Abstract

The optical transmission of metal films, perforated with a periodic array of apertures, is enhanced by a resonant interaction of the incident light with surface plasmons on the metal surfaces: The maximum transmission can exceed unity when normalized to the area of the holes. Here we report a systematic study of the zero-order transmission spectra and the absolute transmission efficiency as a function of the geometry of hole arrays fabricated in chromium films. The energy-integrated transmission, normalized to the area of the holes, is independent of the hole diameter, but is found to be proportional to the number of surface features per unit area, even for very small arrays.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).
  2. H. R. Stuart and D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80, 5663–5666 (1998); W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Sambles, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14, 1654–1661 (1997); R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. PHRVAO 106, 874–881 (1957).
    [CrossRef]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
    [CrossRef]
  4. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
    [CrossRef]
  5. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–397 (1902); R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. B 48, 928–936 (1935).
    [CrossRef]
  6. Lord Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. London Ser. A 79, 399–416 (1907).
    [CrossRef]
  7. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Do, Ni and Pd,” Phys. Rev. B 9, 5056–5069 (1974).
    [CrossRef]
  8. D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, 1985).
  9. U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
    [CrossRef]
  10. P. Dawson, F. de Fornel, and J.-P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunnelling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
    [CrossRef] [PubMed]
  11. S. I. Bozhevolnyi and F. A. Pudonin, “Two-dimensional micro-optics of surface plasmons,” Phys. Rev. Lett. 78, 2823–2826 (1997); S. I. Bozhevolnyi and V. Coello, “Elastic scattering of surface plasmon polaritons: modeling and experiment,” Phys. Rev. B 58, 10899–10910 (1998).
    [CrossRef]
  12. D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single subwavelength aperture,” Adv. Mater. (to be published).

1998 (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

1994 (1)

P. Dawson, F. de Fornel, and J.-P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunnelling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
[CrossRef] [PubMed]

1974 (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Do, Ni and Pd,” Phys. Rev. B 9, 5056–5069 (1974).
[CrossRef]

1907 (1)

Lord Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. London Ser. A 79, 399–416 (1907).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Do, Ni and Pd,” Phys. Rev. B 9, 5056–5069 (1974).
[CrossRef]

Dawson, P.

P. Dawson, F. de Fornel, and J.-P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunnelling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
[CrossRef] [PubMed]

de Fornel, F.

P. Dawson, F. de Fornel, and J.-P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunnelling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Goudonnet, J.-P.

P. Dawson, F. de Fornel, and J.-P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunnelling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
[CrossRef] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Heitmann, D.

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Do, Ni and Pd,” Phys. Rev. B 9, 5056–5069 (1974).
[CrossRef]

Lezec, H. J.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Rayleigh, Lord

Lord Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. London Ser. A 79, 399–416 (1907).
[CrossRef]

Schröter, U.

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Nature (London) (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Phys. Rev. B (3)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Do, Ni and Pd,” Phys. Rev. B 9, 5056–5069 (1974).
[CrossRef]

Phys. Rev. Lett. (1)

P. Dawson, F. de Fornel, and J.-P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunnelling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. A (1)

Lord Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. London Ser. A 79, 399–416 (1907).
[CrossRef]

Other (6)

D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, 1985).

S. I. Bozhevolnyi and F. A. Pudonin, “Two-dimensional micro-optics of surface plasmons,” Phys. Rev. Lett. 78, 2823–2826 (1997); S. I. Bozhevolnyi and V. Coello, “Elastic scattering of surface plasmon polaritons: modeling and experiment,” Phys. Rev. B 58, 10899–10910 (1998).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single subwavelength aperture,” Adv. Mater. (to be published).

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–397 (1902); R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. B 48, 928–936 (1935).
[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).

H. R. Stuart and D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80, 5663–5666 (1998); W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Sambles, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14, 1654–1661 (1997); R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. PHRVAO 106, 874–881 (1957).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Transmission spectra of a square lattice of holes in chrome (d=0.5 µm) as a function of the lattice constant a0.

Fig. 2
Fig. 2

Transmission spectra of a triangular lattice of holes in chrome (d=0.5 µm) as a function of the lattice constant a0.

Fig. 3
Fig. 3

Transmission spectra of a square lattice of holes (a0=1.4 µm) as a function of hole diameter d.

Fig. 4
Fig. 4

Transmission spectrum of a set of seven holes (dashed curve), with that of a long-range hexagonal array with a0=1 µm (solid curve). The inset shows the configuration of a miniarray of holes.

Fig. 5
Fig. 5

(a) Maximum and (b) integrated transmitted intensity, both normalized to filling fraction f, of peak 1 (solid symbols) and peak 2 (open symbols) for square arrays (squares) and hexagonal arrays (triangles). Lines in (a) are guides to the eye.

Fig. 6
Fig. 6

Near-field optical image of intensity distribution emerging from perforated metal film; a0=1.0 µm, λ=0.7 µm.

Fig. 7
Fig. 7

Integrated and normalized intensity Tint as a function of number of holes per unit area. Same labeling convention as in Fig. 5; in addition, the circle and the star represent data on miniarrays of Fig. 4 (see text).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ksp=kx+iGx+jGy,
|ksp|=2πλsin θ+i2πa02+j2πa021/2=ωcεdεmεd+εm1/2,
λmax=a0(i2+j2)-1/2εdεmεd+εm1/2
λmax=a043(i2+ij+j2)-1/2εdεmεd+εm1/2.

Metrics