Abstract

The dynamic behavior of the complementary space-charge gratings formed in a Bi12SiO20 crystal through prolonged recording at 780 nm is used to determine a number of significant photorefractive parameters, including effective trap density, diffusion length, and dielectric relaxation time, simultaneously for both types of charge carriers. This simple, all-optical method does not require prior knowledge of any other photorefractive parameters and therefore represents the only procedure currently available capable of direct materials evaluation in the low-coupling regime. Furthermore, the scheme provides the means for quantitatively assessing the effects of crystal sensitization resulting, for example, from uniform preillumination.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]
  2. F. M. Davidson, ed., Selected Papers on Photorefractive Materials, SPIE Milestone Series MS 86 (SPIE, Bellingham, Wash., 1994).
  3. R. A. Mullen and R. W. Hellwarth, “Optical measurement of the photorefractive parameters of Bi12SiO20,” J. Appl. Phys. 58, 40–44 (1985).
    [CrossRef]
  4. G. Pauliat, J. M. C. Jonathan, M. Allain, J. C. Launay, and G. Roosen, “Determinations of the photorefractive parameters of Bi12GeO20 crystals using transient grating analysis,” Opt. Commun. 59, 266–271 (1986).
    [CrossRef]
  5. N. A. Vainos, S. L. Clapham, and R. W. Eason, “Multiplexed permanent and real time holographic recording in photorefractive BSO,” Appl. Opt. 28, 4381–4385 (1989).
    [CrossRef] [PubMed]
  6. L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989).
    [CrossRef]
  7. F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
    [CrossRef]
  8. D. von der Linde, A. M. Glass, and K. F. Rogers, “High-sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
    [CrossRef]
  9. G. Montemezzani, M. Zgonik, and P. Gunter, “Photorefractive charge compensation at elevated temperatures and application to KNbO3,” J. Opt. Soc. Am. B 10, 171–185 (1993).
    [CrossRef]
  10. D. Kirilov and J. Feinberg, “Fixable complementary gratings in photorefractive BaTiO3,” Opt. Lett. 16, 1520–1522 (1991).
    [CrossRef]
  11. J. P. Herriau and J. P. Huignard, “Hologram fixing process at room temperature in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986).
    [CrossRef]
  12. M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation and evolution of complementary gratings in photorefractive bismuth silicon oxide,” Phys. Rev. B 42, 5641–5648 (1990).
    [CrossRef]
  13. M. Miteva and L. Nikolova, “Oscillating behavior of diffracted light on uniform illumination of holograms in photo-refractive Bi12TiO20 crystals,” Opt. Commun. 67, 192–194 (1988).
    [CrossRef]
  14. L. M. Bernardo, J. C. Lopes, and O. D. Soares, “Hole-electron competition with fast and slow gratings in Bi12SiO20 crystals,” Appl. Opt. 29, 12–14 (1990).
    [CrossRef] [PubMed]
  15. S. Mailis, L. Boutsikaris, and N. A. Vainos, “Multiplexed static and dynamic photorefraction in Bi12SiO20 crystals at 780 nm,” J. Opt. Soc. Am. B 11, 1996–1999 (1994).
    [CrossRef]
  16. S. Mailis, L. Boutsikaris, and N. A. Vainos, “Photorefraction at 780 nm in Bi12SiO20 crystals: effects and applications,” Asian J. Phys. 4, 31–44 (1994).
  17. S. Zhivkova and M. Miteva, “Image subtraction using fixed holograms in photorefractive Bi12TiO20 crystals,” Opt. Lett. 16, 750–751 (1991).
    [CrossRef] [PubMed]
  18. F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole-electron competition in photorefractive gratings,” Opt. Lett. 11, 312–314 (1986).
    [CrossRef]
  19. G. C. Valley, “Erase rates in photorefractive materials with two photoactive species,” Appl. Opt. 22, 3160–3164 (1983).
    [CrossRef] [PubMed]
  20. N. V. Kukhtarev, G. E. Dovgalenko, and V. N. Starkov, “Influence of the optical activity on hologram formation in photorefractive crystals,” Appl. Phys. A: Solids Surf. 33, 227–230 (1984).
    [CrossRef]
  21. G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys. 59, 3363–3366 (1986).
    [CrossRef]
  22. M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Theory of complementary holograms arising from electron-hole transport in photorefractive media,” J. Opt. Soc. Am. B 7, 2329–2338 (1990).
    [CrossRef]
  23. S. Zhivkova and M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” J. Appl. Phys. 68, 3099–3103 (1990).
    [CrossRef]
  24. S. Zhivkova, “Quasi-nondestructive readout of holograms stored in photorefractive sillenites,” J. Appl. Phys. 71, 581–585 (1992).
    [CrossRef]
  25. M. Jeganathan and L. Hesselink, “Diffraction from thermally fixed gratings in a photorefractive medium: steady state and transient analysis,” J. Opt. Soc. Am. B 11, 1791–1799 (1994).
    [CrossRef]
  26. A. E. Attard, “Theory of origins of the photorefractive and photoconductive effects in Bi12SiO20,” J. Appl. Phys. 69, 44–55 (1991).
    [CrossRef]
  27. J. E. Dennis and D. J. Woods, New Computing Environments: Microcomputers in Large-Scale Computing, A. Wouk, ed., SIAM (Soc. Ind. Appl. Math.) Rev. 29, 116–122 (1987).
  28. P. Gunter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
    [CrossRef]
  29. R. Grousson, M. Henry, and S. Mallick, “Transport properties of photoelectrons in Bi12SiO20,” J. Appl. Phys. 56, 224–229 (1984).
    [CrossRef]
  30. M. Peltier and F. Micheron, “Volume hologram recording and charge transfer process in Bi12SiO20 and Bi12GeO20,” J. Appl. Phys. 48, 3683–3690 (1977).
    [CrossRef]
  31. S. G. Odoulov, K. V. Shcherbin, and A. N. Shumeljuk, “Photorefractive recording in BTO in the near infrared,” J. Opt. Soc. Am. B 11, 1780–1785 (1994).
    [CrossRef]
  32. J. P. Huignard and F. Micheron, “High-sensitivity read-write volume holographic storage in Bi12SiO20 and Bi12GeO20 crystals,” Appl. Phys. Lett. 29, 591–593 (1976).
    [CrossRef]
  33. J. P. Huignard, J. P. Herriau, and G. Rivet, “Phase-conjugation and spatial-frequency dependence of wave-front reflectivity in Bi12SiO20 crystals,” Opt. Lett. 5, 102–104 (1980).
    [CrossRef]

