Abstract

The refractive indices of rubidium hydrogen selenate are measured for several wavelengths at room temperature, and the transmission spectrum is measured from the UV (240 nm) to the near IR (2000 nm). The orientation of the optical indicatrix with respect to the crystal axes is also determined at several wavelengths in the visible range. Using a new method based on the deflection of light by the ferroelastic domain structure, we also determine refined values for birefringence at several wavelengths. Finally, the dispersion of the three birefringences in the range 450–900 nm is deduced from polarimetric measurements. This set of results yields complete knowledge of the linear optical characteristics required for interpretation of the electro-optical and nonlinear optical properties of this compound.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Waskowska, S. Olejnik, K. Lukaszewicz, and T. Glowiak, “Rubidium hydrogen selenate,” Acta Crystallogr. Sec. B 34, 3344 (1978).
    [CrossRef]
  2. S. Suzuki, T. Osaka, and Y. Makita, “Successive phase transitions in RbHSeO4,” J. Phys. Soc. Jpn. 47, 1741 (1979).
    [CrossRef]
  3. J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with a strong electrooptic effect: rubidium hydrogen selenate,” Appl. Phys. Lett. 64, 1920 (1994).
    [CrossRef]
  4. T. Tsukamoto, “Deflection of light by ferroelectric–ferroelastic RbHSeO4,” Jpn. J. Appl. Phys. 23, 424 (1984).
    [CrossRef]
  5. T. Tsukamoto and H. Futama, “Light deflection induced by ferroelastic layered domains,” Phase Transit. 45, 59 (1993).
    [CrossRef]
  6. D. Eimerl, “Electrooptic, linear and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95 (1987).
    [CrossRef]
  7. U. Schlarb and K. Betzler, “Interferometric measurement of refractive indices in LiNbO3,” Ferroelectrics 126, 39 (1992).
    [CrossRef]
  8. T. Tsukamoto, J. Hatano, and H. Futama, “Deflection of light induced by ferroelectric–ferroelastic crystals,” J. Phys. Soc. Jpn. 53, 838 (1984).
    [CrossRef]
  9. J. P. Salvestrini, L. Guilbert, and M. Fontana, “Electro-optical properties of rubidium hydrogen selenate: influence of the dc field and origin of the large electro-optic coefficient,” J. Opt. Soc. Am. B 14, 2818 (1997).
    [CrossRef]

1997 (1)

1994 (1)

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with a strong electrooptic effect: rubidium hydrogen selenate,” Appl. Phys. Lett. 64, 1920 (1994).
[CrossRef]

1993 (1)

T. Tsukamoto and H. Futama, “Light deflection induced by ferroelastic layered domains,” Phase Transit. 45, 59 (1993).
[CrossRef]

1992 (1)

U. Schlarb and K. Betzler, “Interferometric measurement of refractive indices in LiNbO3,” Ferroelectrics 126, 39 (1992).
[CrossRef]

1987 (1)

D. Eimerl, “Electrooptic, linear and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95 (1987).
[CrossRef]

1984 (2)

T. Tsukamoto, J. Hatano, and H. Futama, “Deflection of light induced by ferroelectric–ferroelastic crystals,” J. Phys. Soc. Jpn. 53, 838 (1984).
[CrossRef]

T. Tsukamoto, “Deflection of light by ferroelectric–ferroelastic RbHSeO4,” Jpn. J. Appl. Phys. 23, 424 (1984).
[CrossRef]

1979 (1)

S. Suzuki, T. Osaka, and Y. Makita, “Successive phase transitions in RbHSeO4,” J. Phys. Soc. Jpn. 47, 1741 (1979).
[CrossRef]

1978 (1)

A. Waskowska, S. Olejnik, K. Lukaszewicz, and T. Glowiak, “Rubidium hydrogen selenate,” Acta Crystallogr. Sec. B 34, 3344 (1978).
[CrossRef]

Aillerie, M.

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with a strong electrooptic effect: rubidium hydrogen selenate,” Appl. Phys. Lett. 64, 1920 (1994).
[CrossRef]

Betzler, K.

U. Schlarb and K. Betzler, “Interferometric measurement of refractive indices in LiNbO3,” Ferroelectrics 126, 39 (1992).
[CrossRef]

Czapla, Z.

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with a strong electrooptic effect: rubidium hydrogen selenate,” Appl. Phys. Lett. 64, 1920 (1994).
[CrossRef]

Eimerl, D.

