” J. Opt. Soc. Am. B 15, 871–883 (1998).
[CrossRef]

R. J. Kruhlak and M. G. Kuzyk, “Loss spectroscopy through side-illumination fluorescence (SIF) in dye-doped polymer optical fibers,” in Third-Order Nonlinear Materials, M. G. Kuzyk, ed., Proc. SPIE 3473, 57–65 (1998).
[CrossRef]

G. J. Ashwell, P. C. Williamson, A. Green, G. S. Bahra, and C. R. Brown, “Aggregation-induced linear and non-linear optical properties of four hydroxy-substituted analogues of 2, 4-bis[4-(dibutylamino)phenyl]squaraine,” Aust. J. Chem. 51, 599–604 (1998).
[CrossRef]

1996

1995

1994

K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest–host polymers,” J. Appl. Phys. 75, 1267–1285 (1994).
[CrossRef]

1993

Q. L. Zhou, R. F. Shi, O. Zamani-Kamari, and A. F. Garito, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Nonlinear Opt. 6, 145–154 (1993).

1992

M. Iwamoto, Y. Majima, F. Hirayama, M. Furuki, and L. S. Pu, “Generation of the displacement current by the transformation of J-aggregates in spreading monolayers of squarylium dye,” Chem. Phys. Lett. 195, 45–49 (1992).
[CrossRef]

1991

K. D. Singer and L. A. King, “Relaxation phenomena in polymer nonlinear optical materials,” J. Appl. Phys. 70, 3251–3255 (1991).
[CrossRef]

1990

W. Köhler, D. R. Robello, P. T. Dao, C. S. Willand, and D. J. Williams, “Second harmonic generation and thermally stimulated current measurements: a study of some novel polymers for nonlinear optics,” J. Chem. Phys. 93, 9157–9166 (1990).
[CrossRef]

M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–858 (1990).
[CrossRef]

C. W. Dirk, H. E. Katz, M. L. Schilling, and L. A. King, “Use of thiazole rings to enhance molecular second-order nonlinear optical susceptibilities,” Chem. Mater. 2, 700–705 (1990).
[CrossRef]

1985

T. Kaino, “Absorption losses of low loss plastic optical fibers,” Jpn. J. Appl. Phys. 24, 1661–1665 (1985).
[CrossRef]

Andrews, J. H.

Ashwell, G. J.

G. J. Ashwell, P. C. Williamson, A. Green, G. S. Bahra, and C. R. Brown, “Aggregation-induced linear and non-linear optical properties of four hydroxy-substituted analogues of 2, 4-bis[4-(dibutylamino)phenyl]squaraine,” Aust. J. Chem. 51, 599–604 (1998).
[CrossRef]

G. J. Ashwell, P. Leeson, G. S. Bahra, and C. R. Brown, “Aggregation-induced second-harmonic generation,” J. Opt. Soc. Am. B 15, 484–488 (1998).
[CrossRef]

Bahra, G. S.

G. J. Ashwell, P. Leeson, G. S. Bahra, and C. R. Brown, “Aggregation-induced second-harmonic generation,” J. Opt. Soc. Am. B 15, 484–488 (1998).
[CrossRef]

G. J. Ashwell, P. C. Williamson, A. Green, G. S. Bahra, and C. R. Brown, “Aggregation-induced linear and non-linear optical properties of four hydroxy-substituted analogues of 2, 4-bis[4-(dibutylamino)phenyl]squaraine,” Aust. J. Chem. 51, 599–604 (1998).
[CrossRef]

Brown, C. R.

G. J. Ashwell, P. C. Williamson, A. Green, G. S. Bahra, and C. R. Brown, “Aggregation-induced linear and non-linear optical properties of four hydroxy-substituted analogues of 2, 4-bis[4-(dibutylamino)phenyl]squaraine,” Aust. J. Chem. 51, 599–604 (1998).
[CrossRef]

G. J. Ashwell, P. Leeson, G. S. Bahra, and C. R. Brown, “Aggregation-induced second-harmonic generation,” J. Opt. Soc. Am. B 15, 484–488 (1998).
[CrossRef]

Brown, T. M.

Chuang, K. C.

Dao, P. T.

W. Köhler, D. R. Robello, P. T. Dao, C. S. Willand, and D. J. Williams, “Second harmonic generation and thermally stimulated current measurements: a study of some novel polymers for nonlinear optics,” J. Chem. Phys. 93, 9157–9166 (1990).
[CrossRef]

Dayton, M.