1994 (4)

1993 (1)

1992 (1)

S. Zhivkova, “Quasi-nondestructive readout of holograms stored in photorefractive sillenites,” J. Appl. Phys. 71, 581–585 (1992).
[CrossRef]

1991 (3)

1990 (4)

M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation and evolution of complementary gratings in photorefractive bismuth silicon oxide,” Phys. Rev. B 42, 5641–5648 (1990).
[CrossRef]

L. M. Bernardo, J. C. Lopes, and O. D. Soares, “Hole-electron competition with fast and slow gratings in Bi12SiO20 crystals,” Appl. Opt. 29, 12–14 (1990).
[CrossRef] [PubMed]

M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Theory of complementary holograms arising from electron-hole transport in photorefractive media,” J. Opt. Soc. Am. B 7, 2329–2338 (1990).
[CrossRef]

S. Zhivkova and M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” J. Appl. Phys. 68, 3099–3103 (1990).
[CrossRef]

1989 (2)

1988 (1)

M. Miteva and L. Nikolova, “Oscillating behavior of diffracted light on uniform illumination of holograms in photo-refractive Bi12TiO20 crystals,” Opt. Commun. 67, 192–194 (1988).
[CrossRef]

1987 (1)

J. E. Dennis and D. J. Woods, New Computing Environments: Microcomputers in Large-Scale Computing, A. Wouk, ed., SIAM (Soc. Ind. Appl. Math.) Rev. 29, 116–122 (1987).