D. Eimerl, “Electrooptic, linear and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95 (1987).
[CrossRef]

Fontana, M.

Fontana, M. D.

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with a strong electrooptic effect: rubidium hydrogen selenate,” Appl. Phys. Lett. 64, 1920 (1994).
[CrossRef]

Futama, H.

T. Tsukamoto and H. Futama, “Light deflection induced by ferroelastic layered domains,” Phase Transit. 45, 59 (1993).
[CrossRef]

T. Tsukamoto, J. Hatano, and H. Futama, “Deflection of light induced by ferroelectric–ferroelastic crystals,” J. Phys. Soc. Jpn. 53, 838 (1984).
[CrossRef]

Glowiak, T.

A. Waskowska, S. Olejnik, K. Lukaszewicz, and T. Glowiak, “Rubidium hydrogen selenate,” Acta Crystallogr. Sec. B 34, 3344 (1978).
[CrossRef]

Guilbert, L.

Hatano, J.

T. Tsukamoto, J. Hatano, and H. Futama, “Deflection of light induced by ferroelectric–ferroelastic crystals,” J. Phys. Soc. Jpn. 53, 838 (1984).
[CrossRef]

Lukaszewicz, K.

A. Waskowska, S. Olejnik, K. Lukaszewicz, and T. Glowiak, “Rubidium hydrogen selenate,” Acta Crystallogr. Sec. B 34, 3344 (1978).
[CrossRef]

Makita, Y.

S. Suzuki, T. Osaka, and Y. Makita, “Successive phase transitions in RbHSeO4,” J. Phys. Soc. Jpn. 47, 1741 (1979).
[CrossRef]

Olejnik, S.

A. Waskowska, S. Olejnik, K. Lukaszewicz, and T. Glowiak, “Rubidium hydrogen selenate,” Acta Crystallogr. Sec. B 34, 3344 (1978).
[CrossRef]

Osaka, T.

S. Suzuki, T. Osaka, and Y. Makita, “Successive phase transitions in RbHSeO4,” J. Phys. Soc. Jpn. 47, 1741 (1979).
[CrossRef]

Salvestrini, J. P.

J. P. Salvestrini, L. Guilbert, and M. Fontana, “Electro-optical properties of rubidium hydrogen selenate: influence of the dc field and origin of the large electro-optic coefficient,” J. Opt. Soc. Am. B 14, 2818 (1997).
[CrossRef]

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with a strong electrooptic effect: rubidium hydrogen selenate,” Appl. Phys. Lett. 64, 1920 (1994).
[CrossRef]

Schlarb, U.

U. Schlarb and K. Betzler, “Interferometric measurement of refractive indices in LiNbO3,” Ferroelectrics 126, 39 (1992).
[CrossRef]

Suzuki, S.

S. Suzuki, T. Osaka, and Y. Makita, “Successive phase transitions in RbHSeO4,” J. Phys. Soc. Jpn. 47, 1741 (1979).
[CrossRef]

Tsukamoto, T.

T. Tsukamoto and H. Futama, “Light deflection induced by ferroelastic layered domains,” Phase Transit. 45, 59 (1993).
[CrossRef]

T. Tsukamoto, J. Hatano, and H. Futama, “Deflection of light induced by ferroelectric–ferroelastic crystals,” J. Phys. Soc. Jpn. 53, 838 (1984).
[CrossRef]

T. Tsukamoto, “Deflection of light by ferroelectric–ferroelastic RbHSeO4,” Jpn. J. Appl. Phys. 23, 424 (1984).
[CrossRef]

Waskowska, A.

A. Waskowska, S. Olejnik, K. Lukaszewicz, and T. Glowiak, “Rubidium hydrogen selenate,” Acta Crystallogr. Sec. B 34, 3344 (1978).
[CrossRef]

Acta Crystallogr. Sec. B (1)

A. Waskowska, S. Olejnik, K. Lukaszewicz, and T. Glowiak, “Rubidium hydrogen selenate,” Acta Crystallogr. Sec. B 34, 3344 (1978).
[CrossRef]

Appl. Phys. Lett. (1)

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with a strong electrooptic effect: rubidium hydrogen selenate,” Appl. Phys. Lett. 64, 1920 (1994).
[CrossRef]

Ferroelectrics (2)

