Abstract

Four-photon mixing in a low-birefringence fiber is strongly influenced by the orientation of the pump and signal waves with respect to the fiber axes. We experimentally investigated the dependence of the modulational gain spectra on pump power and polarization by mixing orthogonal pump and probe light beams in a birefringent optical fiber. With a pump on the fast fiber axis, a cascade of sidebands was generated in the regime of normal fiber dispersion. These sidebands are shown to correspond to 0.2–0.3-THz trains of pulses with complex polarization profiles. The analysis reveals that, at particular values of the input pump and probe powers and signal frequency detuning, trains of dark-solitonlike pulses can be generated on the axis orthogonal to the pump.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Nicolis and I. Prigogine, Self-organization in Nonequilibrium Systems, from Dissipative Structures to Order through Fluctuations (Wiley, New York, 1977).
  2. T. J. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).
    [CrossRef]
  3. V. I. Bespalov and V. I. Talanov, Pis’ma Zh. Eksp. Teor. Fiz. 3, 471 (1966) [JETP Lett. 3, 307 (1966)].
  4. V. I. Karpman and E. M. Krushkal, Zh. Eksp. Teor. Fiz. 55, 530 (1968) [JETP Lett. 28, 277 (1969).
  5. Yu. Ya. Brosdkii, A. G. Litvak, S. I. Neuchuev, and Ya. Z. Slutsker, Pis’ma Zh. Eksp. Teor. Fiz. 45, 176 (1987) [JETP Lett. 45, 217 (1987).
  6. K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
    [CrossRef] [PubMed]
  7. A. Hasegawa, Opt. Lett. 9, 288 (1994).
    [CrossRef]
  8. K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
    [CrossRef]
  9. G. P. Agrawal, Phys. Rev. Lett. 59, 880 (1987); G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York, 1995), Chap. 7, and references therein.
    [CrossRef] [PubMed]
  10. MI can also be observed with pump and probe in opposite dispersion regimes: G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, Phys. Rev. A 39, 3406 (1989).
    [CrossRef] [PubMed]
  11. A. L. Berkhoer and V. E. Zakharov, Zh. Eksp. Teor. Fiz. 58, 903 (1970) [Sov. Phys. JETP 31, 486 (1970)].
  12. S. Wabnitz, Phys. Rev. A 38, 2018 (1988); S. Trillo and S. Wabnitz, J. Opt. Soc. Am. B 6, 238 (1988).
    [CrossRef] [PubMed]
  13. B. Daino, G. Gregori, and S. Wabnitz, J. Appl. Phys. 58, 4512 (1985); Opt. Lett. 11, 42 (1986).
    [CrossRef]
  14. H. G. Winful, Opt. Lett. 11, 33 (1986).
    [CrossRef]
  15. S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
    [CrossRef]
  16. R. Kashyap and N. Finlayson, Opt. Lett. 17, 405 (1992).
    [CrossRef] [PubMed]
  17. P. Ferro, S. Trillo, and S. Wabnitz, Appl. Phys. Lett. 64, 2782 (1994).
    [CrossRef]
  18. P. Ferro, S. Trillo, and S. Wabnitz, Electron. Lett. 30, 1616 (1994).
    [CrossRef]
  19. K. J. Blow, N. J. Doran, and D. Wood, Opt. Lett. 12, 202 (1987).
    [CrossRef] [PubMed]
  20. Y. Barad and Y. Silberberg, Phys. Rev. Lett. 78, 3290 (1997).
    [CrossRef]
  21. S. F. Feldman, D. A. Weinberger, and H. G. Winful, Opt. Lett. 15, 311 (1990); J. Opt. Soc. Am. B 10, 1191 (1993).
    [CrossRef]
  22. S. G. Murdoch, R. Leonhardt, and J. D. Harvey, Opt. Lett. 20, 866 (1995).
    [CrossRef] [PubMed]
  23. N. N. Akhmediev, V. I. Korneev, and N. V. Mitskevich, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 34, 84 (1991).
  24. D. N. Christodoulides, Phys. Lett. A 132, 451 (1988).
    [CrossRef]
  25. M. Haelterman and A. Sheppard, Opt. Lett. 19, 96 (1994).
    [CrossRef]
  26. M. Haelterman, Opt. Commun. 111, 86 (1994).
    [CrossRef]
  27. G. Millot, E. Seve, and S. Wabnitz, Phys. Rev. Lett. 79, 661 (1997).
    [CrossRef]
  28. S. Solimeno, B. Crosignani, and P. Di Porto, Guiding, Diffraction, and Confinement of Optical Radiation (Academic, New York, 1986), Chap. VIII.
  29. C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987).
    [CrossRef]
  30. S. Trillo and S. Wabnitz, Phys. Lett. A 159, 252 (1991).
    [CrossRef]
  31. B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, J. Chem. Phys. 93, 2185 (1990).
    [CrossRef]
  32. A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, Appl. Opt. 20, 2962 (1981).
    [CrossRef] [PubMed]
  33. F. Matera and S. Wabnitz, Opt. Lett. 11, 467 (1986); H. G. Winful and A. Hu, Opt. Lett. 11, 668 (1986).
    [CrossRef] [PubMed]
  34. K. L. Sala, Phys. Rev. A 29, 1944 (1984).
    [CrossRef]
  35. S. Trillo and S. Wabnitz, Phys. Rev. E 55, R4897 (1997); 56, 1048 (1997).
    [CrossRef]
  36. E. A. Coddington and N. Levison, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955), pp. 78–81.
  37. G. Millot, E. Seve, S. Wabnitz, and S. Trillo, in Quantum Electronics and Laser Science Conference, Vol. 12 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper PD 14; S. Trillo, G. Millot, E. Seve, and S. Wabnitz, Appl. Phys. Lett. 72, 150 (1998).
    [CrossRef]
  38. G. Cappellini and S. Trillo, Opt. Lett. 16, 895 (1991).
    [CrossRef] [PubMed]

