Abstract

Optical magnetic-resonance imaging (MRI) is performed to observe a density distribution of the laser-polarized Cs atoms that diffuse in helium buffer gas at roughly room temperature. Spatial resolution of optical MRI and sensitivity of optical detection are discussed for gaseous atoms in a weak magnetic field. We propose a fast method of three-dimensional optical MRI with parallel processing of signals from a photodetector array, and we discuss its application to the spin-polarized noble gas.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. T. Callaghan, C. D. Eccles, and J. D. Seymour, “An earth’s field nuclear magnetic resonance apparatus suitable for pulsed gradient spin echo measurements of self-diffusion under Antarctic conditions,” Rev. Sci. Instrum. 68, 4263 (1997).
    [CrossRef]
  2. M. P. Augustine, A. Wong-Foy, J. L. Yarger, M. Tomaselli, A. Pines, D. M. TonThat, and J. Clarke, “Low field magnetic resonance images of polarized noble gases obtained with a dc superconducting quantum interference device,” Appl. Phys. Lett. 72, 1908 (1998).
    [CrossRef]
  3. Ya. S. Greenberg, “Application of superconducting quantum interference devices to nuclear magnetic resonance,” Rev. Mod. Phys. 70, 175 (1998).
    [CrossRef]
  4. T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629 (1997).
    [CrossRef]
  5. A. C. Tam and W. Happer, “Optically pumped cell for novel visible decay of inhomogeneous magnetic field or of rf frequency spectrum,” Appl. Phys. Lett. 30, 580 (1977).
    [CrossRef]
  6. J. Skalla, G. Wäckerle, M. Mehring, and A. Pines, “Optical magnetic resonance imaging of Rb vapor in low magnetic fields,” Phys. Lett. A 226, 69 (1997).
    [CrossRef]
  7. J. Skalla, G. Wäckerle, and M. Mehring, “Optical magnetic resonance imaging of atomic diffusion and laser beam spatial profiles,” Opt. Commun. 143, 209 (1997).
    [CrossRef]
  8. A. R. Young, S. Appelt, A. B. Baranga, C. Erickson, and W. Happer, “Three-dimensional imaging of spin polarization of alkali-metal vapor in optical pumping cells,” Appl. Phys. Lett. 70, 3081 (1997).
    [CrossRef]
  9. B. Driehuys, G. D. Cates, E. Miron, K. Sauer, D. K. Walter, and W. Happer, “High-volume production of laser-polarized 129Xe,” Appl. Phys. Lett. 69, 1668 (1996).
    [CrossRef]
  10. S. I. Kanorsky, S. Lang, S. Lücke, S. B. Ross, T. W. Hänsch, and A. Weis, “Millihertz magnetic resonance spectroscopy of Cs atoms in body-centered-cubic 4He,” Phys. Rev. A 54, R1010 (1996).
    [CrossRef]
  11. T. E. Chupp, R. J. Hoare, R. L. Walsworth, and Bo Wu, “Spin-exchange-pumped 3He and 129Xe Zeeman masers,” Phys. Rev. Lett. 72, 2363 (1994).
    [CrossRef] [PubMed]
  12. P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Clarendon, Oxford, 1991).
  13. R. Kimmich, NMR Tomography, Diffusiometry, Relaxometry (Springer-Verlag, Berlin, 1997).
  14. C. N. Chen and D. I. Hoult, Biomedical Magnetic Resonance Technology (Hilger, New York, 1989).
  15. M. Tanigawa, Y. Fukuda, T. Kohmoto, K. Sakuno, and T. Hashi, “Sublevel echoes selectively excited by light-pulse trains: synchronized-quantum-beat echoes,” Opt. Lett. 8, 620 (1983).
    [CrossRef] [PubMed]
  16. J. Skalla, G. Wäckerle, and M. Mehring, “Coherence transfer between atomic transitions of different g-factor by modulated optical excitation,” Opt. Commun. 127, 31 (1996).
    [CrossRef]
  17. A. N. Nesmeyanov, Vapor Pressure of the Chemical Elements (Academic, New York, 1963).
  18. In the case of observing spin echo, the transverse pumping with periodic light pulses is found to be much better for producing sublevel coherence of ground-state Cs atoms. All the pumped Cs atoms precess along z axis and have no z component of spin. Therefore FID does not appear by the π pulse.
  19. P. Violino, “A review of the optical methods for the study of the spin relaxation of an alkali metal by collision with a buffer gas,” Nuovo Cimento Suppl. 6, 440 (1968).
  20. K. D. Kihm, H. S. Ko, and D. P. Lyons, “Tomographic identification of gas bubbles in two-phase flows with the combined use of the algebraic reconstruction technique and the genetic algorithm,” Opt. Lett. 23, 658 (1998).
    [CrossRef]
  21. E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31 (1977).
    [CrossRef]
  22. W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169 (1972).
    [CrossRef]
  23. The measure of distortion Md is less than the resolution power Mr, which introduces slight distortion of an image, as discussed in theory.
  24. C. H. Neuman, “Spin echo of spins diffusing in a bounded medium,” J. Chem. Phys. 60, 4508 (1974).
    [CrossRef]
  25. P. T. Callaghan, A. Coy, L. C. Forde, and C. J. Rofe, “Diffusive relaxation and edge enhancement in NMR microscopy,” J. Magn. Reson., Ser. A 101, 347 (1993).
    [CrossRef]
  26. S. Briaudeau, S. Saltiel, G. Nienhuis, D. Bloch, and M. Ducloy, “Coherent Doppler narrowing in a thin vapor cell: observation of the Dicke regime in the optical domain,” Phys. Rev. A 57, R3169 (1998).
    [CrossRef]

