Abstract

Fluorescence from dye-doped polymer optical fibers can be used as a broad-wavelength light source to measure the linear absorption in the fibers and to characterize one-photon excited states in the dye molecule. The side-illumination fluorescence (SIF) measurement technique takes advantage of the fluorescence generated in dye-doped fibers when they are excited from the side by a monochromatic light source. In addition to characterizing fiber loss mechanisms, SIF measurements can be used to determine the fiber quality through an autocorrelation measurement. We present the SIF measurement and the tools for analyzing the data acquired through the measurement.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Kuzyk, ed., Nonlinear Optical Properties of Organic Materials X, Proc. SPIE 3147 (1997).
  2. R. J. Kruhlak and M. G. Kuzyk, “Side-illumination fluorescence spectroscopy. II. Applications to squaraine-dye-doped polymer optical fibers,” J. Opt. Soc. Am. B 16, 1756–1767 (1999).
    [CrossRef]
  3. D. W. Garvey, K. Zimmerman, P. Young, J. Tostenrude, J. S. Townsend, Z. Zhou, M. Lobel, M. Dayton, R. Wittorf, and M. G. Kuzyk, “Single-mode nonlinear-optical polymer fibers,” J. Opt. Soc. Am. B 13, 2017–2023 (1996).
    [CrossRef]
  4. W. Krug, M. Derstine, and J. Valera, “Optical absorption and scattering losses of PTS and poly(4-BCMU) thin-film waveguides in the near infrared,” J. Opt. Soc. Am. B 6, 726–732 (1989).
    [CrossRef]
  5. A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
    [CrossRef]
  6. G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
    [CrossRef]
  7. R. J. Kruhlak, J. Young, and M. G. Kuzyk, “Loss and correlation measurements in squaraine-doped nonlinear polymer optical fibers,” Ref. 1, Proc. SPIE 118–128.
  8. G. Olbrechts, E. J. H. Put, D. Van Steenwinckel, K. Clays, A. Persoons, C. Samyn, and N. Matsuda, “Study of domain formation and relaxation in thin polymeric films by femtosecond hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 15, 369–378 (1998).
    [CrossRef]
  9. C. W. Dirk, H. E. Katz, M. L. Schilling, and L. A. King, “Use of thiazole rings to enhance molecular second-order nonlinear optical susceptibilities,” Chem. Mater. 2, 700–705 (1990).
    [CrossRef]
  10. M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–858 (1990).
    [CrossRef]
  11. Q. L. Zhou, R. F. Shi, O. Zamani-Kamari, and A. F. Garito, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Nonlinear Opt. 6, 145–154 (1993).
  12. J. H. Andrews, J. D. V. Karydarov, K. D. Singer, D. L. Hull, and K. C. Chuang, “Characterization of excited states of centrosymmetric and noncentrosymmetric squaraines by third-harmonic spectral dispersion,” J. Opt. Soc. Am. B 12, 2360–2371 (1995).
    [CrossRef]
  13. D. W. Garvey, Q. Li, M. G. Kuzyk, C. W. Dirk, and S. Martinez, “Sagnac interferometric intensity-dependent refractive-index measurements of polymer optical fiber,” Opt. Lett. 21, 104–106 (1995).
    [CrossRef]
  14. C. Poga, T. M. Brown, M. G. Kuyzk, and C. W. Dirk, “Characterization of the excited states of a squaraine molecule with quadratic electroabsorption spectroscopy,” J. Opt. Soc. Am. B 12, 531–543 (1995).
    [CrossRef]
  15. K. S. Mathis, M. G. Kuzyk, C. W. Dirk, A. Tan, S. Martinez, and G. Gampos, “Mechanisms of the nonlinear optical properties of squaraine dyes in poly(methyl methacrylate) polymer,” J. Opt. Soc. Am. B 15, 871–883 (1998).
    [CrossRef]
  16. R. J. Kruhlak and M. G. Kuzyk, “Loss spectroscopy through side-illumination fluorescence (SIF) in dye-doped polymer optical fibers,” in Third-Order Nonlinear Optical Materials, M. G. Kuzyk, ed., Proc. SPIE 3473, 57–65 (1998).
    [CrossRef]
  17. B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).
  18. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).
  19. B. J. Orr, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
    [CrossRef]
  20. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, 1st ed. (Cambridge U. Press, Cambridge, 1990).
  21. M. G. Kuzyk and C. W. Dirk, eds., Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, 1st ed. (Marcel Dekker, New York, 1998).
  22. A. M. Stoneham, “Shapes of inhomogeneously broadened resonance lines in solids,” Rev. Mod. Phys. 41, 82–108 (1969).
    [CrossRef]
  23. E. Toussaere, “Polymer electrooptiques pour l’optique non lineare characterisation optique et modeles statisques,” Ph.D. dissertation (University of Paris, Paris, 1993).
  24. A. Otomo, “Second order optical nonlinearities and wave mixing devices in poled polymer waveguides,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 1995).
  25. M. Abramowitz and I. E. Stegun, eds., Handbook of Mathematical Functions (U.S. Government Printing Office, Washington, D.C., 1972).
  26. T. Kaino, “Absorption losses of low loss plastic optical fibers,” Jpn. J. Appl. Phys. 24, 1661–1665 (1985).
    [CrossRef]