1997 (2)

Y. Barad and Y. Silberberg, Phys. Rev. Lett. 78, 3290 (1997).
[CrossRef]

G. Millot, E. Seve, and S. Wabnitz, Phys. Rev. Lett. 79, 661 (1997).
[CrossRef]

1995 (1)

1994 (5)

A. Hasegawa, Opt. Lett. 9, 288 (1994).
[CrossRef]

M. Haelterman, Opt. Commun. 111, 86 (1994).
[CrossRef]

M. Haelterman and A. Sheppard, Opt. Lett. 19, 96 (1994).
[CrossRef]

P. Ferro, S. Trillo, and S. Wabnitz, Appl. Phys. Lett. 64, 2782 (1994).
[CrossRef]

P. Ferro, S. Trillo, and S. Wabnitz, Electron. Lett. 30, 1616 (1994).
[CrossRef]

1992 (1)

1991 (3)

G. Cappellini and S. Trillo, Opt. Lett. 16, 895 (1991).
[CrossRef] [PubMed]

N. N. Akhmediev, V. I. Korneev, and N. V. Mitskevich, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 34, 84 (1991).

S. Trillo and S. Wabnitz, Phys. Lett. A 159, 252 (1991).
[CrossRef]

1990 (1)

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, J. Chem. Phys. 93, 2185 (1990).
[CrossRef]

1989 (1)

MI can also be observed with pump and probe in opposite dispersion regimes: G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, Phys. Rev. A 39, 3406 (1989).
[CrossRef] [PubMed]

1988 (1)

D. N. Christodoulides, Phys. Lett. A 132, 451 (1988).
[CrossRef]

1987 (3)

C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987).
[CrossRef]

Yu. Ya. Brosdkii, A. G. Litvak, S. I. Neuchuev, and Ya. Z. Slutsker, Pis’ma Zh. Eksp. Teor. Fiz. 45, 176 (1987) [JETP Lett. 45, 217 (1987).

