Abstract

The polarized differential absorption spectra of the Cr4+ ion in Cr4+:SrGd4(SiO4)3O and Cr4+:CaGd4(SiO4)3O crystals were studied under picosecond excitation. Polarized excited-state absorption (ESA) spectra were derived from the differential absorption spectra by use of the ground-state absorption (GSA) and ESA cross sections obtained from intensity-dependent transmission measurements. ESA was assigned to the 3T23T1(3F) and 3T23T1(3P) transitions of the Cr4+ ion. Passive Q switching of a Nd3+:YAlO3 (1.08-μm) and a ruby (694-nm) laser with the Cr4+:SrGd4(SiO4)3O and the Cr4+:CaGd4(SiO4)3O crystals as saturable absorbers was demonstrated. The pulse duration (energy) of the Q-switched Nd3+:YAlO3 and the ruby laser were found to be 55 ns (2.4 mJ) and 90 ns (20 mJ), respectively.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. V. Petričević, S. K. Gayen, and R. R. Alfano, Appl. Phys. Lett. 53, 2590 (1988).
    [CrossRef]
  2. N. B. Angert, N. J. Borodin, V. M. Garmash, V. A. Zhitnyk, A. G. Okhrimchuck, O. G. Siyuchenko, and A. V. Shestakov, Sov. J. Quantum Electron. 18, 73 (1988).
    [CrossRef]
  3. B. H. T. Chai, Y. Shimony, S. Deka, X. X. Zhang, E. Minin, and M. Bass, Appl. Phys. Lett. 61, 2141 (1992).
    [CrossRef]
  4. V. Petričević, A. B. Bykov, J. M. Evans, and R. R. Alfano, Opt. Lett. 21, 1750 (1996).
    [CrossRef]
  5. R. Moncorge, H. Manaa, and G. Boulon, Opt. Mater. 4, 139 (1994) and Refs. therein.
    [CrossRef]
  6. S. Kuck, K. Petermann, U. Pohlmann, U. Schonhoff, and G. Huber, Appl. Phys. B 58, 153 (1994).
    [CrossRef]
  7. K. Spariosu, W. Chen, R. Stultz, M. Birnbaum, and A. V. Shestakov, Opt. Lett. 18, 814 (1993).
    [CrossRef] [PubMed]
  8. Y. Shimony, Y. Kalisky, and B. H. T. Chai, Opt. Mater. 4, 547 (1995).
    [CrossRef]
  9. R. Moncorge, H. Manaa, F. Deghoul, Y. Guyot, S. A. Pollack, E. V. Zharikov, and M. Kokta, Opt. Commun. 132, 279 (1996).
    [CrossRef]
  10. M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, and B. I. Minkov, Opt. Lett. 17, 929 (1992).
    [CrossRef] [PubMed]
  11. N. I. Zhavoronkov, V. P. Mikhailov, N. V. Kuleshov, B. I. Minkov, and A. S. Avtukh, Quantum Electron. 25, 31 (1995).
    [CrossRef]
  12. Y. K. Kuo and M. Birnbaum, Appl. Phys. Lett. 67, 173 (1995).
    [CrossRef]
  13. Y. K. Kuo, M. F. Huang, and M. Birnbaum, IEEE J. Quantum Electron. 31, 657 (1995).
    [CrossRef]
  14. E. Munin, A. B. Villaverde, X. X. Zhang, and M. Bass, Appl. Phys. Lett. 63, 1739 (1993).
    [CrossRef]
  15. M. I. Demchuk, E. V. Zharikov, A. M. Zabaznov, I. A. Manichev, V. P. Mikhailov, A. M. Prohorov, A. P. Shkadarevich, A. F. Cherniavskii, I. A. Scherbakov, and K. V. Yumashev, Kvantovaya Elektron. 14, 423 (1987).
  16. W. Chen, K. Spariosu, R. Stultz, Y. K. Kuo, M. Birnbaum, and A. Shestakov, Opt. Commun. 104, 71 (1993).
    [CrossRef]
  17. R. Moncorge, H. Manaa, F. Deghoul, C. Borel, and Ch. Wyon, Opt. Commun. 116, 393 (1995).
    [CrossRef]
  18. E. P. Riedel, G. W. Roland, K. B. Steinbruegge, T. Henningsen, R. H. Hopkins, R. Mazelsky, and N. T. Melamed, Appl. Opt. 11, 999 (1972).
    [CrossRef]
  19. L. W. Schroeder and M. Mathew, J. Solid State Chem. 26, 383 (1978).
    [CrossRef]
  20. K. V. Yumashev, N. V. Kuleshov, P. V. Prokoshin, A. M. Malyarevich, and V. P. Mikhailov, Appl. Phys. Lett. 70, 2523 (1997).
    [CrossRef]
  21. K. V. Yumashev, N. V. Kuleshov, V. P. Mikhailov, V. G. Shcherbitsky, P. V. Prokoshin, S. P. Zhmako, and B. I. Minkov, Quantum Electron. 25, 628 (1995).
    [CrossRef]