Dirk, C. W.

Dirk, Carl W.

Furuki, M.

M. Iwamoto, Y. Majima, F. Hirayama, M. Furuki, and L. S. Pu, “Generation of the displacement current by the transformation of J-aggregates in spreading monolayers of squarylium dye,” Chem. Phys. Lett. 195, 45–49 (1992).
[CrossRef]

Gampos, G.

Garito, A. F.

Q. L. Zhou, R. F. Shi, O. Zamani-Kamari, and A. F. Garito, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Nonlinear Opt. 6, 145–154 (1993).

Garvey, D. W.

Ghebremichael, F.

F. Ghebremichael and M. G. Kuzyk, “Optical second-harmonic generation as a probe of the temperature dependence of the distribution of sites in a poly(methyl methacrylate) polymer doped with Disperse Red 1 azo dye,” J. Appl. Phys. 77, 2896–2901 (1995).
[CrossRef]

K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest–host polymers,” J. Appl. Phys. 75, 1267–1285 (1994).
[CrossRef]

Green, A.

G. J. Ashwell, P. C. Williamson, A. Green, G. S. Bahra, and C. R. Brown, “Aggregation-induced linear and non-linear optical properties of four hydroxy-substituted analogues of 2, 4-bis[4-(dibutylamino)phenyl]squaraine,” Aust. J. Chem. 51, 599–604 (1998).
[CrossRef]

Hirayama, F.

M. Iwamoto, Y. Majima, F. Hirayama, M. Furuki, and L. S. Pu, “Generation of the displacement current by the transformation of J-aggregates in spreading monolayers of squarylium dye,” Chem. Phys. Lett. 195, 45–49 (1992).
[CrossRef]

Hull, D. L.

Iwamoto, M.

M. Iwamoto, Y. Majima, F. Hirayama, M. Furuki, and L. S. Pu, “Generation of the displacement current by the transformation of J-aggregates in spreading monolayers of squarylium dye,” Chem. Phys. Lett. 195, 45–49 (1992).
[CrossRef]

Kaino, T.

T. Kaino, “Absorption losses of low loss plastic optical fibers,” Jpn. J. Appl. Phys. 24, 1661–1665 (1985).
[CrossRef]

Karydarov, J. D. V.

Katz, H. E.

C. W. Dirk, H. E. Katz, M. L. Schilling, and L. A. King, “Use of thiazole rings to enhance molecular second-order nonlinear optical susceptibilities,” Chem. Mater. 2, 700–705 (1990).
[CrossRef]

King, L. A.

K. D. Singer and L. A. King, “Relaxation phenomena in polymer nonlinear optical materials,” J. Appl. Phys. 70, 3251–3255 (1991).
[CrossRef]

C. W. Dirk, H. E. Katz, M. L. Schilling, and L. A. King, “Use of thiazole rings to enhance molecular second-order nonlinear optical susceptibilities,” Chem. Mater. 2, 700–705 (1990).
[CrossRef]

Köhler, W.

W. Köhler, D. R. Robello, P. T. Dao, C. S. Willand, and D. J. Williams, “Second harmonic generation and thermally stimulated current measurements: a study of some novel polymers for nonlinear optics,” J. Chem. Phys. 93, 9157–9166 (1990).
[CrossRef]

Kruhlak, R. J.

R. J. Kruhlak and M. G. Kuzyk, “Side-illumination fluorescence spectroscopy. I. Principles,” J. Opt. Soc. Am. B 16, 1749–1755 (1999).
[CrossRef]

R. J. Kruhlak and M. G. Kuzyk, “Loss spectroscopy through side-illumination fluorescence (SIF) in dye-doped polymer optical fibers,” in Third-Order Nonlinear Materials, M. G. Kuzyk, ed., Proc. SPIE 3473, 57–65 (1998).
[CrossRef]

Kuyzk, M. G.

Kuzyk, M. G.