1998

M. P. Augustine, A. Wong-Foy, J. L. Yarger, M. Tomaselli, A. Pines, D. M. TonThat, and J. Clarke, “Low field magnetic resonance images of polarized noble gases obtained with a dc superconducting quantum interference device,” Appl. Phys. Lett. 72, 1908 (1998).
[CrossRef]

Ya. S. Greenberg, “Application of superconducting quantum interference devices to nuclear magnetic resonance,” Rev. Mod. Phys. 70, 175 (1998).
[CrossRef]

S. Briaudeau, S. Saltiel, G. Nienhuis, D. Bloch, and M. Ducloy, “Coherent Doppler narrowing in a thin vapor cell: observation of the Dicke regime in the optical domain,” Phys. Rev. A 57, R3169 (1998).
[CrossRef]

K. D. Kihm, H. S. Ko, and D. P. Lyons, “Tomographic identification of gas bubbles in two-phase flows with the combined use of the algebraic reconstruction technique and the genetic algorithm,” Opt. Lett. 23, 658 (1998).
[CrossRef]

1997

P. T. Callaghan, C. D. Eccles, and J. D. Seymour, “An earth’s field nuclear magnetic resonance apparatus suitable for pulsed gradient spin echo measurements of self-diffusion under Antarctic conditions,” Rev. Sci. Instrum. 68, 4263 (1997).
[CrossRef]

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629 (1997).
[CrossRef]

J. Skalla, G. Wäckerle, M. Mehring, and A. Pines, “Optical magnetic resonance imaging of Rb vapor in low magnetic fields,” Phys. Lett. A 226, 69 (1997).
[CrossRef]

J. Skalla, G. Wäckerle, and M. Mehring, “Optical magnetic resonance imaging of atomic diffusion and laser beam spatial profiles,” Opt. Commun. 143, 209 (1997).
[CrossRef]

A. R. Young, S. Appelt, A. B. Baranga, C. Erickson, and W. Happer, “Three-dimensional imaging of spin polarization of alkali-metal vapor in optical pumping cells,” Appl. Phys. Lett. 70, 3081 (1997).
[CrossRef]

1996

B. Driehuys, G. D. Cates, E. Miron, K. Sauer, D. K. Walter, and W. Happer, “High-volume production of laser-polarized 129Xe,” Appl. Phys. Lett. 69, 1668 (1996).
[CrossRef]

S. I. Kanorsky, S. Lang, S. Lücke, S. B. Ross, T. W. Hänsch, and A. Weis, “Millihertz magnetic resonance spectroscopy of Cs atoms in body-centered-cubic 4He,” Phys. Rev. A 54, R1010 (1996).
[CrossRef]

J. Skalla, G. Wäckerle, and M. Mehring, “Coherence transfer between atomic transitions of different g-factor by modulated optical excitation,” Opt. Commun. 127, 31 (1996).
[CrossRef]