K. J. Blow, N. J. Doran, and D. Wood, Opt. Lett. 12, 202 (1987).
[CrossRef] [PubMed]

1986 (4)

H. G. Winful, Opt. Lett. 11, 33 (1986).
[CrossRef]

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
[CrossRef]

1984 (1)

K. L. Sala, Phys. Rev. A 29, 1944 (1984).
[CrossRef]

1981 (1)

1970 (1)

A. L. Berkhoer and V. E. Zakharov, Zh. Eksp. Teor. Fiz. 58, 903 (1970) [Sov. Phys. JETP 31, 486 (1970)].

1969 (1)

V. I. Karpman and E. M. Krushkal, Zh. Eksp. Teor. Fiz. 55, 530 (1968) [JETP Lett. 28, 277 (1969).

1967 (1)

T. J. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).
[CrossRef]

1966 (1)

V. I. Bespalov and V. I. Talanov, Pis’ma Zh. Eksp. Teor. Fiz. 3, 471 (1966) [JETP Lett. 3, 307 (1966)].

Agrawal, G. P.

MI can also be observed with pump and probe in opposite dispersion regimes: G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, Phys. Rev. A 39, 3406 (1989).
[CrossRef] [PubMed]

Akhmediev, N. N.

N. N. Akhmediev, V. I. Korneev, and N. V. Mitskevich, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 34, 84 (1991).

Alfano, R. R.

MI can also be observed with pump and probe in opposite dispersion regimes: G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, Phys. Rev. A 39, 3406 (1989).
[CrossRef] [PubMed]

Assanto, G.

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
[CrossRef]

Baldeck, P. L.

MI can also be observed with pump and probe in opposite dispersion regimes: G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, Phys. Rev. A 39, 3406 (1989).
[CrossRef] [PubMed]

Barad, Y.

Y. Barad and Y. Silberberg, Phys. Rev. Lett. 78, 3290 (1997).
[CrossRef]

Barlow, A. J.

Benjamin, T. J.

T. J. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).
[CrossRef]

Berger, H.

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, J. Chem. Phys. 93, 2185 (1990).
[CrossRef]

Berkhoer, A. L.

A. L. Berkhoer and V. E. Zakharov, Zh. Eksp. Teor. Fiz. 58, 903 (1970) [Sov. Phys. JETP 31, 486 (1970)].

Bespalov, V. I.

V. I. Bespalov and V. I. Talanov, Pis’ma Zh. Eksp. Teor. Fiz. 3, 471 (1966) [JETP Lett. 3, 307 (1966)].

Blow, K. J.

Bonamy, J.

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, J. Chem. Phys. 93, 2185 (1990).
[CrossRef]

Bonamy, L.

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, J. Chem. Phys. 93, 2185 (1990).
[CrossRef]

Brosdkii, Yu. Ya.

Yu. Ya. Brosdkii, A. G. Litvak, S. I. Neuchuev, and Ya. Z. Slutsker, Pis’ma Zh. Eksp. Teor. Fiz. 45, 176 (1987) [JETP Lett. 45, 217 (1987).

Cappellini, G.

Christodoulides, D. N.

D. N. Christodoulides, Phys. Lett. A 132, 451 (1988).
[CrossRef]

Doran, N. J.

Feir, J. E.

T. J. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).
[CrossRef]

Ferro, P.

P. Ferro, S. Trillo, and S. Wabnitz, Appl. Phys. Lett. 64, 2782 (1994).
[CrossRef]

P. Ferro, S. Trillo, and S. Wabnitz, Electron. Lett. 30, 1616 (1994).
[CrossRef]

Finlayson, N.

Haelterman, M.

Harvey, J. D.

Hasegawa, A.

A. Hasegawa, Opt. Lett. 9, 288 (1994).
[CrossRef]

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

Jewell, J. L.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

Karpman, V. I.

V. I. Karpman and E. M. Krushkal, Zh. Eksp. Teor. Fiz. 55, 530 (1968) [JETP Lett. 28, 277 (1969).

Kashyap, R.

Korneev, V. I.

N. N. Akhmediev, V. I. Korneev, and N. V. Mitskevich, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 34, 84 (1991).

Krushkal, E. M.

V. I. Karpman and E. M. Krushkal, Zh. Eksp. Teor. Fiz. 55, 530 (1968) [JETP Lett. 28, 277 (1969).

Lavorel, B.

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, J. Chem. Phys. 93, 2185 (1990).
[CrossRef]

Leonhardt, R.

Litvak, A. G.

Yu. Ya. Brosdkii, A. G. Litvak, S. I. Neuchuev, and Ya. Z. Slutsker, Pis’ma Zh. Eksp. Teor. Fiz. 45, 176 (1987) [JETP Lett. 45, 217 (1987).