R. J. Kruhlak and M. G. Kuzyk, “Side-illumination fluorescence spectroscopy. I. Principles,” J. Opt. Soc. Am. B 16, 1749–1755 (1999).
[CrossRef]

R. J. Kruhlak and M. G. Kuzyk, “Loss spectroscopy through side-illumination fluorescence (SIF) in dye-doped polymer optical fibers,” in Third-Order Nonlinear Materials, M. G. Kuzyk, ed., Proc. SPIE 3473, 57–65 (1998).
[CrossRef]

K. S. Mathis, M. G. Kuzyk, C. W. Dirk, A. Tan, S. Martinez, and G. Gampos, “Mechanisms of the nonlinear optical properties of squaraine dyes in poly(methyl methacrylate) polymer,” J. Opt. Soc. Am. B 15, 871–883 (1998).
[CrossRef]

D. W. Garvey, K. Zimmerman, P. Young, J. Tostenrude, J. S. Townsend, Z. Zhou, M. Lobel, M. Dayton, R. Wittorf, and M. G. Kuzyk, “Single-mode nonlinear-optical polymer fibers,” J. Opt. Soc. Am. B 13, 2017–2023 (1996).
[CrossRef]

F. Ghebremichael and M. G. Kuzyk, “Optical second-harmonic generation as a probe of the temperature dependence of the distribution of sites in a poly(methyl methacrylate) polymer doped with Disperse Red 1 azo dye,” J. Appl. Phys. 77, 2896–2901 (1995).
[CrossRef]

D. W. Garvey, Q. Li, M. G. Kuzyk, C. W. Dirk, and S. Martinez, “Sagnac interferometric intensity-dependent refractive-index measurements of polymer optical fiber,” Opt. Lett. 21, 104–06 (1995).
[CrossRef]

K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest–host polymers,” J. Appl. Phys. 75, 1267–1285 (1994).
[CrossRef]

M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–858 (1990).
[CrossRef]

Leeson, P.

Li, Q.

Lobel, M.

Majima, Y.

M. Iwamoto, Y. Majima, F. Hirayama, M. Furuki, and L. S. Pu, “Generation of the displacement current by the transformation of J-aggregates in spreading monolayers of squarylium dye,” Chem. Phys. Lett. 195, 45–49 (1992).
[CrossRef]

Martinez, S.

Mathis, K. S.

Poga, C.

Pu, L. S.

M. Iwamoto, Y. Majima, F. Hirayama, M. Furuki, and L. S. Pu, “Generation of the displacement current by the transformation of J-aggregates in spreading monolayers of squarylium dye,” Chem. Phys. Lett. 195, 45–49 (1992).
[CrossRef]

Robello, D. R.

W. Köhler, D. R. Robello, P. T. Dao, C. S. Willand, and D. J. Williams, “Second harmonic generation and thermally stimulated current measurements: a study of some novel polymers for nonlinear optics,” J. Chem. Phys. 93, 9157–9166 (1990).
[CrossRef]

Schilling, M. L.

C. W. Dirk, H. E. Katz, M. L. Schilling, and L. A. King, “Use of thiazole rings to enhance molecular second-order nonlinear optical susceptibilities,” Chem. Mater. 2, 700–705 (1990).
[CrossRef]

Shi, R. F.

Q. L. Zhou, R. F. Shi, O. Zamani-Kamari, and A. F. Garito, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Nonlinear Opt. 6, 145–154 (1993).

Singer, K. D.

Sohn, J. E.

Tan, A.

Tostenrude, J.

Townsend, J. S.

Willand, C. S.

W. Köhler, D. R. Robello, P. T. Dao, C. S. Willand, and D. J. Williams, “Second harmonic generation and thermally stimulated current measurements: a study of some novel polymers for nonlinear optics,” J. Chem. Phys. 93, 9157–9166 (1990).
[CrossRef]

Williams, D. J.

W. Köhler, D. R. Robello, P. T. Dao, C. S. Willand, and D. J. Williams, “Second harmonic generation and thermally stimulated current measurements: a study of some novel polymers for nonlinear optics,” J. Chem. Phys. 93, 9157–9166 (1990).
[CrossRef]

Williamson, P. C.

G. J. Ashwell, P. C. Williamson, A. Green, G. S. Bahra, and C. R. Brown, “Aggregation-induced linear and non-linear optical properties of four hydroxy-substituted analogues of 2, 4-bis[4-(dibutylamino)phenyl]squaraine,” Aust. J. Chem. 51, 599–604 (1998).
[CrossRef]

Wittorf, R.

Young, P.

Zamani-Kamari, O.

Q. L. Zhou, R. F. Shi, O. Zamani-Kamari, and A. F. Garito, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Nonlinear Opt. 6, 145–154 (1993).

Zhou, Q. L.