1986 (4)

G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys. 59, 3363–3366 (1986).
[CrossRef]

F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole-electron competition in photorefractive gratings,” Opt. Lett. 11, 312–314 (1986).
[CrossRef]

J. P. Herriau and J. P. Huignard, “Hologram fixing process at room temperature in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986).
[CrossRef]

G. Pauliat, J. M. C. Jonathan, M. Allain, J. C. Launay, and G. Roosen, “Determinations of the photorefractive parameters of Bi12GeO20 crystals using transient grating analysis,” Opt. Commun. 59, 266–271 (1986).
[CrossRef]

1985 (1)

R. A. Mullen and R. W. Hellwarth, “Optical measurement of the photorefractive parameters of Bi12SiO20,” J. Appl. Phys. 58, 40–44 (1985).
[CrossRef]

1984 (2)

N. V. Kukhtarev, G. E. Dovgalenko, and V. N. Starkov, “Influence of the optical activity on hologram formation in photorefractive crystals,” Appl. Phys. A: Solids Surf. 33, 227–230 (1984).
[CrossRef]

R. Grousson, M. Henry, and S. Mallick, “Transport properties of photoelectrons in Bi12SiO20,” J. Appl. Phys. 56, 224–229 (1984).
[CrossRef]

1983 (1)

1982 (1)

P. Gunter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

1980 (1)

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

1977 (1)

M. Peltier and F. Micheron, “Volume hologram recording and charge transfer process in Bi12SiO20 and Bi12GeO20,” J. Appl. Phys. 48, 3683–3690 (1977).
[CrossRef]

1976 (1)

J. P. Huignard and F. Micheron, “High-sensitivity read-write volume holographic storage in Bi12SiO20 and Bi12GeO20 crystals,” Appl. Phys. Lett. 29, 591–593 (1976).
[CrossRef]

1975 (1)

D. von der Linde, A. M. Glass, and K. F. Rogers, “High-sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

1972 (1)

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Allain, M.

G. Pauliat, J. M. C. Jonathan, M. Allain, J. C. Launay, and G. Roosen, “Determinations of the photorefractive parameters of Bi12GeO20 crystals using transient grating analysis,” Opt. Commun. 59, 266–271 (1986).
[CrossRef]

Arizmendi, L.

L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989).
[CrossRef]

Attard, A. E.

A. E. Attard, “Theory of origins of the photorefractive and photoconductive effects in Bi12SiO20,” J. Appl. Phys. 69, 44–55 (1991).
[CrossRef]

Barker, R. C.

M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Theory of complementary holograms arising from electron-hole transport in photorefractive media,” J. Opt. Soc. Am. B 7, 2329–2338 (1990).
[CrossRef]

M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation and evolution of complementary gratings in photorefractive bismuth silicon oxide,” Phys. Rev. B 42, 5641–5648 (1990).
[CrossRef]

Bashaw, M. C.

M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation and evolution of complementary gratings in photorefractive bismuth silicon oxide,” Phys. Rev. B 42, 5641–5648 (1990).
[CrossRef]

M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Theory of complementary holograms arising from electron-hole transport in photorefractive media,” J. Opt. Soc. Am. B 7, 2329–2338 (1990).
[CrossRef]

Bernardo, L. M.

Bismuth, G.

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Boutsikaris, L.

S. Mailis, L. Boutsikaris, and N. A. Vainos, “Photorefraction at 780 nm in Bi12SiO20 crystals: effects and applications,” Asian J. Phys. 4, 31–44 (1994).

S. Mailis, L. Boutsikaris, and N. A. Vainos, “Multiplexed static and dynamic photorefraction in Bi12SiO20 crystals at 780 nm,” J. Opt. Soc. Am. B 11, 1996–1999 (1994).
[CrossRef]

Clapham, S. L.

Dennis, J. E.

J. E. Dennis and D. J. Woods, New Computing Environments: Microcomputers in Large-Scale Computing, A. Wouk, ed., SIAM (Soc. Ind. Appl. Math.) Rev. 29, 116–122 (1987).

Dovgalenko, G. E.

N. V. Kukhtarev, G. E. Dovgalenko, and V. N. Starkov, “Influence of the optical activity on hologram formation in photorefractive crystals,” Appl. Phys. A: Solids Surf. 33, 227–230 (1984).
[CrossRef]

Dube, R. R.

M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation and evolution of complementary gratings in photorefractive bismuth silicon oxide,” Phys. Rev. B 42, 5641–5648 (1990).
[CrossRef]

M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Theory of complementary holograms arising from electron-hole transport in photorefractive media,” J. Opt. Soc. Am. B 7, 2329–2338 (1990).
[CrossRef]

Eason, R. W.

Feinberg, J.

Glass, A. M.

D. von der Linde, A. M. Glass, and K. F. Rogers, “High-sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

Grousson, R.