1997 (1)

K. V. Yumashev, N. V. Kuleshov, P. V. Prokoshin, A. M. Malyarevich, and V. P. Mikhailov, Appl. Phys. Lett. 70, 2523 (1997).
[CrossRef]

1996 (2)

V. Petričević, A. B. Bykov, J. M. Evans, and R. R. Alfano, Opt. Lett. 21, 1750 (1996).
[CrossRef]

R. Moncorge, H. Manaa, F. Deghoul, Y. Guyot, S. A. Pollack, E. V. Zharikov, and M. Kokta, Opt. Commun. 132, 279 (1996).
[CrossRef]

1995 (6)

R. Moncorge, H. Manaa, F. Deghoul, C. Borel, and Ch. Wyon, Opt. Commun. 116, 393 (1995).
[CrossRef]

N. I. Zhavoronkov, V. P. Mikhailov, N. V. Kuleshov, B. I. Minkov, and A. S. Avtukh, Quantum Electron. 25, 31 (1995).
[CrossRef]

Y. K. Kuo and M. Birnbaum, Appl. Phys. Lett. 67, 173 (1995).
[CrossRef]

Y. K. Kuo, M. F. Huang, and M. Birnbaum, IEEE J. Quantum Electron. 31, 657 (1995).
[CrossRef]

Y. Shimony, Y. Kalisky, and B. H. T. Chai, Opt. Mater. 4, 547 (1995).
[CrossRef]

K. V. Yumashev, N. V. Kuleshov, V. P. Mikhailov, V. G. Shcherbitsky, P. V. Prokoshin, S. P. Zhmako, and B. I. Minkov, Quantum Electron. 25, 628 (1995).
[CrossRef]

1994 (2)

R. Moncorge, H. Manaa, and G. Boulon, Opt. Mater. 4, 139 (1994) and Refs. therein.
[CrossRef]

S. Kuck, K. Petermann, U. Pohlmann, U. Schonhoff, and G. Huber, Appl. Phys. B 58, 153 (1994).
[CrossRef]

1993 (3)

K. Spariosu, W. Chen, R. Stultz, M. Birnbaum, and A. V. Shestakov, Opt. Lett. 18, 814 (1993).
[CrossRef] [PubMed]

E. Munin, A. B. Villaverde, X. X. Zhang, and M. Bass, Appl. Phys. Lett. 63, 1739 (1993).
[CrossRef]

W. Chen, K. Spariosu, R. Stultz, Y. K. Kuo, M. Birnbaum, and A. Shestakov, Opt. Commun. 104, 71 (1993).
[CrossRef]

1992 (2)

1988 (2)

V. Petričević, S. K. Gayen, and R. R. Alfano, Appl. Phys. Lett. 53, 2590 (1988).
[CrossRef]

N. B. Angert, N. J. Borodin, V. M. Garmash, V. A. Zhitnyk, A. G. Okhrimchuck, O. G. Siyuchenko, and A. V. Shestakov, Sov. J. Quantum Electron. 18, 73 (1988).
[CrossRef]

1987 (1)

M. I. Demchuk, E. V. Zharikov, A. M. Zabaznov, I. A. Manichev, V. P. Mikhailov, A. M. Prohorov, A. P. Shkadarevich, A. F. Cherniavskii, I. A. Scherbakov, and K. V. Yumashev, Kvantovaya Elektron. 14, 423 (1987).