Q. L. Zhou, R. F. Shi, O. Zamani-Kamari, and A. F. Garito, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Nonlinear Opt. 6, 145–154 (1993).

Zhou, Z.

Zimmerman, K.

D. W. Garvey, K. Zimmerman, P. Young, J. Tostenrude, J. S. Townsend, Z. Zhou, M. Lobel, M. Dayton, R. Wittorf, and M. G. Kuzyk, “Single-mode nonlinear-optical polymer fibers,” J. Opt. Soc. Am. B 13, 2017–2023 (1996).
[CrossRef]

K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest–host polymers,” J. Appl. Phys. 75, 1267–1285 (1994).
[CrossRef]

Aust. J. Chem.

G. J. Ashwell, P. C. Williamson, A. Green, G. S. Bahra, and C. R. Brown, “Aggregation-induced linear and non-linear optical properties of four hydroxy-substituted analogues of 2, 4-bis[4-(dibutylamino)phenyl]squaraine,” Aust. J. Chem. 51, 599–604 (1998).
[CrossRef]

Chem. Mater.

C. W. Dirk, H. E. Katz, M. L. Schilling, and L. A. King, “Use of thiazole rings to enhance molecular second-order nonlinear optical susceptibilities,” Chem. Mater. 2, 700–705 (1990).
[CrossRef]

Chem. Phys. Lett.

M. Iwamoto, Y. Majima, F. Hirayama, M. Furuki, and L. S. Pu, “Generation of the displacement current by the transformation of J-aggregates in spreading monolayers of squarylium dye,” Chem. Phys. Lett. 195, 45–49 (1992).
[CrossRef]

J. Appl. Phys.

F. Ghebremichael and M. G. Kuzyk, “Optical second-harmonic generation as a probe of the temperature dependence of the distribution of sites in a poly(methyl methacrylate) polymer doped with Disperse Red 1 azo dye,” J. Appl. Phys. 77, 2896–2901 (1995).
[CrossRef]

K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest–host polymers,” J. Appl. Phys. 75, 1267–1285 (1994).
[CrossRef]

K. D. Singer and L. A. King, “Relaxation phenomena in polymer nonlinear optical materials,” J. Appl. Phys. 70, 3251–3255 (1991).
[CrossRef]

J. Chem. Phys.

W. Köhler, D. R. Robello, P. T. Dao, C. S. Willand, and D. J. Williams, “Second harmonic generation and thermally stimulated current measurements: a study of some novel polymers for nonlinear optics,” J. Chem. Phys. 93, 9157–9166 (1990).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

T. Kaino, “Absorption losses of low loss plastic optical fibers,” Jpn. J. Appl. Phys. 24, 1661–1665 (1985).
[CrossRef]

Nonlinear Opt.

Q. L. Zhou, R. F. Shi, O. Zamani-Kamari, and A. F. Garito, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Nonlinear Opt. 6, 145–154 (1993).

Opt. Lett.

Proc. SPIE

R. J. Kruhlak and M. G. Kuzyk, “Loss spectroscopy through side-illumination fluorescence (SIF) in dye-doped polymer optical fibers,” in Third-Order Nonlinear Materials, M. G. Kuzyk, ed., Proc. SPIE 3473, 57–65 (1998).
[CrossRef]

Other

S. Kim, M. Furuki, L. S. Pu, H. Nakahara, and K. Fukuda, “Unique monolayer assembly of squarylium dye with short alkyl chains,” J. Chem. Soc. Chem. Commun. 1201–1203 (1987).

M. Abramowitz and I. E. Stegun, eds., Handbook of Mathematical Functions (U.S. Government Printing Office, Washington, D.C., 1972).

G. Herzberg, Spectra of Diatomic Molecules, 2nd ed. (Van Nostrand, New York, 1950), Vol. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Squaraine dyes studied in the SIF experiment.

Fig. 2
Fig. 2

SIF spectra for incident wavelengths of 633 and 693 nm in multimode squaraine/PMMA fibers. The spectra for PSQ and ISQ are recorded for illumination 1.0 cm into the fiber, and the spectrum for HSQ is from illumination 2.0 cm into the fiber.

Fig. 3
Fig. 3

SIF spectra (at z=2.0 cm) for incident wavelengths of 633 and 693 nm in ISQ-doped PMMA and partially deuterated PMMA fibers. The spectra for the partially deuterated fibers are denoted dISQ3 and dISQ9, and the spectra for the PMMA fibers are denoted ISQ3 and ISQ9, where 3 and 9 refer to 633- and 693-nm incident illumination, respectively.