1999

1998

1996

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[CrossRef]

D. W. Garvey, K. Zimmerman, P. Young, J. Tostenrude, J. S. Townsend, Z. Zhou, M. Lobel, M. Dayton, R. Wittorf, and M. G. Kuzyk, “Single-mode nonlinear-optical polymer fibers,” J. Opt. Soc. Am. B 13, 2017–2023 (1996).
[CrossRef]

1995

1993

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

Q. L. Zhou, R. F. Shi, O. Zamani-Kamari, and A. F. Garito, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Nonlinear Opt. 6, 145–154 (1993).

1990

C. W. Dirk, H. E. Katz, M. L. Schilling, and L. A. King, “Use of thiazole rings to enhance molecular second-order nonlinear optical susceptibilities,” Chem. Mater. 2, 700–705 (1990).
[CrossRef]

M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–858 (1990).
[CrossRef]

1989

1985

T. Kaino, “Absorption losses of low loss plastic optical fibers,” Jpn. J. Appl. Phys. 24, 1661–1665 (1985).
[CrossRef]

1971

B. J. Orr, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[CrossRef]

1969

A. M. Stoneham, “Shapes of inhomogeneously broadened resonance lines in solids,” Rev. Mod. Phys. 41, 82–108 (1969).
[CrossRef]

Andrews, J. H.

Brown, T. M.

Chaplin, R. P.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[CrossRef]

Chu, P. L.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[CrossRef]

Chuang, K. C.

Clays, K.

Dayton, M.

Derstine, M.

Dirk, C. W.

Gampos, G.

Garito, A. F.

Q. L. Zhou, R. F. Shi, O. Zamani-Kamari, and A. F. Garito, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Nonlinear Opt. 6, 145–154 (1993).

Garvey, D. W.

Hull, D. L.

Jurich, M.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

Kaino, T.

T. Kaino, “Absorption losses of low loss plastic optical fibers,” Jpn. J. Appl. Phys. 24, 1661–1665 (1985).
[CrossRef]

Karydarov, J. D. V.

Katz, H. E.

C. W. Dirk, H. E. Katz, M. L. Schilling, and L. A. King, “Use of thiazole rings to enhance molecular second-order nonlinear optical susceptibilities,” Chem. Mater. 2, 700–705 (1990).
[CrossRef]

King, L. A.

C. W. Dirk, H. E. Katz, M. L. Schilling, and L. A. King, “Use of thiazole rings to enhance molecular second-order nonlinear optical susceptibilities,” Chem. Mater. 2, 700–705 (1990).
[CrossRef]

Krug, W.

Kruhlak, R. J.

R. J. Kruhlak and M. G. Kuzyk, “Side-illumination fluorescence spectroscopy. II. Applications to squaraine-dye-doped polymer optical fibers,” J. Opt. Soc. Am. B 16, 1756–1767 (1999).
[CrossRef]

R. J. Kruhlak and M. G. Kuzyk, “Loss spectroscopy through side-illumination fluorescence (SIF) in dye-doped polymer optical fibers,” in Third-Order Nonlinear Optical Materials, M. G. Kuzyk, ed., Proc. SPIE 3473, 57–65 (1998).
[CrossRef]

Kuyzk, M. G.

Kuzyk, M. G.

Li, Q.

Lobel, M.

Martinez, S.

Mathis, K. S.

Matsuda, N.

Olbrechts, G.

Orr, B. J.

B. J. Orr, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[CrossRef]

Peng, G. D.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[CrossRef]

Persoons, A.

Poga, C.

Put, E. J. H.

Samyn, C.

Schilling, M. L.

C. W. Dirk, H. E. Katz, M. L. Schilling, and L. A. King, “Use of thiazole rings to enhance molecular second-order nonlinear optical susceptibilities,” Chem. Mater. 2, 700–705 (1990).
[CrossRef]

Shi, R. F.

Q. L. Zhou, R. F. Shi, O. Zamani-Kamari, and A. F. Garito, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Nonlinear Opt. 6, 145–154 (1993).

Singer, K. D.