Menyuk, C. R.

C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987).
[CrossRef]

Millot, G.

G. Millot, E. Seve, and S. Wabnitz, Phys. Rev. Lett. 79, 661 (1997).
[CrossRef]

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, J. Chem. Phys. 93, 2185 (1990).
[CrossRef]

Mitskevich, N. V.

N. N. Akhmediev, V. I. Korneev, and N. V. Mitskevich, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 34, 84 (1991).

Murdoch, S. G.

Neuchuev, S. I.

Yu. Ya. Brosdkii, A. G. Litvak, S. I. Neuchuev, and Ya. Z. Slutsker, Pis’ma Zh. Eksp. Teor. Fiz. 45, 176 (1987) [JETP Lett. 45, 217 (1987).

Payne, D. N.

Ramskov-Hansen, J. J.

Robert, D.

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, J. Chem. Phys. 93, 2185 (1990).
[CrossRef]

Saint-Loup, R.

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, J. Chem. Phys. 93, 2185 (1990).
[CrossRef]

Sala, K. L.

K. L. Sala, Phys. Rev. A 29, 1944 (1984).
[CrossRef]

Seaton, C. T.

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
[CrossRef]

Seve, E.

G. Millot, E. Seve, and S. Wabnitz, Phys. Rev. Lett. 79, 661 (1997).
[CrossRef]

Sheppard, A.

Silberberg, Y.

Y. Barad and Y. Silberberg, Phys. Rev. Lett. 78, 3290 (1997).
[CrossRef]

Slutsker, Ya. Z.

Yu. Ya. Brosdkii, A. G. Litvak, S. I. Neuchuev, and Ya. Z. Slutsker, Pis’ma Zh. Eksp. Teor. Fiz. 45, 176 (1987) [JETP Lett. 45, 217 (1987).

Stegeman, G. I.

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
[CrossRef]

Stolen, R. H.

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
[CrossRef]

Tai, K.

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

Talanov, V. I.

V. I. Bespalov and V. I. Talanov, Pis’ma Zh. Eksp. Teor. Fiz. 3, 471 (1966) [JETP Lett. 3, 307 (1966)].

Tomita, A.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

Trillo, S.

P. Ferro, S. Trillo, and S. Wabnitz, Appl. Phys. Lett. 64, 2782 (1994).
[CrossRef]

P. Ferro, S. Trillo, and S. Wabnitz, Electron. Lett. 30, 1616 (1994).
[CrossRef]

S. Trillo and S. Wabnitz, Phys. Lett. A 159, 252 (1991).
[CrossRef]

G. Cappellini and S. Trillo, Opt. Lett. 16, 895 (1991).
[CrossRef] [PubMed]

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
[CrossRef]

Wabnitz, S.

G. Millot, E. Seve, and S. Wabnitz, Phys. Rev. Lett. 79, 661 (1997).
[CrossRef]

P. Ferro, S. Trillo, and S. Wabnitz, Appl. Phys. Lett. 64, 2782 (1994).
[CrossRef]

P. Ferro, S. Trillo, and S. Wabnitz, Electron. Lett. 30, 1616 (1994).
[CrossRef]

S. Trillo and S. Wabnitz, Phys. Lett. A 159, 252 (1991).
[CrossRef]

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
[CrossRef]

Winful, H. G.

Wood, D.

Zakharov, V. E.

A. L. Berkhoer and V. E. Zakharov, Zh. Eksp. Teor. Fiz. 58, 903 (1970) [Sov. Phys. JETP 31, 486 (1970)].

Appl. Opt. (1)

Appl. Phys. Lett. (3)

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986).
[CrossRef]

P. Ferro, S. Trillo, and S. Wabnitz, Appl. Phys. Lett. 64, 2782 (1994).
[CrossRef]

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

Electron. Lett. (1)

P. Ferro, S. Trillo, and S. Wabnitz, Electron. Lett. 30, 1616 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987).
[CrossRef]

Izv. Vyssh. Uchebn. Zaved. Radiofiz. (1)

N. N. Akhmediev, V. I. Korneev, and N. V. Mitskevich, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 34, 84 (1991).