Fig. 4
Fig. 4

SIF spectra for various excitation positions (i.e., propagation distances) and concentrations in multimode PSQ/PMMA fibers (λinc=693 nm).

Fig. 5
Fig. 5

SIF spectra for PSQ- and HSQ-doped PMMA and P(MMA-d8) fibers.

Fig. 6
Fig. 6

SIF spectra for HSQ/PMMA and HSQ/P(MMA-d8) fibers. Inset, relative difference between the two spectra.

Fig. 7
Fig. 7

SIF spectra for various propagation distances in multimode ISQ/PMMA and 30% deuterated ISQ/P(MMA-d8) fibers (λinc=693 nm). Inset, the difference in fluorescence for the two spectra that propagated 3.0 cm.

Fig. 8
Fig. 8

SIF spectra at two initial propagation distances z0 and z1 in a multimode 30% deuterated ISQ/P(MMA-d8) fiber. Each subsequent curve in a set is measured for an excitation position 0.46 cm farther from the front of the fiber.

Fig. 9
Fig. 9

SIF as a function of z for PSQ/P(MMA-d8) at 744 nm and theory. The plane-wave and point-source curves are coincident on this scale.

Fig. 10
Fig. 10

Linear absorption spectrum α(λ) of PSQ/P(MMA-d8) determined from SIF data from plane-wave and point-source models in the range 720 nm<λ<840 nm.

Fig. 11
Fig. 11

Linear absorption spectra α(λ) for all PSQ and HSQ fibers studied. All fibers were made at room-temperature saturation concentration of dye, except the PSQ fiber denoted by 0.07 wt. %. Error bars represent the variation between sections of the same type of fiber.

Fig. 12
Fig. 12

Linear absorption spectra α(λ) for ISQ/PMMA and ISQ/P(MMA-d8) as determined by SIF.

Fig. 13
Fig. 13

SIF as a function of z at λf=800 nm for PSQ/PMMA. α(λf) is calculated for 1.25 cm<z1<2.9 cm (α1) and for 1.0 cm<z2<3.3 cm (α2). Inset, correlation function as a function of ζ for the two ranges z1 (upper curve) and z2 (lower curve).

Fig. 14
Fig. 14

SIF (solid curve) and least-squares fit (dashed curve) to α(λf) in Eq. (1) at the fluorescence wavelength λf=800 nm for ISQ/P(MMA-d8) (λinc=633 nm). Inset, correlation function out to ζmax=10 mm.

Fig. 15
Fig. 15

Bulk PSQ/PMMA resonant absorption modeled as a Lorentzian (L) transition and an inhomogeneously broadened (IB) transition.

Fig. 16
Fig. 16

SIF measurement as a function of propagation distance (solid curve) and theory for inhomogeneously broadened (IB) electronic transitions (dashed curve).

Fig. 17
Fig. 17

SIF spectra for a PSQ/PMMA core fiber and theory for inhomogeneously broadened (IB) electronic transitions.

Tables (2)

Tables Icon

Table 1 Correlation Function Fit Parameters for Squaraine-Doped Polymer Fibers Studied in SIF Measurements

Tables Icon

Table 2 Excited-State Fit Parameters for HSQ and PSQ Fibers and Preforms with Comparison to Thin-Film Measurements

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Ipw(λ, z)=If(λ)exp[-α(λ)z],
Ips(λ, z)=If(λ)-θcθc exp[-α(λ, θ)z]dθ,
δI(z)δI(z+ζ)Norm=j=0N δIjδIjkj=0NδIj2=M exp[-(ζ/ζc)2β]+Moff.
χL(1)(-ω; ω)
=Nfωϕ0|μ1g|21ω1g-iΓ1g-ω+1ω1g+iΓ1g+ω,
χIB(1)(-ω; ω)
=iπγ1gNfωϕ0|μ1g|2W-ω1g+ω+iΓ1gγ1g+W-ω1g-ω-iΓ1gγ1g,
αL(λ)=0kχLI(1)(-ω; ω)npolymer,
αIB(λ)=0kχIBI(1)(-ω; ω)npolymer,
|μ1g|=3hc8π3N α(ν)dνν1g1/2,
ΓG= α(ν)dνπ1/2αmax,
F1(λ)=F0(λ)exp[-αIB(λ)Δz],

Metrics