R. Grousson, M. Henry, and S. Mallick, “Transport properties of photoelectrons in Bi12SiO20,” J. Appl. Phys. 56, 224–229 (1984).
[CrossRef]

Gunter, P.

G. Montemezzani, M. Zgonik, and P. Gunter, “Photorefractive charge compensation at elevated temperatures and application to KNbO3,” J. Opt. Soc. Am. B 10, 171–185 (1993).
[CrossRef]

P. Gunter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

Hellwarth, R. W.

F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole-electron competition in photorefractive gratings,” Opt. Lett. 11, 312–314 (1986).
[CrossRef]

R. A. Mullen and R. W. Hellwarth, “Optical measurement of the photorefractive parameters of Bi12SiO20,” J. Appl. Phys. 58, 40–44 (1985).
[CrossRef]

Henry, M.

R. Grousson, M. Henry, and S. Mallick, “Transport properties of photoelectrons in Bi12SiO20,” J. Appl. Phys. 56, 224–229 (1984).
[CrossRef]

Herriau, J. P.

J. P. Herriau and J. P. Huignard, “Hologram fixing process at room temperature in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986).
[CrossRef]

J. P. Huignard, J. P. Herriau, and G. Rivet, “Phase-conjugation and spatial-frequency dependence of wave-front reflectivity in Bi12SiO20 crystals,” Opt. Lett. 5, 102–104 (1980).
[CrossRef]

Hesselink, L.

Huignard, J. P.

J. P. Herriau and J. P. Huignard, “Hologram fixing process at room temperature in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986).
[CrossRef]

J. P. Huignard, J. P. Herriau, and G. Rivet, “Phase-conjugation and spatial-frequency dependence of wave-front reflectivity in Bi12SiO20 crystals,” Opt. Lett. 5, 102–104 (1980).
[CrossRef]

J. P. Huignard and F. Micheron, “High-sensitivity read-write volume holographic storage in Bi12SiO20 and Bi12GeO20 crystals,” Appl. Phys. Lett. 29, 591–593 (1976).
[CrossRef]

Jeganathan, M.

Jonathan, J. M. C.

F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole-electron competition in photorefractive gratings,” Opt. Lett. 11, 312–314 (1986).
[CrossRef]

G. Pauliat, J. M. C. Jonathan, M. Allain, J. C. Launay, and G. Roosen, “Determinations of the photorefractive parameters of Bi12GeO20 crystals using transient grating analysis,” Opt. Commun. 59, 266–271 (1986).
[CrossRef]

Kirilov, D.

Kukhtarev, N. V.

N. V. Kukhtarev, G. E. Dovgalenko, and V. N. Starkov, “Influence of the optical activity on hologram formation in photorefractive crystals,” Appl. Phys. A: Solids Surf. 33, 227–230 (1984).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Launay, J. C.

G. Pauliat, J. M. C. Jonathan, M. Allain, J. C. Launay, and G. Roosen, “Determinations of the photorefractive parameters of Bi12GeO20 crystals using transient grating analysis,” Opt. Commun. 59, 266–271 (1986).
[CrossRef]

Lopes, J. C.

Ma, T.-P.

M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation and evolution of complementary gratings in photorefractive bismuth silicon oxide,” Phys. Rev. B 42, 5641–5648 (1990).
[CrossRef]

M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Theory of complementary holograms arising from electron-hole transport in photorefractive media,” J. Opt. Soc. Am. B 7, 2329–2338 (1990).
[CrossRef]

Mailis, S.

S. Mailis, L. Boutsikaris, and N. A. Vainos, “Multiplexed static and dynamic photorefraction in Bi12SiO20 crystals at 780 nm,” J. Opt. Soc. Am. B 11, 1996–1999 (1994).
[CrossRef]

S. Mailis, L. Boutsikaris, and N. A. Vainos, “Photorefraction at 780 nm in Bi12SiO20 crystals: effects and applications,” Asian J. Phys. 4, 31–44 (1994).

Mallick, S.

R. Grousson, M. Henry, and S. Mallick, “Transport properties of photoelectrons in Bi12SiO20,” J. Appl. Phys. 56, 224–229 (1984).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Micheron, F.

