Abstract

It is shown that mode matching, aberration compensation, control of beam overlap, and feedback are critical issues in designing multipass amplifiers for ultrashort pulse amplification. We have developed a Ti:sapphire amplifier system capable of producing aberration-free millijoule-level 25-fs pulses at 1 kHz. This system has a unique five-mirror ring design, which is capable of compensating second-order aberrations, and the flexibility to mode match the input beam and the pump laser. A unique compressor, which is a part of the amplification system, was designed to eliminate feedback.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. V. Rudd, G. Korn, S. Kane, J. Squier, G. Mourou, and P. Bado, “Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 18, 2044 (1993).
    [CrossRef]
  2. K. Wynne, G. D. Reid, and R. M. Hochstrasser, “Regenerative amplification of 30-fs pulses in Ti:sapphire at 5 kHz,” Opt. Lett. 19, 895 (1994).
    [CrossRef] [PubMed]
  3. T. Joo, Y. Jia, and G. R. Fleming, “Ti:sapphire regenerative amplifier for ultrashort high-power multikilohertz pulses without an external stretcher,” Opt. Lett. 20, 389 (1995).
    [CrossRef] [PubMed]
  4. B. E. Lemoff and C. P. J. Barty, “Quintic-phase-limited, spatially uniform expansion and recompression of ultrashort optical pulses,” Opt. Lett. 18, 1651 (1993).
    [CrossRef] [PubMed]
  5. S. Backus, J. Peatross, C. P. Huang, M. M. Murnane, and H. C. Kapteyn, “Ti:sapphire amplifier producing millijoule-level, 21-fs pulses at 1 kHz,” Opt. Lett. 20, 2000 (1995).
    [CrossRef] [PubMed]
  6. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  7. K. F. Wall, R. L. Aggarwal, M. D. Sciacca, H. J. Zeiger, R. E. Fahey, and A. J. Strauss, “Optically induced nonresonant changes in the refractive index of Ti:Al2O3,” Opt. Lett. 14, 180 (1989).
    [CrossRef] [PubMed]
  8. M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18, 977 (1993).
    [CrossRef] [PubMed]
  9. O. E. Martinez, “Design of high-power ultrashort pulse amplifiers by expansion and recompression,” IEEE J. Quantum Electron. 23, 1385 (1987).
    [CrossRef]
  10. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).
    [CrossRef]
  11. J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22, 519 (1997).
    [CrossRef] [PubMed]

1997

1995

1994

1993

1989

1987

O. E. Martinez, “Design of high-power ultrashort pulse amplifiers by expansion and recompression,” IEEE J. Quantum Electron. 23, 1385 (1987).
[CrossRef]

1985

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).
[CrossRef]

Aggarwal, R. L.

Asaki, M. T.

Backus, S.

Bado, P.

Barty, C. P. J.

Fahey, R. E.

Fittinghoff, D. N.

Fleming, G. R.

Garvey, D.

Hochstrasser, R. M.

Huang, C. P.

Jia, Y.

Joo, T.

Kane, S.

Kapteyn, H. C.

Korn, G.

Lemoff, B. E.

Martinez, O. E.

O. E. Martinez, “Design of high-power ultrashort pulse amplifiers by expansion and recompression,” IEEE J. Quantum Electron. 23, 1385 (1987).
[CrossRef]

Mourou, G.

Murnane, M. M.

Peatross, J.

Reid, G. D.

Rudd, J. V.

Sciacca, M. D.

Squier, J.

Strauss, A. J.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).
[CrossRef]

Sweetser, J. N.

Trebino, R.

Wall, K. F.

Wynne, K.

Zeiger, H. J.

Zhou, J.

IEEE J. Quantum Electron.

O. E. Martinez, “Design of high-power ultrashort pulse amplifiers by expansion and recompression,” IEEE J. Quantum Electron. 23, 1385 (1987).
[CrossRef]

Opt. Commun.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).
[CrossRef]

Opt. Lett.

K. F. Wall, R. L. Aggarwal, M. D. Sciacca, H. J. Zeiger, R. E. Fahey, and A. J. Strauss, “Optically induced nonresonant changes in the refractive index of Ti:Al2O3,” Opt. Lett. 14, 180 (1989).
[CrossRef] [PubMed]

M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18, 977 (1993).
[CrossRef] [PubMed]

B. E. Lemoff and C. P. J. Barty, “Quintic-phase-limited, spatially uniform expansion and recompression of ultrashort optical pulses,” Opt. Lett. 18, 1651 (1993).
[CrossRef] [PubMed]

K. Wynne, G. D. Reid, and R. M. Hochstrasser, “Regenerative amplification of 30-fs pulses in Ti:sapphire at 5 kHz,” Opt. Lett. 19, 895 (1994).
[CrossRef] [PubMed]

T. Joo, Y. Jia, and G. R. Fleming, “Ti:sapphire regenerative amplifier for ultrashort high-power multikilohertz pulses without an external stretcher,” Opt. Lett. 20, 389 (1995).
[CrossRef] [PubMed]

S. Backus, J. Peatross, C. P. Huang, M. M. Murnane, and H. C. Kapteyn, “Ti:sapphire amplifier producing millijoule-level, 21-fs pulses at 1 kHz,” Opt. Lett. 20, 2000 (1995).
[CrossRef] [PubMed]

J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22, 519 (1997).
[CrossRef] [PubMed]

J. V. Rudd, G. Korn, S. Kane, J. Squier, G. Mourou, and P. Bado, “Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 18, 2044 (1993).
[CrossRef]

Other

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simple three-mirror ring multipass amplifier. The parameters are incidence angle θ=7.5°; focal length f=75 cm; separation between the spherical mirrors, L150 cm; and incidence angle on the crystal, approximately normal incidence.

Fig. 2
Fig. 2

Beam sizes of different passes. For the three-mirror design: (a) saggital plane compensated (L<2 f ); (b) tangential plane compensated (L>2 f ); (c) for L=2 f the beams look round in the gain crystal; (d) for L=2 f the beams look oval outside the crystal. For the five-mirror design: for L=150.5 cm the beam remains round and maintains the same size pass by pass (e) inside and (f) outside the crystal. Note that f is the focal length of the spherical mirrors. Plane of observation for (a), (b), (c), (e) is in the crystal; for (d), (f), 3 cm from the crystal.

Fig. 3
Fig. 3

New five-mirror eight-pass design. The parameters are incidence angle θ=1.5°; focal length f=75 cm; separation between the spherical mirrors, L150 cm; and incidence angle on the crystal, approximately Brewster’s angle.

Fig. 4
Fig. 4

(a) Beam configuration on a three-piece retroreflector. (b) Side view of compressor. (c) Top view of compressor. Evenly numbered beams are heading toward the right, while oddly numbered beams are heading toward the left.

Fig. 5
Fig. 5

(a) Transient-grating frequency-resolved optical gating of 25-fs amplified pulses. (b) Spectra of amplified and unamplified pulses. (c) Autocorrelation of the 25-fs amplified pulses.

Metrics