1978 (1)

L. W. Schroeder and M. Mathew, J. Solid State Chem. 26, 383 (1978).
[CrossRef]

1972 (1)

Appl. Opt. (1)

Appl. Phys. B (1)

S. Kuck, K. Petermann, U. Pohlmann, U. Schonhoff, and G. Huber, Appl. Phys. B 58, 153 (1994).
[CrossRef]

Appl. Phys. Lett. (5)

V. Petričević, S. K. Gayen, and R. R. Alfano, Appl. Phys. Lett. 53, 2590 (1988).
[CrossRef]

B. H. T. Chai, Y. Shimony, S. Deka, X. X. Zhang, E. Minin, and M. Bass, Appl. Phys. Lett. 61, 2141 (1992).
[CrossRef]

Y. K. Kuo and M. Birnbaum, Appl. Phys. Lett. 67, 173 (1995).
[CrossRef]

E. Munin, A. B. Villaverde, X. X. Zhang, and M. Bass, Appl. Phys. Lett. 63, 1739 (1993).
[CrossRef]

K. V. Yumashev, N. V. Kuleshov, P. V. Prokoshin, A. M. Malyarevich, and V. P. Mikhailov, Appl. Phys. Lett. 70, 2523 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. K. Kuo, M. F. Huang, and M. Birnbaum, IEEE J. Quantum Electron. 31, 657 (1995).
[CrossRef]

J. Solid State Chem. (1)

L. W. Schroeder and M. Mathew, J. Solid State Chem. 26, 383 (1978).
[CrossRef]

Kvantovaya Elektron. (1)

M. I. Demchuk, E. V. Zharikov, A. M. Zabaznov, I. A. Manichev, V. P. Mikhailov, A. M. Prohorov, A. P. Shkadarevich, A. F. Cherniavskii, I. A. Scherbakov, and K. V. Yumashev, Kvantovaya Elektron. 14, 423 (1987).

Opt. Commun. (3)

W. Chen, K. Spariosu, R. Stultz, Y. K. Kuo, M. Birnbaum, and A. Shestakov, Opt. Commun. 104, 71 (1993).
[CrossRef]

R. Moncorge, H. Manaa, F. Deghoul, C. Borel, and Ch. Wyon, Opt. Commun. 116, 393 (1995).
[CrossRef]

R. Moncorge, H. Manaa, F. Deghoul, Y. Guyot, S. A. Pollack, E. V. Zharikov, and M. Kokta, Opt. Commun. 132, 279 (1996).
[CrossRef]

Opt. Lett. (3)

Opt. Mater. (2)

R. Moncorge, H. Manaa, and G. Boulon, Opt. Mater. 4, 139 (1994) and Refs. therein.
[CrossRef]

Y. Shimony, Y. Kalisky, and B. H. T. Chai, Opt. Mater. 4, 547 (1995).
[CrossRef]

Quantum Electron. (2)

N. I. Zhavoronkov, V. P. Mikhailov, N. V. Kuleshov, B. I. Minkov, and A. S. Avtukh, Quantum Electron. 25, 31 (1995).
[CrossRef]

K. V. Yumashev, N. V. Kuleshov, V. P. Mikhailov, V. G. Shcherbitsky, P. V. Prokoshin, S. P. Zhmako, and B. I. Minkov, Quantum Electron. 25, 628 (1995).
[CrossRef]

Sov. J. Quantum Electron. (1)

N. B. Angert, N. J. Borodin, V. M. Garmash, V. A. Zhitnyk, A. G. Okhrimchuck, O. G. Siyuchenko, and A. V. Shestakov, Sov. J. Quantum Electron. 18, 73 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Polarized GSA spectra of (a) Cr:CaGd4(SiO4)3O and (b) SrGd4(SiO4)3O crystals.

Fig. 2
Fig. 2

Energy-level diagram of the Cr4+ ion in CaGd4(SiO4)3O and SrGd4(SiO4)3O crystals in Td symmetry. Solid arrows, optical transitions (singlet levels are omitted intentionally).