M. Peltier and F. Micheron, “Volume hologram recording and charge transfer process in Bi12SiO20 and Bi12GeO20,” J. Appl. Phys. 48, 3683–3690 (1977).
[CrossRef]

J. P. Huignard and F. Micheron, “High-sensitivity read-write volume holographic storage in Bi12SiO20 and Bi12GeO20 crystals,” Appl. Phys. Lett. 29, 591–593 (1976).
[CrossRef]

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Miteva, M.

S. Zhivkova and M. Miteva, “Image subtraction using fixed holograms in photorefractive Bi12TiO20 crystals,” Opt. Lett. 16, 750–751 (1991).
[CrossRef] [PubMed]

S. Zhivkova and M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” J. Appl. Phys. 68, 3099–3103 (1990).
[CrossRef]

M. Miteva and L. Nikolova, “Oscillating behavior of diffracted light on uniform illumination of holograms in photo-refractive Bi12TiO20 crystals,” Opt. Commun. 67, 192–194 (1988).
[CrossRef]

Montemezzani, G.

Mroczkowski, S.

M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation and evolution of complementary gratings in photorefractive bismuth silicon oxide,” Phys. Rev. B 42, 5641–5648 (1990).
[CrossRef]

M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Theory of complementary holograms arising from electron-hole transport in photorefractive media,” J. Opt. Soc. Am. B 7, 2329–2338 (1990).
[CrossRef]

Mullen, R. A.

R. A. Mullen and R. W. Hellwarth, “Optical measurement of the photorefractive parameters of Bi12SiO20,” J. Appl. Phys. 58, 40–44 (1985).
[CrossRef]

Nikolova, L.

M. Miteva and L. Nikolova, “Oscillating behavior of diffracted light on uniform illumination of holograms in photo-refractive Bi12TiO20 crystals,” Opt. Commun. 67, 192–194 (1988).
[CrossRef]

Odoulov, S. G.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Pauliat, G.

G. Pauliat, J. M. C. Jonathan, M. Allain, J. C. Launay, and G. Roosen, “Determinations of the photorefractive parameters of Bi12GeO20 crystals using transient grating analysis,” Opt. Commun. 59, 266–271 (1986).
[CrossRef]

Peltier, M.

M. Peltier and F. Micheron, “Volume hologram recording and charge transfer process in Bi12SiO20 and Bi12GeO20,” J. Appl. Phys. 48, 3683–3690 (1977).
[CrossRef]

Rivet, G.

Rogers, K. F.

D. von der Linde, A. M. Glass, and K. F. Rogers, “High-sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

Roosen, G.

G. Pauliat, J. M. C. Jonathan, M. Allain, J. C. Launay, and G. Roosen, “Determinations of the photorefractive parameters of Bi12GeO20 crystals using transient grating analysis,” Opt. Commun. 59, 266–271 (1986).
[CrossRef]

Shcherbin, K. V.

Shumeljuk, A. N.

Soares, O. D.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Starkov, V. N.

N. V. Kukhtarev, G. E. Dovgalenko, and V. N. Starkov, “Influence of the optical activity on hologram formation in photorefractive crystals,” Appl. Phys. A: Solids Surf. 33, 227–230 (1984).
[CrossRef]

Strohkendl, F. P.

Vainos, N. A.

Valley, G. C.

G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys. 59, 3363–3366 (1986).
[CrossRef]

G. C. Valley, “Erase rates in photorefractive materials with two photoactive species,” Appl. Opt. 22, 3160–3164 (1983).
[CrossRef] [PubMed]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

von der Linde, D.

D. von der Linde, A. M. Glass, and K. F. Rogers, “High-sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

Woods, D. J.

J. E. Dennis and D. J. Woods, New Computing Environments: Microcomputers in Large-Scale Computing, A. Wouk, ed., SIAM (Soc. Ind. Appl. Math.) Rev. 29, 116–122 (1987).

Zgonik, M.

Zhivkova, S.

