Abstract

Spontaneous emission control around 490 nm for praseodymium ions implanted inside planar dielectric structures, such as microcavities, is investigated and compared with a theory. Using an Ar+ laser at 457.9 nm as the pump beam, we demonstrate the existence of an optimal pumping angle. Furthermore, we obtain enhanced and directive radiation patterns for the wavelength at which the cavities are tuned (490 nm) and underline very wavelength-dependent behavior of the patterns. In any case, good agreement is obtained between experiment and theory when we take the intrinsic Pr spectrum of emission into account independently of the structures’ influence.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946); S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Phys. Today 42(1), 24–30 (1989); S. Haroche, “Cavity quantum electrodynamics,” in Fundamental Systems in Quantum Optics, J. Dalibard, J. M. Raimond, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1992), p. 767; H. Yokoyama, “Physics and device applications of optical microcavities,” Science SCIEAS 256, 66–70 (1992); Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today PHTOAD 46(6), 66–73 (1993).
    [CrossRef] [PubMed]
  2. P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
    [CrossRef]
  3. D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41, 325–344 (1994).
    [CrossRef]
  4. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992); Q. Deng, H. Deng, and D. G. Deppe, “Radiation fields from whispering-gallery modes of oxide-confined vertical-cavity surface-emitting laser,” Opt. Lett. 22, 463–465 (1997).
    [CrossRef] [PubMed]
  5. J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett. 69, 449–451 (1996).
    [CrossRef]
  6. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
    [CrossRef] [PubMed]
  7. N. Takada, T. Tsutsui, and S. Saito, “Strongly directed emission from controlled-spontaneous-emission electroluminescent diodes with europium complex as an emitter,” J. Appl. Phys. 33, 863–866 (1994).
    [CrossRef]
  8. F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987); Yokoyama, M. Suzuki, and Y. Nambu, “Spontaneous emission and laser oscillation properties of microcavities containing a dye solution,” Appl. Phys. Lett. 58, 2598–2600 (1991); M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. PRLTAO 76, 3931–3934 (1996); S. Ciancaleoni, P. Mataloni, O. Jedrkiewicz, and F. De Martini, “Angular distribution of the spontaneous emission in a planar dielectric dye microcavity,” J. Opt. Soc. Am. B JOBPDE 14, 1556–1563 (1997).
    [CrossRef] [PubMed]
  9. E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett. 61, 1381–1383 (1992).
    [CrossRef]
  10. E. Snoeks, A. Lagendijk, and A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74, 2459–2462 (1995).
    [CrossRef] [PubMed]
  11. H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984), pp. 247–256.
  12. P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III–V and II–VI materials,” Electron. Lett. 25, 718–719 (1989); A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
    [CrossRef]
  13. H. Rigneault and S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
    [CrossRef] [PubMed]
  14. H. Rigneault, F. Flory, S. Monneret, S. Robert, and L. Roux, “Fluorescence of Ta2O5 thin films doped by kilo-electron-volt Er implantation: application to microcavities,” Appl. Opt. 35, 5005–5012 (1996).
    [CrossRef] [PubMed]
  15. H. Rigneault, B. Jacquier, P. Moretti, A. M. Jurdyc, A. Belarouci, A. Auffret, and S. Robert, “Optical properties of dielectric microcavities implanted with rare earth ions,” in Materials Science Forum, Vols. 239–241 (Trans Tech Publications Aedermannsdorf, Switzerland, 1997), pp. 717–720.
  16. E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped Si/SiO2 microcavities,” Appl. Phys. Lett. 63, 2603–2605 (1993).
    [CrossRef]
  17. A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
    [CrossRef] [PubMed]
  18. H. Rigneault, S. Robert, C. Begon, B. Jacquier, and P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
    [CrossRef]
  19. N. Koide and Kikuo Ujihara, “Analysis of spontaneous emission from a planar microcavity-dependence on the refractive index of the cavity region and atomic location,” Opt. Commun. 111, 381–393 (1994).
    [CrossRef]

1997 (1)

H. Rigneault, S. Robert, C. Begon, B. Jacquier, and P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
[CrossRef]

1996 (3)

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett. 69, 449–451 (1996).
[CrossRef]

H. Rigneault and S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
[CrossRef] [PubMed]

H. Rigneault, F. Flory, S. Monneret, S. Robert, and L. Roux, “Fluorescence of Ta2O5 thin films doped by kilo-electron-volt Er implantation: application to microcavities,” Appl. Opt. 35, 5005–5012 (1996).
[CrossRef] [PubMed]

1995 (2)

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

E. Snoeks, A. Lagendijk, and A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74, 2459–2462 (1995).
[CrossRef] [PubMed]

1994 (3)

N. Koide and Kikuo Ujihara, “Analysis of spontaneous emission from a planar microcavity-dependence on the refractive index of the cavity region and atomic location,” Opt. Commun. 111, 381–393 (1994).
[CrossRef]