D. Eimerl, “Electrooptic, linear and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95 (1987).
[CrossRef]

U. Schlarb and K. Betzler, “Interferometric measurement of refractive indices in LiNbO3,” Ferroelectrics 126, 39 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Soc. Jpn. (2)

T. Tsukamoto, J. Hatano, and H. Futama, “Deflection of light induced by ferroelectric–ferroelastic crystals,” J. Phys. Soc. Jpn. 53, 838 (1984).
[CrossRef]

S. Suzuki, T. Osaka, and Y. Makita, “Successive phase transitions in RbHSeO4,” J. Phys. Soc. Jpn. 47, 1741 (1979).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Tsukamoto, “Deflection of light by ferroelectric–ferroelastic RbHSeO4,” Jpn. J. Appl. Phys. 23, 424 (1984).
[CrossRef]

Phase Transit. (1)

T. Tsukamoto and H. Futama, “Light deflection induced by ferroelastic layered domains,” Phase Transit. 45, 59 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Two axis systems. (a) Orthogonal axis system (a, b, c) of the pseudo-orthorhombic structure, and pseudoprincipal axes (x1, x2, x3) of the average monoclinic structure (see text, Section 2). (b) True principal axes (X, Y, Z) of the triclinic structure in neighboring domains.

Fig. 2
Fig. 2

Transmission spectrum of RHSe for unpolarized light propagating along the c axis and corrected to account for Fresnel losses. (Sample thickness, 3.35 mm.)

Fig. 3
Fig. 3

(a) Domain structure observed under a polarizing microscope in a b-cut plate. (b) Tilt angle of the neutral lines in the (b, c) and (a, c) planes.

Fig. 4
Fig. 4

Deflection processes at domain walls in RHSe. A, A, refractive transmission and reflection from low index to high index; B, B, refractive transmission and reflection from high index to low index. D, R, nonrefractive transmission and reflection.

Fig. 5
Fig. 5

Deflection angles of beams A and B at 633 nm as functions of the angle of incidence. The least-squares values of the birefringence taken for the theoretical fitting are Δn1=0.0560 and Δn2=0.0139. Other optical parameters involved in the calculation are n2=1.5632, ϕ1=-2.2°, ϕ2=+0.6°, ϕ3=-6.0°.

Fig. 6
Fig. 6

Dispersion of the pseudoprincipal birefringences deduced from the deflection measurements. The solid curves are polynomial regressions Δn2 and Δn3 given by Eqs. (3) and (4) as deduced from polarimetric measurements. |Δn2+Δn3|Δn1.

Fig. 7
Fig. 7

Variation of the birefringence (solid curve, top figure), the deflection angle (dashed curve, top figure), and the tilt angle of the neutral lines (solid curve, bottom figure) as functions of the propagation direction in the (a, b) plane of domain walls at the wavelength 633 nm. The theoretical curves are calculated from Eqs. (5) and (6) (see text, Section 8). The experimental data (filled circles) are obtained from several deflecting plates cut perpendicularly to the domain walls.

Fig. 8
Fig. 8

Intensity spectrum obtained with the x1-cut RHSe plate (430 μm thick) between crossed polarizers at 45° from the neutral lines. The dispersion of the birefringence can be deduced from the spectral positions of the extrema.

Tables (4)

Tables Icon

Table 1 Tilt Angles of the Optical Indicatrix in RHSe a

Tables Icon

Table 2 Pseudoprincipal Refractive Indices of RHSe a

Tables Icon

Table 3 Deflection Angle χA(0) at Zero Incidence a

Tables Icon

Table 4 Deflection Angle χA(0) at Zero Incidence As a Function of Wavelength for x1-Cut and x2-Cut Plates

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δn(λ)=mλ/L(mN).
Δn1(λ)=0.01889+0.04719/λ-0.02038/λ2+0.00345/λ3,
-Δn2(λ)=0.01058+0.00368/λ-0.00119/λ2+0.00016/λ3,
-Δn3(λ)=0.01479+0.03367/λ-0.01447/λ2+0.00257/λ3.
ϕ(x)=1/2 arctanb(x)a(x)-a3,
1n±2(x)=a(x)+a32±b(x)2 sin 2ϕ(x),
a(x)=1n12 cos2 x+1n22 sin2 x,
a3=1n32,
b(x)=1n22-1n32tan 2ϕ1 cos x-1n32-1n12tan 2ϕ2 sin x.

Metrics