1994

T. E. Chupp, R. J. Hoare, R. L. Walsworth, and Bo Wu, “Spin-exchange-pumped 3He and 129Xe Zeeman masers,” Phys. Rev. Lett. 72, 2363 (1994).
[CrossRef] [PubMed]

1993

P. T. Callaghan, A. Coy, L. C. Forde, and C. J. Rofe, “Diffusive relaxation and edge enhancement in NMR microscopy,” J. Magn. Reson., Ser. A 101, 347 (1993).
[CrossRef]

1983

1977

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31 (1977).
[CrossRef]

A. C. Tam and W. Happer, “Optically pumped cell for novel visible decay of inhomogeneous magnetic field or of rf frequency spectrum,” Appl. Phys. Lett. 30, 580 (1977).
[CrossRef]

1974

C. H. Neuman, “Spin echo of spins diffusing in a bounded medium,” J. Chem. Phys. 60, 4508 (1974).
[CrossRef]

1972

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169 (1972).
[CrossRef]

1968

P. Violino, “A review of the optical methods for the study of the spin relaxation of an alkali metal by collision with a buffer gas,” Nuovo Cimento Suppl. 6, 440 (1968).

Appelt, S.

A. R. Young, S. Appelt, A. B. Baranga, C. Erickson, and W. Happer, “Three-dimensional imaging of spin polarization of alkali-metal vapor in optical pumping cells,” Appl. Phys. Lett. 70, 3081 (1997).
[CrossRef]

Arimondo, E.

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31 (1977).
[CrossRef]

Augustine, M. P.

M. P. Augustine, A. Wong-Foy, J. L. Yarger, M. Tomaselli, A. Pines, D. M. TonThat, and J. Clarke, “Low field magnetic resonance images of polarized noble gases obtained with a dc superconducting quantum interference device,” Appl. Phys. Lett. 72, 1908 (1998).
[CrossRef]

Baranga, A. B.

A. R. Young, S. Appelt, A. B. Baranga, C. Erickson, and W. Happer, “Three-dimensional imaging of spin polarization of alkali-metal vapor in optical pumping cells,” Appl. Phys. Lett. 70, 3081 (1997).
[CrossRef]

Bloch, D.

S. Briaudeau, S. Saltiel, G. Nienhuis, D. Bloch, and M. Ducloy, “Coherent Doppler narrowing in a thin vapor cell: observation of the Dicke regime in the optical domain,” Phys. Rev. A 57, R3169 (1998).
[CrossRef]

Briaudeau, S.

S. Briaudeau, S. Saltiel, G. Nienhuis, D. Bloch, and M. Ducloy, “Coherent Doppler narrowing in a thin vapor cell: observation of the Dicke regime in the optical domain,” Phys. Rev. A 57, R3169 (1998).
[CrossRef]

Callaghan, P. T.

P. T. Callaghan, C. D. Eccles, and J. D. Seymour, “An earth’s field nuclear magnetic resonance apparatus suitable for pulsed gradient spin echo measurements of self-diffusion under Antarctic conditions,” Rev. Sci. Instrum. 68, 4263 (1997).
[CrossRef]

P. T. Callaghan, A. Coy, L. C. Forde, and C. J. Rofe, “Diffusive relaxation and edge enhancement in NMR microscopy,” J. Magn. Reson., Ser. A 101, 347 (1993).
[CrossRef]

Cates, G. D.

B. Driehuys, G. D. Cates, E. Miron, K. Sauer, D. K. Walter, and W. Happer, “High-volume production of laser-polarized 129Xe,” Appl. Phys. Lett. 69, 1668 (1996).
[CrossRef]

Chupp, T. E.

T. E. Chupp, R. J. Hoare, R. L. Walsworth, and Bo Wu, “Spin-exchange-pumped 3He and 129Xe Zeeman masers,” Phys. Rev. Lett. 72, 2363 (1994).
[CrossRef] [PubMed]

Clarke, J.

M. P. Augustine, A. Wong-Foy, J. L. Yarger, M. Tomaselli, A. Pines, D. M. TonThat, and J. Clarke, “Low field magnetic resonance images of polarized noble gases obtained with a dc superconducting quantum interference device,” Appl. Phys. Lett. 72, 1908 (1998).
[CrossRef]

Coy, A.

P. T. Callaghan, A. Coy, L. C. Forde, and C. J. Rofe, “Diffusive relaxation and edge enhancement in NMR microscopy,” J. Magn. Reson., Ser. A 101, 347 (1993).
[CrossRef]

Driehuys, B.