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41, 325–344 (1994).
[CrossRef]

N. Takada, T. Tsutsui, and S. Saito, “Strongly directed emission from controlled-spontaneous-emission electroluminescent diodes with europium complex as an emitter,” J. Appl. Phys. 33, 863–866 (1994).
[CrossRef]

1993 (2)

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped Si/SiO2 microcavities,” Appl. Phys. Lett. 63, 2603–2605 (1993).
[CrossRef]

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef] [PubMed]

1992 (1)

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett. 61, 1381–1383 (1992).
[CrossRef]

1983 (1)

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped Si/SiO2 microcavities,” Appl. Phys. Lett. 63, 2603–2605 (1993).
[CrossRef]

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett. 61, 1381–1383 (1992).
[CrossRef]

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett. 69, 449–451 (1996).
[CrossRef]

J. Appl. Phys. (1)

N. Takada, T. Tsutsui, and S. Saito, “Strongly directed emission from controlled-spontaneous-emission electroluminescent diodes with europium complex as an emitter,” J. Appl. Phys. 33, 863–866 (1994).
[CrossRef]

J. Mod. Opt. (1)

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41, 325–344 (1994).
[CrossRef]

Opt. Commun. (1)

N. Koide and Kikuo Ujihara, “Analysis of spontaneous emission from a planar microcavity-dependence on the refractive index of the cavity region and atomic location,” Opt. Commun. 111, 381–393 (1994).
[CrossRef]

Phys. Rev. A (2)

H. Rigneault and S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
[CrossRef] [PubMed]

H. Rigneault, S. Robert, C. Begon, B. Jacquier, and P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997).
[CrossRef]

Phys. Rev. Lett. (4)

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
[CrossRef] [PubMed]

E. Snoeks, A. Lagendijk, and A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74, 2459–2462 (1995).
[CrossRef] [PubMed]

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef] [PubMed]

Other (6)

H. Rigneault, B. Jacquier, P. Moretti, A. M. Jurdyc, A. Belarouci, A. Auffret, and S. Robert, “Optical properties of dielectric microcavities implanted with rare earth ions,” in Materials Science Forum, Vols. 239–241 (Trans Tech Publications Aedermannsdorf, Switzerland, 1997), pp. 717–720.

H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984), pp. 247–256.

P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III–V and II–VI materials,” Electron. Lett. 25, 718–719 (1989); A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
[CrossRef]

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987); Yokoyama, M. Suzuki, and Y. Nambu, “Spontaneous emission and laser oscillation properties of microcavities containing a dye solution,” Appl. Phys. Lett. 58, 2598–2600 (1991); M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. PRLTAO 76, 3931–3934 (1996); S. Ciancaleoni, P. Mataloni, O. Jedrkiewicz, and F. De Martini, “Angular distribution of the spontaneous emission in a planar dielectric dye microcavity,” J. Opt. Soc. Am. B JOBPDE 14, 1556–1563 (1997).
[CrossRef] [PubMed]

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946); S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Phys. Today 42(1), 24–30 (1989); S. Haroche, “Cavity quantum electrodynamics,” in Fundamental Systems in Quantum Optics, J. Dalibard, J. M. Raimond, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1992), p. 767; H. Yokoyama, “Physics and device applications of optical microcavities,” Science SCIEAS 256, 66–70 (1992); Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today PHTOAD 46(6), 66–73 (1993).
[CrossRef] [PubMed]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992); Q. Deng, H. Deng, and D. G. Deppe, “Radiation fields from whispering-gallery modes of oxide-confined vertical-cavity surface-emitting laser,” Opt. Lett. 22, 463–465 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Schematic representation of studied samples. The monitoring wavelength λf equals 490 nm. Each layer, whose optical thickness is λf/4, is symbolized by H or L, depending on whether it corresponds to high or low refractive-index material.

Fig. 3
Fig. 3

Blue emission spectrum of Pr located in Ta2O5 IP.

Fig. 4
Fig. 4

Experimental and theoretical evolution of the power emitted normal to the sample surface at 490 nm versus pump angle for (a) the mirror M and (b) the cavity SC.

Fig. 5
Fig. 5

(a) Experimental and theoretical radiation pattern of microcavity SC. (b) Experimental SC spectral measurement for the light emitted normal to the sample surface in the air side (θobs=90°).

Fig. 6
Fig. 6

Experimental radiation pattern of mirror M, cavities SC and NSC (given for a unit pump energy).

Fig. 7
Fig. 7

Experimental radiation patterns recorded at 487.3, 490, and 492.3 nm observation wavelengths for cavity SC.

Fig. 8
Fig. 8

Experimental and theoretical direction of maximum emission for microcavity SC as a function of observation wavelength.

Fig. 9
Fig. 9

Experimental and theoretical evolution of maximum emission intensity for cavity SC as a function of observation wavelength.

Metrics