Skumanich, A.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

Sohn, J. E.

Stoneham, A. M.

A. M. Stoneham, “Shapes of inhomogeneously broadened resonance lines in solids,” Rev. Mod. Phys. 41, 82–108 (1969).
[CrossRef]

Swalen, J. D.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

Tan, A.

Tostenrude, J.

Townsend, J. S.

Valera, J.

Van Steenwinckel, D.

Whitbread, T. W.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[CrossRef]

Wittorf, R.

Xiong, Z.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[CrossRef]

Young, P.

Zamani-Kamari, O.

Q. L. Zhou, R. F. Shi, O. Zamani-Kamari, and A. F. Garito, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Nonlinear Opt. 6, 145–154 (1993).

Zhou, Q. L.

Q. L. Zhou, R. F. Shi, O. Zamani-Kamari, and A. F. Garito, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Nonlinear Opt. 6, 145–154 (1993).

Zhou, Z.

Zimmerman, K.

Appl. Phys. Lett.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

Chem. Mater.

C. W. Dirk, H. E. Katz, M. L. Schilling, and L. A. King, “Use of thiazole rings to enhance molecular second-order nonlinear optical susceptibilities,” Chem. Mater. 2, 700–705 (1990).
[CrossRef]

J. Lightwave Technol.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[CrossRef]

J. Opt. Soc. Am. B

W. Krug, M. Derstine, and J. Valera, “Optical absorption and scattering losses of PTS and poly(4-BCMU) thin-film waveguides in the near infrared,” J. Opt. Soc. Am. B 6, 726–732 (1989).
[CrossRef]

M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–858 (1990).
[CrossRef]

C. Poga, T. M. Brown, M. G. Kuyzk, and C. W. Dirk, “Characterization of the excited states of a squaraine molecule with quadratic electroabsorption spectroscopy,” J. Opt. Soc. Am. B 12, 531–543 (1995).
[CrossRef]

J. H. Andrews, J. D. V. Karydarov, K. D. Singer, D. L. Hull, and K. C. Chuang, “Characterization of excited states of centrosymmetric and noncentrosymmetric squaraines by third-harmonic spectral dispersion,” J. Opt. Soc. Am. B 12, 2360–2371 (1995).
[CrossRef]

D. W. Garvey, K. Zimmerman, P. Young, J. Tostenrude, J. S. Townsend, Z. Zhou, M. Lobel, M. Dayton, R. Wittorf, and M. G. Kuzyk, “Single-mode nonlinear-optical polymer fibers,” J. Opt. Soc. Am. B 13, 2017–2023 (1996).
[CrossRef]

G. Olbrechts, E. J. H. Put, D. Van Steenwinckel, K. Clays, A. Persoons, C. Samyn, and N. Matsuda, “Study of domain formation and relaxation in thin polymeric films by femtosecond hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 15, 369–378 (1998).
[CrossRef]

R. J. Kruhlak and M. G. Kuzyk, “Side-illumination fluorescence spectroscopy. II. Applications to squaraine-dye-doped polymer optical fibers,” J. Opt. Soc. Am. B 16, 1756–1767 (1999).
[CrossRef]

K. S. Mathis, M. G. Kuzyk, C. W. Dirk, A. Tan, S. Martinez, and G. Gampos, “Mechanisms of the nonlinear optical properties of squaraine dyes in poly(methyl methacrylate) polymer,” J. Opt. Soc. Am. B 15, 871–883 (1998).
[CrossRef]

Jpn. J. Appl. Phys.

T. Kaino, “Absorption losses of low loss plastic optical fibers,” Jpn. J. Appl. Phys. 24, 1661–1665 (1985).
[CrossRef]

Mol. Phys.

B. J. Orr, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[CrossRef]

Nonlinear Opt.

Q. L. Zhou, R. F. Shi, O. Zamani-Kamari, and A. F. Garito, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Nonlinear Opt. 6, 145–154 (1993).

Opt. Lett.

Proc. SPIE

R. J. Kruhlak and M. G. Kuzyk, “Loss spectroscopy through side-illumination fluorescence (SIF) in dye-doped polymer optical fibers,” in Third-Order Nonlinear Optical Materials, M. G. Kuzyk, ed., Proc. SPIE 3473, 57–65 (1998).
[CrossRef]

Rev. Mod. Phys.

A. M. Stoneham, “Shapes of inhomogeneously broadened resonance lines in solids,” Rev. Mod. Phys. 41, 82–108 (1969).
[CrossRef]

Other

E. Toussaere, “Polymer electrooptiques pour l’optique non lineare characterisation optique et modeles statisques,” Ph.D. dissertation (University of Paris, Paris, 1993).