B. Driehuys, G. D. Cates, E. Miron, K. Sauer, D. K. Walter, and W. Happer, “High-volume production of laser-polarized 129Xe,” Appl. Phys. Lett. 69, 1668 (1996).
[CrossRef]

Ducloy, M.

S. Briaudeau, S. Saltiel, G. Nienhuis, D. Bloch, and M. Ducloy, “Coherent Doppler narrowing in a thin vapor cell: observation of the Dicke regime in the optical domain,” Phys. Rev. A 57, R3169 (1998).
[CrossRef]

Eccles, C. D.

P. T. Callaghan, C. D. Eccles, and J. D. Seymour, “An earth’s field nuclear magnetic resonance apparatus suitable for pulsed gradient spin echo measurements of self-diffusion under Antarctic conditions,” Rev. Sci. Instrum. 68, 4263 (1997).
[CrossRef]

Erickson, C.

A. R. Young, S. Appelt, A. B. Baranga, C. Erickson, and W. Happer, “Three-dimensional imaging of spin polarization of alkali-metal vapor in optical pumping cells,” Appl. Phys. Lett. 70, 3081 (1997).
[CrossRef]

Forde, L. C.

P. T. Callaghan, A. Coy, L. C. Forde, and C. J. Rofe, “Diffusive relaxation and edge enhancement in NMR microscopy,” J. Magn. Reson., Ser. A 101, 347 (1993).
[CrossRef]

Fukuda, Y.

Greenberg, Ya. S.

Ya. S. Greenberg, “Application of superconducting quantum interference devices to nuclear magnetic resonance,” Rev. Mod. Phys. 70, 175 (1998).
[CrossRef]

Hänsch, T. W.

S. I. Kanorsky, S. Lang, S. Lücke, S. B. Ross, T. W. Hänsch, and A. Weis, “Millihertz magnetic resonance spectroscopy of Cs atoms in body-centered-cubic 4He,” Phys. Rev. A 54, R1010 (1996).
[CrossRef]

Happer, W.

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629 (1997).
[CrossRef]

A. R. Young, S. Appelt, A. B. Baranga, C. Erickson, and W. Happer, “Three-dimensional imaging of spin polarization of alkali-metal vapor in optical pumping cells,” Appl. Phys. Lett. 70, 3081 (1997).
[CrossRef]

B. Driehuys, G. D. Cates, E. Miron, K. Sauer, D. K. Walter, and W. Happer, “High-volume production of laser-polarized 129Xe,” Appl. Phys. Lett. 69, 1668 (1996).
[CrossRef]

A. C. Tam and W. Happer, “Optically pumped cell for novel visible decay of inhomogeneous magnetic field or of rf frequency spectrum,” Appl. Phys. Lett. 30, 580 (1977).
[CrossRef]

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169 (1972).
[CrossRef]

Hashi, T.

Hoare, R. J.

T. E. Chupp, R. J. Hoare, R. L. Walsworth, and Bo Wu, “Spin-exchange-pumped 3He and 129Xe Zeeman masers,” Phys. Rev. Lett. 72, 2363 (1994).
[CrossRef] [PubMed]

Inguscio, M.

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31 (1977).
[CrossRef]

Kanorsky, S. I.

S. I. Kanorsky, S. Lang, S. Lücke, S. B. Ross, T. W. Hänsch, and A. Weis, “Millihertz magnetic resonance spectroscopy of Cs atoms in body-centered-cubic 4He,” Phys. Rev. A 54, R1010 (1996).
[CrossRef]

Kihm, K. D.

Ko, H. S.

Kohmoto, T.

Lang, S.

S. I. Kanorsky, S. Lang, S. Lücke, S. B. Ross, T. W. Hänsch, and A. Weis, “Millihertz magnetic resonance spectroscopy of Cs atoms in body-centered-cubic 4He,” Phys. Rev. A 54, R1010 (1996).
[CrossRef]

Lücke, S.

S. I. Kanorsky, S. Lang, S. Lücke, S. B. Ross, T. W. Hänsch, and A. Weis, “Millihertz magnetic resonance spectroscopy of Cs atoms in body-centered-cubic 4He,” Phys. Rev. A 54, R1010 (1996).
[CrossRef]

Lyons, D. P.

Mehring, M.

