Abstract

We present a method for implementing optical heterodyne detection using a diffractive optic for time-resolved transient-grating experiments. This technique does not require active phase locking of pulse pairs to achieve interferometric stability. The phase stability, intrinsic time resolution, and signal amplification are demonstrated experimentally through Raman scattering in carbon disulfide.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. L. Eesley, M. D. Levenson, and W. M. Tolles, IEEE J. Quantum. Electron. 14, 45 (1978).
    [CrossRef]
  2. H. J. Eichler, P. Gunter, and D. W. Pohl, Laser Induced Dynamic Gratings (Springer-Verlag, New York, 1986).
  3. N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, J. Chem. Phys. 95, 1487 (1991).
    [CrossRef]
  4. Y. J. Chang, P. Cong, and J. D. Simon, J. Phys. Chem. 99, 7857 (1995).
    [CrossRef]
  5. W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 247, 264 (1995).
    [CrossRef]
  6. J. Strauss, M. Hundhausen, and L. Ley, Appl. Phys. Lett. 69, 875 (1996).
    [CrossRef]
  7. J. A. Rogers and K. A. Nelson, Physica B 219&220, 562 (1996).
    [CrossRef]
  8. M. D. Levenson and G. L. Eesley, Appl. Phys. 19, 1 (1978).
    [CrossRef]
  9. T. R. Dickson, Ph.D. dissertation (University of Toronto, Toronto, Ontario, 1991).
  10. S. Palese, L. Schilling, R. J. D. Miller, P. R. Staver, and W. T. Lotshaw, J. Phys. Chem. 98, 6308 (1994).
    [CrossRef]
  11. M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, Opt. Lett. 18, 977 (1993).
    [CrossRef] [PubMed]
  12. G. Dadusc, P. J. Schulenberg, and R. J. D. Miller, presented at OSA Annual Meeting, Long Beach, California, October 12–17, 1997, paper WEE4.

1996 (2)

J. Strauss, M. Hundhausen, and L. Ley, Appl. Phys. Lett. 69, 875 (1996).
[CrossRef]

J. A. Rogers and K. A. Nelson, Physica B 219&220, 562 (1996).
[CrossRef]

1995 (2)

Y. J. Chang, P. Cong, and J. D. Simon, J. Phys. Chem. 99, 7857 (1995).
[CrossRef]

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 247, 264 (1995).
[CrossRef]

1994 (1)

S. Palese, L. Schilling, R. J. D. Miller, P. R. Staver, and W. T. Lotshaw, J. Phys. Chem. 98, 6308 (1994).
[CrossRef]

1993 (1)

1991 (1)

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, J. Chem. Phys. 95, 1487 (1991).
[CrossRef]

1978 (2)

G. L. Eesley, M. D. Levenson, and W. M. Tolles, IEEE J. Quantum. Electron. 14, 45 (1978).
[CrossRef]

M. D. Levenson and G. L. Eesley, Appl. Phys. 19, 1 (1978).
[CrossRef]

Appl. Phys. (1)

M. D. Levenson and G. L. Eesley, Appl. Phys. 19, 1 (1978).
[CrossRef]

Appl. Phys. Lett. (1)

J. Strauss, M. Hundhausen, and L. Ley, Appl. Phys. Lett. 69, 875 (1996).
[CrossRef]

Chem. Phys. Lett. (1)

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 247, 264 (1995).
[CrossRef]

IEEE J. Quantum. Electron. (1)

G. L. Eesley, M. D. Levenson, and W. M. Tolles, IEEE J. Quantum. Electron. 14, 45 (1978).
[CrossRef]

J. Chem. Phys. (1)

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, J. Chem. Phys. 95, 1487 (1991).
[CrossRef]

J. Phys. Chem. (2)

Y. J. Chang, P. Cong, and J. D. Simon, J. Phys. Chem. 99, 7857 (1995).
[CrossRef]

S. Palese, L. Schilling, R. J. D. Miller, P. R. Staver, and W. T. Lotshaw, J. Phys. Chem. 98, 6308 (1994).
[CrossRef]

Opt. Lett. (1)

Physica B (1)

J. A. Rogers and K. A. Nelson, Physica B 219&220, 562 (1996).
[CrossRef]

Other (3)

T. R. Dickson, Ph.D. dissertation (University of Toronto, Toronto, Ontario, 1991).

H. J. Eichler, P. Gunter, and D. W. Pohl, Laser Induced Dynamic Gratings (Springer-Verlag, New York, 1986).

G. Dadusc, P. J. Schulenberg, and R. J. D. Miller, presented at OSA Annual Meeting, Long Beach, California, October 12–17, 1997, paper WEE4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of transient-grating experiment using a diffractive optic (DO). The dashed line represents the probe/reference beams and the solid line the pump beams. SM, spherical mirror; FM, folding mirror; T, tilt plate; λ/2, half-wave plate; W, window; L, lens; P, polarizer; D, detector.

Fig. 2
Fig. 2

Transient-grating signals in CS2: (A) OHD signal for Δϕ=0; (B) OHD signal for Δϕ=π/2. Inset: directly detected grating signal with the reference beam blocked. All signals are normalized to the peak of trace A for reference.

Fig. 3
Fig. 3

Time dependence of the phase difference δϕ between input fields: (a) a typical few minutes sampling of δϕ with a bandwidth of 5 Hz; (b) slow drift of δϕ with restricted bandwidth of 0.01 Hz to clarify the long time-scale fluctuations.

Fig. 4
Fig. 4

Comparison of the cross correlation of the undiffracted 0-order pump and probe pulses (dashed curve, FWHM=25 fs) with the cross correlation between the 0-order probe and +1-order pump (solid curve, FWHM=32 fs). The symbols are calculated autocorrelation traces for 18-fs intensity FWHM, 35-μm-diameter Gaussian pulses with crossing angles of 2° (circles) and 15.5° (triangles).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I=|Eref|2+|Es(t)|2+2|ErefEs(t)|cos(ϕref-ϕs),
Δϕ=π2+ϕχ+(ϕ1-ϕ2)-(ϕref-ϕpr),
SOHD(t)=[IL+δIL(t)]2 cosπ2+δϕ(t),IL2δϕ(t).

Metrics