A. Otomo, “Second order optical nonlinearities and wave mixing devices in poled polymer waveguides,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 1995).

M. Abramowitz and I. E. Stegun, eds., Handbook of Mathematical Functions (U.S. Government Printing Office, Washington, D.C., 1972).

B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

R. J. Kruhlak, J. Young, and M. G. Kuzyk, “Loss and correlation measurements in squaraine-doped nonlinear polymer optical fibers,” Ref. 1, Proc. SPIE 118–128.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, 1st ed. (Cambridge U. Press, Cambridge, 1990).

M. G. Kuzyk and C. W. Dirk, eds., Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, 1st ed. (Marcel Dekker, New York, 1998).

M. G. Kuzyk, ed., Nonlinear Optical Properties of Organic Materials X, Proc. SPIE 3147 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Squaraine dyes studied in the SIF experiment.

Fig. 2
Fig. 2

Fluorescence generated in a core fiber with a monochromatic laser source.

Fig. 3
Fig. 3

Broadband fluorescence plane-wave source model.

Fig. 4
Fig. 4

Broadband fluorescence point-source model; the distance traveled by a ray at angle θ is z/cos θ.

Fig. 5
Fig. 5

SIF for point-source theory (PST) and plane-wave source (PWS) theory for three values of α.

Fig. 6
Fig. 6

Side illumination of an inhomogeneous dye-doped fiber.

Fig. 7
Fig. 7

Fiber preform slice absorbance experiment.

Fig. 8
Fig. 8

Resonant linear absorption spectra of PSQ, HSQ, and ISQ (10-4 wt. % for all three dyes).

Fig. 9
Fig. 9

SIF experiment with the light source on a translation stage.

Fig. 10
Fig. 10

SIF experiment with the fiber on a translation stage.

Fig. 11
Fig. 11

Reflected fluorescence from an HSQ/PMMA thin film for incident wavelengths of 633 and 693 nm.

Fig. 12
Fig. 12

SIF spectra for HSQ- and ISQ-doped PMMA fibers for an excitation position of z=1.0 cm.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

I(λ, z)=I0(λ)exp[-α(λ)z],
If (λ)=C(λm, λ)Ie,
If (λ, z)=C(λm, λ)Ie exp[-α(λ)z]=If (λ)exp[-α(λ)z].
If(λ, z)
=C(λm, λ)Ie02π-θcθc exp[-α(λ)z/cos θ]dθ dϕ02π-π/2π/2 dθ dϕ,
If (λ, z)=If(λ)-θcθc exp[-α(λ, θ)z]dθ.
C(λm, λ, z)=C(λm, λ)S(z),
If(λ, z)=If (λ)S(z)exp[-α(λ)z].
I(0)I(ζ)=limZ1Z0Z I(z)I(z+ζ)dz,
I(0)I(ζ)limN1Nj=0N IjIj+k,
δI(0)δI(ζ)limN1Nj=0N(Ij-I¯)(Ij+k-I¯),
δI(z)δI(z+ζ)Norm
=j=0N{Ij-I0 exp[-α(λ0)zj]}{Ij+k-I0 exp[-α(λ0)zj+k]}j=0N{Ij-I0 exp[-α(λ0)zj]}{Ij-I0 exp[-α(λ0)zj]},
=j=0N(Ij-Ijfit)(Ij+k-Ij+kfit)j=0N(Ij-Ijfit)(Ij-Ijfit),
IjfitI0 exp[-α(λ0)zj],
δI(z)δI(z+ζ)Norm=j=0NδIjδIjkj=0NδIj2.
P(ω)=0χ(1)(-ω; ω)E(ω).
χ(1)(-ω; ω)
=Nfωϕ0n|μgn|21ωgn-iΓgn-ω+1ωgn+iΓgn+ω,
gmn(z)=1γmnπexp(-z2/γmn2),
- gmn(z)dz=1.
χ(1)(-ω; ω)
=Nfωϕ0n|μgn|2-1ωgn-iΓgn-ω+1ωgn+iΓgn+ωggn(δωgn)d(δωgn),
W(z)=iπ-e-t2z-tdt,
χ(1)(-ω; ω)
=iπγgnNfωϕ0n|μgn|2W-ωgn+ω+iΓgnγgn+W-ωgn-ω-iΓgnγgn.
χsystem(1)(-ω; ω)=χpolymer(1)+χdye(1)(-ω; ω).
n=nR+inI=[0+0χsystem(1)(-ω; ω)]1/2,
n=nR+inI=npolymer+i0χdyeI(1)(-ω; ω)2npolymer,
α(λ)=2nIk=0 kχdyeI(1)(-ω; ω)npolymer.

Metrics