J. Skalla, G. Wäckerle, and M. Mehring, “Optical magnetic resonance imaging of atomic diffusion and laser beam spatial profiles,” Opt. Commun. 143, 209 (1997).
[CrossRef]

J. Skalla, G. Wäckerle, M. Mehring, and A. Pines, “Optical magnetic resonance imaging of Rb vapor in low magnetic fields,” Phys. Lett. A 226, 69 (1997).
[CrossRef]

J. Skalla, G. Wäckerle, and M. Mehring, “Coherence transfer between atomic transitions of different g-factor by modulated optical excitation,” Opt. Commun. 127, 31 (1996).
[CrossRef]

Miron, E.

B. Driehuys, G. D. Cates, E. Miron, K. Sauer, D. K. Walter, and W. Happer, “High-volume production of laser-polarized 129Xe,” Appl. Phys. Lett. 69, 1668 (1996).
[CrossRef]

Neuman, C. H.

C. H. Neuman, “Spin echo of spins diffusing in a bounded medium,” J. Chem. Phys. 60, 4508 (1974).
[CrossRef]

Nienhuis, G.

S. Briaudeau, S. Saltiel, G. Nienhuis, D. Bloch, and M. Ducloy, “Coherent Doppler narrowing in a thin vapor cell: observation of the Dicke regime in the optical domain,” Phys. Rev. A 57, R3169 (1998).
[CrossRef]

Pines, A.

M. P. Augustine, A. Wong-Foy, J. L. Yarger, M. Tomaselli, A. Pines, D. M. TonThat, and J. Clarke, “Low field magnetic resonance images of polarized noble gases obtained with a dc superconducting quantum interference device,” Appl. Phys. Lett. 72, 1908 (1998).
[CrossRef]

J. Skalla, G. Wäckerle, M. Mehring, and A. Pines, “Optical magnetic resonance imaging of Rb vapor in low magnetic fields,” Phys. Lett. A 226, 69 (1997).
[CrossRef]

Rofe, C. J.

P. T. Callaghan, A. Coy, L. C. Forde, and C. J. Rofe, “Diffusive relaxation and edge enhancement in NMR microscopy,” J. Magn. Reson., Ser. A 101, 347 (1993).
[CrossRef]

Ross, S. B.

S. I. Kanorsky, S. Lang, S. Lücke, S. B. Ross, T. W. Hänsch, and A. Weis, “Millihertz magnetic resonance spectroscopy of Cs atoms in body-centered-cubic 4He,” Phys. Rev. A 54, R1010 (1996).
[CrossRef]

Sakuno, K.

Saltiel, S.

S. Briaudeau, S. Saltiel, G. Nienhuis, D. Bloch, and M. Ducloy, “Coherent Doppler narrowing in a thin vapor cell: observation of the Dicke regime in the optical domain,” Phys. Rev. A 57, R3169 (1998).
[CrossRef]

Sauer, K.

B. Driehuys, G. D. Cates, E. Miron, K. Sauer, D. K. Walter, and W. Happer, “High-volume production of laser-polarized 129Xe,” Appl. Phys. Lett. 69, 1668 (1996).
[CrossRef]

Seymour, J. D.

P. T. Callaghan, C. D. Eccles, and J. D. Seymour, “An earth’s field nuclear magnetic resonance apparatus suitable for pulsed gradient spin echo measurements of self-diffusion under Antarctic conditions,” Rev. Sci. Instrum. 68, 4263 (1997).
[CrossRef]

Skalla, J.

J. Skalla, G. Wäckerle, and M. Mehring, “Optical magnetic resonance imaging of atomic diffusion and laser beam spatial profiles,” Opt. Commun. 143, 209 (1997).
[CrossRef]

J. Skalla, G. Wäckerle, M. Mehring, and A. Pines, “Optical magnetic resonance imaging of Rb vapor in low magnetic fields,” Phys. Lett. A 226, 69 (1997).
[CrossRef]

J. Skalla, G. Wäckerle, and M. Mehring, “Coherence transfer between atomic transitions of different g-factor by modulated optical excitation,” Opt. Commun. 127, 31 (1996).
[CrossRef]

Tam, A. C.

A. C. Tam and W. Happer, “Optically pumped cell for novel visible decay of inhomogeneous magnetic field or of rf frequency spectrum,” Appl. Phys. Lett. 30, 580 (1977).
[CrossRef]

Tanigawa, M.