Fig. 3
Fig. 3

Polarized differential absorption spectra ΔOD=-lg(T/T0) and corresponding GSA spectra (left axis) for the Cr:CaGd4(SiO4)3O crystal. Both pump- and probe-beam polarizations are (a) parallel and (b) perpendicular to the c axis of the crystal. The 15-ps pulses at 1.08 μm were used as the pump. The time delay between pump and probe pulses is 40 ps.

Fig. 4
Fig. 4

Polarized differential absorption spectra ΔOD=-lg(T/T0) and corresponding GSA spectra (left axis) for the Cr:SrGd4(SiO4)3O crystal. Both pump- and probe-beam polarizations are (a) parallel and (b) perpendicular to the c axis of the crystal. The 15-ps pulses at 1.08 μm were used as the pump. The time delay between pump and probe pulses is 40 ps.

Fig. 5
Fig. 5

Dependence of the transmission on the input energy fluence for the Cr:CaGd4(SiO4)3O crystal at a wavelength of 694 nm (a) and (b) with a pulse duration of 30 ns and at a wavelength of 1.064 μm (c) and (d) with a pulse width of 12 ns. The laser light is polarized parallel (a) and (c) and perpendicular (b) and (d) to the c axis of the crystal. Solid curve is the result of the curve-fitting by means of Eqs. (2) and (3).

Fig. 6
Fig. 6

Dependence of the transmission on the input energy fluence for the Cr:SrGd4(SiO4)3O crystal at a wavelength of 694 nm (a) and (b) with a pulse duration of 30 ns and at a wavelength of 1.064 μm (c) and (d) with a pulse width of 12 ns. The laser light is polarized parallel (a) and (c) and perpendicular (b) and (d) to the c axis of the crystal. Solid curve is the result of the curve-fitting by means of Eqs. (2) and (3).

Fig. 7
Fig. 7

Polarized ESA spectra σESA(λ) of Cr4+ ions in the CaGd4(SiO4)3O crystal. Filled circle, the ESA cross-section values derived from the intensity-dependent transmission experiment at 1.064 μm (see Table 1).

Fig. 8
Fig. 8

Polarized ESA spectra σESA(λ) of Cr4+ ions in the SrGd4(SiO4)3O crystal. Filled circle, the ESA cross-section values derived from the intensity-dependent transmission experiment at 1.064 μm (see Table 1).

Fig. 9
Fig. 9

(a) Schematic of the passively Q-switched Nd3+:YAlO3 laser cavity with a Cr4+:SrGd4(SiO4)3O saturable absorber. M1 and M2 are the highly reflecting and output resonator mirrors, respectively. (b) Typical Q-switched laser pulse from the Nd3+:YAlO3 at 1.08 μm. The pulse duration (FWHM) and pulse energy are 55 ns and 2.4 mJ, respectively.

Fig. 10
Fig. 10

(a) Schematic of the passively Q-switched ruby laser cavity with a Cr4+:CaGd4(SiO4)3O saturable absorber. M1 and M2 are the highly reflecting and output resonator mirrors, respectively. (b) Typical Q-switched laser pulse from the ruby laser at 694 nm. The pulse duration (FWHM) and pulse energy are 90 ns and 20 mJ, respectively.

Tables (1)

Tables Icon

Table 1 Values of GSA and ESA Cross Sections (10-18 cm2) a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ΔOD(λ)=-lg(T/T0),
dE/dz=-ωN0[(1-σESA/σGSA)×[1-exp(-σGSAE/ω)]+σESAE/ω]-αE,
N0=ln(1/T0)/LσGSA,
ΔOD(λ)=[σESA(λ)-σGSA(λ)]ΔNL,
ΔNL=ΔOD(λ0)/[σESA(λ0)-σGSA(λ0)].
σESA(λ)=[D(λ0)/σGSA(λ0)]×{D(λ)-ΔOD(λ)D(λ0)/ΔOD(λ0)×[1-σESA(λ0)/σGSA(λ0)]},

Metrics