J. Chem. Phys. (1)

B. Lavorel, G. Millot, R. Saint-Loup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, J. Chem. Phys. 93, 2185 (1990).
[CrossRef]

J. Fluid Mech. (1)

T. J. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).
[CrossRef]

JETP Lett. (3)

V. I. Bespalov and V. I. Talanov, Pis’ma Zh. Eksp. Teor. Fiz. 3, 471 (1966) [JETP Lett. 3, 307 (1966)].

V. I. Karpman and E. M. Krushkal, Zh. Eksp. Teor. Fiz. 55, 530 (1968) [JETP Lett. 28, 277 (1969).

Yu. Ya. Brosdkii, A. G. Litvak, S. I. Neuchuev, and Ya. Z. Slutsker, Pis’ma Zh. Eksp. Teor. Fiz. 45, 176 (1987) [JETP Lett. 45, 217 (1987).

Opt. Commun. (1)

M. Haelterman, Opt. Commun. 111, 86 (1994).
[CrossRef]

Opt. Lett. (7)

Phys. Lett. A (2)

S. Trillo and S. Wabnitz, Phys. Lett. A 159, 252 (1991).
[CrossRef]

D. N. Christodoulides, Phys. Lett. A 132, 451 (1988).
[CrossRef]

Phys. Rev. A (2)

MI can also be observed with pump and probe in opposite dispersion regimes: G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, Phys. Rev. A 39, 3406 (1989).
[CrossRef] [PubMed]

K. L. Sala, Phys. Rev. A 29, 1944 (1984).
[CrossRef]

Phys. Rev. Lett. (3)

G. Millot, E. Seve, and S. Wabnitz, Phys. Rev. Lett. 79, 661 (1997).
[CrossRef]

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

Y. Barad and Y. Silberberg, Phys. Rev. Lett. 78, 3290 (1997).
[CrossRef]

Sov. Phys. JETP (1)

A. L. Berkhoer and V. E. Zakharov, Zh. Eksp. Teor. Fiz. 58, 903 (1970) [Sov. Phys. JETP 31, 486 (1970)].

Other (10)

S. Wabnitz, Phys. Rev. A 38, 2018 (1988); S. Trillo and S. Wabnitz, J. Opt. Soc. Am. B 6, 238 (1988).
[CrossRef] [PubMed]

B. Daino, G. Gregori, and S. Wabnitz, J. Appl. Phys. 58, 4512 (1985); Opt. Lett. 11, 42 (1986).
[CrossRef]

S. F. Feldman, D. A. Weinberger, and H. G. Winful, Opt. Lett. 15, 311 (1990); J. Opt. Soc. Am. B 10, 1191 (1993).
[CrossRef]

G. P. Agrawal, Phys. Rev. Lett. 59, 880 (1987); G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York, 1995), Chap. 7, and references therein.
[CrossRef] [PubMed]

S. Solimeno, B. Crosignani, and P. Di Porto, Guiding, Diffraction, and Confinement of Optical Radiation (Academic, New York, 1986), Chap. VIII.

S. Trillo and S. Wabnitz, Phys. Rev. E 55, R4897 (1997); 56, 1048 (1997).
[CrossRef]

E. A. Coddington and N. Levison, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955), pp. 78–81.

G. Millot, E. Seve, S. Wabnitz, and S. Trillo, in Quantum Electronics and Laser Science Conference, Vol. 12 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper PD 14; S. Trillo, G. Millot, E. Seve, and S. Wabnitz, Appl. Phys. Lett. 72, 150 (1998).
[CrossRef]

F. Matera and S. Wabnitz, Opt. Lett. 11, 467 (1986); H. G. Winful and A. Hu, Opt. Lett. 11, 668 (1986).
[CrossRef] [PubMed]

G. Nicolis and I. Prigogine, Self-organization in Nonequilibrium Systems, from Dissipative Structures to Order through Fluctuations (Wiley, New York, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

MPI gain versus sideband frequency detuning from a 112-W cw pump: solid (dashed) curve, pump on the slow (fast) axis.

Fig. 2
Fig. 2

As in Fig. 1 but for a 152-W cw pump.

Fig. 3
Fig. 3

Schematic of the experimental apparatus for observing induced MPI: MPC, multiple-pass cell; ODL, optical delay line; DVP, direct vision prism; P’s, Glan polarizers; F’s, neutral-density filters; BS’s, beam splitters; MO’s, 40 microscope objectives; PD, photodiode; PM, photomultiplier; L, lens.