Tomaselli, M.

M. P. Augustine, A. Wong-Foy, J. L. Yarger, M. Tomaselli, A. Pines, D. M. TonThat, and J. Clarke, “Low field magnetic resonance images of polarized noble gases obtained with a dc superconducting quantum interference device,” Appl. Phys. Lett. 72, 1908 (1998).
[CrossRef]

TonThat, D. M.

M. P. Augustine, A. Wong-Foy, J. L. Yarger, M. Tomaselli, A. Pines, D. M. TonThat, and J. Clarke, “Low field magnetic resonance images of polarized noble gases obtained with a dc superconducting quantum interference device,” Appl. Phys. Lett. 72, 1908 (1998).
[CrossRef]

Violino, P.

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31 (1977).
[CrossRef]

P. Violino, “A review of the optical methods for the study of the spin relaxation of an alkali metal by collision with a buffer gas,” Nuovo Cimento Suppl. 6, 440 (1968).

Wäckerle, G.

J. Skalla, G. Wäckerle, M. Mehring, and A. Pines, “Optical magnetic resonance imaging of Rb vapor in low magnetic fields,” Phys. Lett. A 226, 69 (1997).
[CrossRef]

J. Skalla, G. Wäckerle, and M. Mehring, “Optical magnetic resonance imaging of atomic diffusion and laser beam spatial profiles,” Opt. Commun. 143, 209 (1997).
[CrossRef]

J. Skalla, G. Wäckerle, and M. Mehring, “Coherence transfer between atomic transitions of different g-factor by modulated optical excitation,” Opt. Commun. 127, 31 (1996).
[CrossRef]

Walker, T. G.

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629 (1997).
[CrossRef]

Walsworth, R. L.

T. E. Chupp, R. J. Hoare, R. L. Walsworth, and Bo Wu, “Spin-exchange-pumped 3He and 129Xe Zeeman masers,” Phys. Rev. Lett. 72, 2363 (1994).
[CrossRef] [PubMed]

Walter, D. K.

B. Driehuys, G. D. Cates, E. Miron, K. Sauer, D. K. Walter, and W. Happer, “High-volume production of laser-polarized 129Xe,” Appl. Phys. Lett. 69, 1668 (1996).
[CrossRef]

Weis, A.

S. I. Kanorsky, S. Lang, S. Lücke, S. B. Ross, T. W. Hänsch, and A. Weis, “Millihertz magnetic resonance spectroscopy of Cs atoms in body-centered-cubic 4He,” Phys. Rev. A 54, R1010 (1996).
[CrossRef]

Wong-Foy, A.

M. P. Augustine, A. Wong-Foy, J. L. Yarger, M. Tomaselli, A. Pines, D. M. TonThat, and J. Clarke, “Low field magnetic resonance images of polarized noble gases obtained with a dc superconducting quantum interference device,” Appl. Phys. Lett. 72, 1908 (1998).
[CrossRef]

Wu, Bo

T. E. Chupp, R. J. Hoare, R. L. Walsworth, and Bo Wu, “Spin-exchange-pumped 3He and 129Xe Zeeman masers,” Phys. Rev. Lett. 72, 2363 (1994).
[CrossRef] [PubMed]

Yarger, J. L.

M. P. Augustine, A. Wong-Foy, J. L. Yarger, M. Tomaselli, A. Pines, D. M. TonThat, and J. Clarke, “Low field magnetic resonance images of polarized noble gases obtained with a dc superconducting quantum interference device,” Appl. Phys. Lett. 72, 1908 (1998).
[CrossRef]

Young, A. R.

A. R. Young, S. Appelt, A. B. Baranga, C. Erickson, and W. Happer, “Three-dimensional imaging of spin polarization of alkali-metal vapor in optical pumping cells,” Appl. Phys. Lett. 70, 3081 (1997).
[CrossRef]

Appl. Phys. Lett.