S. Zhivkova, “Quasi-nondestructive readout of holograms stored in photorefractive sillenites,” J. Appl. Phys. 71, 581–585 (1992).
[CrossRef]

S. Zhivkova and M. Miteva, “Image subtraction using fixed holograms in photorefractive Bi12TiO20 crystals,” Opt. Lett. 16, 750–751 (1991).
[CrossRef] [PubMed]

S. Zhivkova and M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” J. Appl. Phys. 68, 3099–3103 (1990).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A: Solids Surf. (1)

N. V. Kukhtarev, G. E. Dovgalenko, and V. N. Starkov, “Influence of the optical activity on hologram formation in photorefractive crystals,” Appl. Phys. A: Solids Surf. 33, 227–230 (1984).
[CrossRef]

Appl. Phys. Lett. (4)

J. P. Huignard and F. Micheron, “High-sensitivity read-write volume holographic storage in Bi12SiO20 and Bi12GeO20 crystals,” Appl. Phys. Lett. 29, 591–593 (1976).
[CrossRef]

J. P. Herriau and J. P. Huignard, “Hologram fixing process at room temperature in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986).
[CrossRef]

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

D. von der Linde, A. M. Glass, and K. F. Rogers, “High-sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

Asian J. Phys. (1)

S. Mailis, L. Boutsikaris, and N. A. Vainos, “Photorefraction at 780 nm in Bi12SiO20 crystals: effects and applications,” Asian J. Phys. 4, 31–44 (1994).

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

J. Appl. Phys. (8)

R. A. Mullen and R. W. Hellwarth, “Optical measurement of the photorefractive parameters of Bi12SiO20,” J. Appl. Phys. 58, 40–44 (1985).
[CrossRef]

L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989).
[CrossRef]

R. Grousson, M. Henry, and S. Mallick, “Transport properties of photoelectrons in Bi12SiO20,” J. Appl. Phys. 56, 224–229 (1984).
[CrossRef]

M. Peltier and F. Micheron, “Volume hologram recording and charge transfer process in Bi12SiO20 and Bi12GeO20,” J. Appl. Phys. 48, 3683–3690 (1977).
[CrossRef]

G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys. 59, 3363–3366 (1986).
[CrossRef]

S. Zhivkova and M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” J. Appl. Phys. 68, 3099–3103 (1990).
[CrossRef]

S. Zhivkova, “Quasi-nondestructive readout of holograms stored in photorefractive sillenites,” J. Appl. Phys. 71, 581–585 (1992).
[CrossRef]

A. E. Attard, “Theory of origins of the photorefractive and photoconductive effects in Bi12SiO20,” J. Appl. Phys. 69, 44–55 (1991).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Commun. (2)

G. Pauliat, J. M. C. Jonathan, M. Allain, J. C. Launay, and G. Roosen, “Determinations of the photorefractive parameters of Bi12GeO20 crystals using transient grating analysis,” Opt. Commun. 59, 266–271 (1986).
[CrossRef]

M. Miteva and L. Nikolova, “Oscillating behavior of diffracted light on uniform illumination of holograms in photo-refractive Bi12TiO20 crystals,” Opt. Commun. 67, 192–194 (1988).
[CrossRef]

Opt. Lett. (4)

Phys. Rep. (1)

P. Gunter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

Phys. Rev. B (1)

M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation and evolution of complementary gratings in photorefractive bismuth silicon oxide,” Phys. Rev. B 42, 5641–5648 (1990).
[CrossRef]

SIAM (Soc. Ind. Appl. Math.) Rev. (1)

J. E. Dennis and D. J. Woods, New Computing Environments: Microcomputers in Large-Scale Computing, A. Wouk, ed., SIAM (Soc. Ind. Appl. Math.) Rev. 29, 116–122 (1987).

Other (1)

F. M. Davidson, ed., Selected Papers on Photorefractive Materials, SPIE Milestone Series MS 86 (SPIE, Bellingham, Wash., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Theoretical plot of the temporal evolution of the diffraction efficiency in arbitrary units (AU) (a) during recording of complementary gratings, calculated from Eqs. (7), (8), and (14) and (b) during erasure, calculated from Eq. (17)–(19) and (22). The following numerical values of the parameters involved were used: Λ=1 μm, E0=0 kV/cm, Neff 1=2×1021 m-3, Neff 2=1.2×1025 m-3, LDn=1.7×10-5 m, LDp=2.7×10-7 m, τmn=5.8×10-4 s, and τmp=1570 s. The start of the erasure corresponds to the end of the recording stage (t=1000 s).

Fig. 2
Fig. 2

Schematic of the experimental arrangement used for the determination of the material parameters of the BSO crystal. P, S, and R, optical beams at 780 nm; PC, phase-conjugate signal; BS, beam splitter; M, mirror; SH, mechanical shutter; IR, iris diaphragm; ND, neutral-density filter; PM, power-meter head; DFR, double Fresnel rhomb.