Fig. 4
Fig. 4

Observation of cw polarization instability: asterisks (open circles), the output depolarization ratio D for a pump on the fast (slow) fiber eigenpolarization; solid curve, theoretical fit (neglecting spontaneous MI) with a pump at 88 deg from the slow axis and with an input depolarization ratio of 1.2×10-3.

Fig. 5
Fig. 5

Experimental intensity (on a logarithmic scale) of the generated idler wave versus the pump angle for a pump power of 112 W and an input signal detuning of (a) 0.3 THz, (b) 1.2 THz.

Fig. 6
Fig. 6

Theoretical intensities of the generated idler wave as in Fig. 5.

Fig. 7
Fig. 7

Experimental spectra at the fiber output (on a logarithmic scale), with an input pump polarized along either (a) the fast axis or (b) the slow axis. The pump (signal) power is 112 (1.1) W, and the probe frequency detuning is 0.3 THz. (c), (d) As in Fig. (a) and (b) with a probe detuning of 1.2 THz.

Fig. 8
Fig. 8

As in Fig. 7 but with a pump (signal) power of 152 (0.5) W.

Fig. 9
Fig. 9

As in Fig. 7 but with a pump (signal) power of 268 (1.9) W and a probe detuning of 0.23 THz. The pump is on either (a) the fast axis or (b) the slow axis.

Fig. 10
Fig. 10

Theoretical evolution with distance Z of the powers in the fast- and slow-polarization components of the field in the fiber versus time T. The input fast cw pump and slow signal powers and frequency detuning are as in Figs. 7(a) and 7(b).

Fig. 11
Fig. 11

Output powers (solid curves) and phases (dashed curves) versus time T and frequency F in the fast- and slow-polarization components at a distance Z=3.4 m for input cw pump and signal powers and frequency detuning as in Fig. 10.

Fig. 12
Fig. 12

As in Fig. 11 but for a distance Z=6.8 m.

Fig. 13
Fig. 13

As in Fig. 10 but with slow pump and fast signal powers and frequency detuning as in Figs. 7(c) and 7(d).

Fig. 14
Fig. 14

As in Fig. 10 but with fast pump and slow signal powers and frequency detuning as in Fig. 9(a).

Fig. 15
Fig. 15

As in Fig. 11 but for the case in Fig. 14 at a distance Z=6.8 m.

Fig. 16
Fig. 16

As in Fig. 10 but with 96-W fast pump and 50-mW slow signal powers and a frequency detuning of 0.3 THz.

Fig. 17
Fig. 17

As in Fig. 11 but for the case in Fig. 16 at a distance Z=6.8 m.

Fig. 18
Fig. 18

Experimental spectra of light emerging from (a) the slow axis and (b) the fast axis for a pump wave polarized on the fast axis. The fast pump and slow signal powers are 96 W and 50 mW, respectively. The frequency detuning is as in Fig. 16.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

i uxξ=δ uxτ+β 2uxτ2+Δ2 ux+iα2 uy-|ux|2+23 |uy|2ux-13 uy2ux*,
i uyξ=-δ uyτ+β 2uyτ2-Δ2 uy-iα2 ux-|uy|2+23 |ux|2uy-13 ux2uy*
dSdξ=[ΩL+ΩNL(S)]×S
S0=|A0|2+|A1|2,
Γ=7S12+4S22-4S32-6(4μ+1)S1
0<μ(Δ, Ω)/S0<2/3.
Pt3π/(LbR).
G=2[μ(2S0/3-μ)]1/2
g[m-1]=24π2k(ΔF)22±2πLb×2RPp3-4π2k(ΔF)222πLb1/2,
dX(ξ)dξ=M(ξ)X(ξ),
u+ux+iuy2,u-ux-iuy2.
i u+ξ=12 2u+τ2+12 u--23 (|u+|2+2|u-|2)u+,
i u-ξ=12 2u-τ2+12 u+-23 (|u-|2+2|u+|2)u-.
ux(ξ=0, τ)=p;uy(ξ=0, τ)=ρp exp(iΩτ),

Metrics