M. P. Augustine, A. Wong-Foy, J. L. Yarger, M. Tomaselli, A. Pines, D. M. TonThat, and J. Clarke, “Low field magnetic resonance images of polarized noble gases obtained with a dc superconducting quantum interference device,” Appl. Phys. Lett. 72, 1908 (1998).
[CrossRef]

A. C. Tam and W. Happer, “Optically pumped cell for novel visible decay of inhomogeneous magnetic field or of rf frequency spectrum,” Appl. Phys. Lett. 30, 580 (1977).
[CrossRef]

A. R. Young, S. Appelt, A. B. Baranga, C. Erickson, and W. Happer, “Three-dimensional imaging of spin polarization of alkali-metal vapor in optical pumping cells,” Appl. Phys. Lett. 70, 3081 (1997).
[CrossRef]

B. Driehuys, G. D. Cates, E. Miron, K. Sauer, D. K. Walter, and W. Happer, “High-volume production of laser-polarized 129Xe,” Appl. Phys. Lett. 69, 1668 (1996).
[CrossRef]

J. Chem. Phys.

C. H. Neuman, “Spin echo of spins diffusing in a bounded medium,” J. Chem. Phys. 60, 4508 (1974).
[CrossRef]

J. Magn. Reson., Ser. A

P. T. Callaghan, A. Coy, L. C. Forde, and C. J. Rofe, “Diffusive relaxation and edge enhancement in NMR microscopy,” J. Magn. Reson., Ser. A 101, 347 (1993).
[CrossRef]

Nuovo Cimento Suppl.

P. Violino, “A review of the optical methods for the study of the spin relaxation of an alkali metal by collision with a buffer gas,” Nuovo Cimento Suppl. 6, 440 (1968).

Opt. Commun.

J. Skalla, G. Wäckerle, and M. Mehring, “Optical magnetic resonance imaging of atomic diffusion and laser beam spatial profiles,” Opt. Commun. 143, 209 (1997).
[CrossRef]

J. Skalla, G. Wäckerle, and M. Mehring, “Coherence transfer between atomic transitions of different g-factor by modulated optical excitation,” Opt. Commun. 127, 31 (1996).
[CrossRef]

Opt. Lett.

Phys. Lett. A

J. Skalla, G. Wäckerle, M. Mehring, and A. Pines, “Optical magnetic resonance imaging of Rb vapor in low magnetic fields,” Phys. Lett. A 226, 69 (1997).
[CrossRef]

Phys. Rev. A

S. I. Kanorsky, S. Lang, S. Lücke, S. B. Ross, T. W. Hänsch, and A. Weis, “Millihertz magnetic resonance spectroscopy of Cs atoms in body-centered-cubic 4He,” Phys. Rev. A 54, R1010 (1996).
[CrossRef]

S. Briaudeau, S. Saltiel, G. Nienhuis, D. Bloch, and M. Ducloy, “Coherent Doppler narrowing in a thin vapor cell: observation of the Dicke regime in the optical domain,” Phys. Rev. A 57, R3169 (1998).
[CrossRef]

Phys. Rev. Lett.

T. E. Chupp, R. J. Hoare, R. L. Walsworth, and Bo Wu, “Spin-exchange-pumped 3He and 129Xe Zeeman masers,” Phys. Rev. Lett. 72, 2363 (1994).
[CrossRef] [PubMed]

Rev. Mod. Phys.

Ya. S. Greenberg, “Application of superconducting quantum interference devices to nuclear magnetic resonance,” Rev. Mod. Phys. 70, 175 (1998).
[CrossRef]

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629 (1997).
[CrossRef]

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31 (1977).
[CrossRef]

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169 (1972).
[CrossRef]

Rev. Sci. Instrum.

P. T. Callaghan, C. D. Eccles, and J. D. Seymour, “An earth’s field nuclear magnetic resonance apparatus suitable for pulsed gradient spin echo measurements of self-diffusion under Antarctic conditions,” Rev. Sci. Instrum. 68, 4263 (1997).
[CrossRef]

Other

A. N. Nesmeyanov, Vapor Pressure of the Chemical Elements (Academic, New York, 1963).

In the case of observing spin echo, the transverse pumping with periodic light pulses is found to be much better for producing sublevel coherence of ground-state Cs atoms. All the pumped Cs atoms precess along z axis and have no z component of spin. Therefore FID does not appear by the π pulse.

The measure of distortion Md is less than the resolution power Mr, which introduces slight distortion of an image, as discussed in theory.

P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Clarendon, Oxford, 1991).