Fig. 3
Fig. 3

Typical experimental curve for the evolution of the diffraction efficiency in arbitrary units (AU) and therefore the total grating recorded inside the crystal. IS=57 mW/cm2, IP=76 mW/cm2, IR=18 mW/cm2, E0=0 kV/cm, Λ=1 μm. The crystal was preilluminated for 30 s with He–Cd (40 mW/cm2 at 442 nm).

Fig. 4
Fig. 4

Temporal evolution of the normalized diffraction efficiency during erasure. Experimental curve corresponds to recording grating spacing equal to (a) 1 μm, (b) 0.8 μm, and (c) 2 μm. The theoretical curves were calculated with the values of the material parameters found from the fitting process.

Fig. 5
Fig. 5

Grating-spacing dependence of the decay rate α1 (a) for large values and (b) for small values of Λ. The curves were calculated from Eq. (10) with the material parameters found from the fitting process.

Fig. 6
Fig. 6

Grating-spacing dependence of the decay rate α2. The curve was calculated from Eq. (10) with the material parameters found from the fitting process.

Fig. 7
Fig. 7

Dependence of the effective trap densities Neff 1 and Neff 2 of the electron- and hole-transport systems on prior illumination of the BSO crystal with He–Cd light (442 nm).

Tables (1)

Tables Icon

Table 1 Values of the Photorefractive Parameters of BSO, Related to Both Types of Change Carriers, Estimated by Nonlinear Mathematical Fitting of the Experimental Decay of the Complementary Gratings to the Theory a

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

N+t=(βn+snI)(N-N+)-γnN+n,
P+t=-(βp+spI)P++γp(P-P+)p,
nt=N+t+1e jnx,pt=-P+t-1e jpx,
jn=eμnnE+eDn nx,jp=eμppE-eDp px,
Ex=eo (p-n+N++P+-Ndark),
N+(t, x)=N0++N1+(t)exp(iKx),
P+(t, x)=P0+-P1+(t)exp(iKx).
N1+(t)-B1C2-B2C1α1α2-α1+B2A2 K1 exp(α1t)-α2+B2A2 K2 exp(α2t),
P1+(t)=-C1A2-C2A1α1α2+K1 exp(α1t)+K2 exp(α2t),
A1=-B11+ED-iE0Eqn,
A2=-1τmp(1+LDp2K2+iKLOp),
B1=-1τmn(1+LDn2K2-iKLOn),
B2=-A21+ED+iE0Eqp,
C1=-m0e K(ED-iE0)B1,
C2=-m0e K(ED+iE0)A2,
K1=α1C2+A1C2-A2C1α1(α1-α2),
K2=-α2C2+A1C2-A2C1α2(α1-α2),
α1,2=-(A1+B2)±[(A1-B2)2+4A2B1]1/22.
ED=kTe K,Eq(n, p)=e0K Neff(1, 2),
Neff 1=N0+N0-N=N0+(N-N0+)N,
Neff 2=P0+P0-P=P0+(P-P0+)P.
τmn=0e(snI0+βn) γnμn N0+N-N0+,
τmp=0e(spI0+βp) γpμp P-P0+P0+,
τn=1γnN0+,τp=1γp(P-P0+),
LDn2=kTe μnγn 1N0+,LDp2=kTe μpγp 1P-P0+,
Esc(t)=ie0K [P1+(t)-N1+(t)].
Ner+(t)=-α1+B2A2 Q1 exp(α1t)-α2+B1A2 Q2 exp(α2t),
Per+(t)=Q1 exp(α1t)+Q2 exp(α2t),
Q1=-A2Ner+(0)+(α2+B2)Per+(0)α1-α2,
Q2=A2Ner+(0)+(α1+B2)Per+(0)α1-α2,
to=1α1-α2 ln-Q2(A2+B2+α2)Q1(A2+B2+α1),
t1=to+1α1-α2 ln α2α1.
η(t)=ieoK [Per+(t)-Ner+(t)]2
lDp2=oe2 kTNeff 2.
N0+=N-(N2-4NNeff 1)1/22,
Po+=P+(P2-4NNeff 2)1/22,
μnγn=(LDn2e/kT)[N-(N2-4NNeff 1)1/2]2,
μpγp=(LDp2e/kT)[P-(P2-4PNeff 2)1/2]2.

Metrics