R. Kimmich, NMR Tomography, Diffusiometry, Relaxometry (Springer-Verlag, Berlin, 1997).

C. N. Chen and D. I. Hoult, Biomedical Magnetic Resonance Technology (Hilger, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for optical MRI of spin-polarized Cs atoms in a magnetic-shield box. Shown is the configuration of longitudinal optical pumping. A glass cell filled with a Cs vapor and a helium gas is placed at the center of the optical table. LD is a laser diode tuned to the Cs D1 line and used as a probe laser. AOM is an acousto-optic modulator picking up the pump or probe pulses from continuous-wave light. PD is an avalanche photodiode whose output is amplified, averaged, and transferred to a personal computer. Typical intensity of the pump pulse is 10 mW/cm2, and that of the probe pulse is 1 µW/cm2. Hx, Hy, and Hz represent Helmholtz-type coils to produce a magnetic field, respectively, along x, y, and z axes. Ax, Ay, and Az are anti-Helmholtz coils along the respective axis. These coils are not circular but hexagonal, with a radius of 500 mm. Gzx, Gzy, and Gzz are the coils to produce the gradient magnetic fields Gzj=Bz/rj, respectively. CRF is the RF coil to produce a linearly polarized magnetic field along the y axis.

Fig. 2
Fig. 2

(a) Directions of magnetic fields and laser beams at the glass cell. The pump pulse produces atomic polarization along the z axis. Larmor precession after the RF π/2 pulse is monitored through the intensity change of the probe beam transmitted along the x axis. (b) Pulse timing for the PR imaging by FID signals and the diffusiometry by spin echo. The shorter pump pulse is better to prevent polarized Cs atoms from diffusing. A typical pulse width is 50 µs. The delay time TD between the end of the pump pulse and the RF π/2 pulse is varied to image the diffusing Cs atoms. The RF pulse has a white spectrum so that transverse spin polarization is efficiently produced even in the presence of the gradient field.

Fig. 3
Fig. 3

Typical coherent transient signals and corresponding two-dimensional images of spin-polarized Cs density. (a) The FID signal growing from the beginning of the RF π/2 pulse. The signal is averaged at 4096 times. (b) The spin-echo signal. Time origin is set at 250 µs after the π pulse. Note that the time scale is different from that of (a). (c) The PR image from 64 FID signals recorded as rotating the field gradient from 0 to π radians. (d) Fourier-transform image from the spin echo. Polarization of Cs atoms is produced by longitudinal optical pumping along the z axis. Several rings in the image are due to the intensity profile of the pump beam, which is spatially modulated through a single-mode optical fiber. The rectangular boundary corresponds to the cell walls with the internal size of 22×22 mm. An image in the xy plane perpendicular to the pump beam is obtained by detection of the probe beam propagating along the x axis.

Fig. 4
Fig. 4

Two-dimensional images of the polarized Cs atoms diffusing in a helium gas. These are PR images by FID signals of 1024 averaged without slice selection. A rectangular boundary corresponds to the cell walls. The RF π/2 pulse is delayed by TD after the pump pulse. TD equals (a) 0 ms, (b) 1 ms, (c) 2 ms, (d) 3 ms, (e) 4 ms, (f) 5 ms, (g) 6 ms, (h) 10 ms, (i) 20 ms, (j) 30 ms, (k) 40 ms, and (l) 50 ms. The fine structure is faded out at several milliseconds after optical pumping.

Fig. 5
Fig. 5

Echo attenuation in the presence of the continuous-gradient magnetic field along the x axis. Cs atoms are optically polarized and diffuse in helium buffer gas at 310 K. Closed and open circles show the cases that the echo time 2τ equals 2 ms and 3 ms, respectively. The theoretical curve (solid curve) given by Eq. (6) is fitted to the observed echo amplitude.

Fig. 6
Fig. 6

Schematic setup of the proposal method of fast three-dimensional imaging. Parallel processing makes it possible to obtain an image by one shot of a coherent transient signal. The system requires a photodetector array detecting the transmitted probe beam, many amplifiers, and A/D converters.

Tables (1)

Tables Icon

Table 1 Parameters Used and Measured in the Present Work

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ωL=γ|B0i+Gijrj|,
ρ(r)=S(κ)exp(-i2πκ·r)dκ,
ωLγB0+Gzjrj+(Gxjrj)2+(Gyjrj)2-(Gzjrj)22B0.
A(2τ)=A0 exp-23γ2Gzj2Dτ3,
dIS=eηnsMωL/2πdr3,
|Em+1-Em|=γB0±gIμBB0-2(2m+1)Δh(γB0)2,
|δr|Dδt,
2T2γGzj=36µm.

Metrics