Abstract

Pyroelectric liquid-crystal polymers were prepared by photopolymerization of binary mixtures of two monomers that exhibit a smectic C* phase: A2c, 4 -{(R)-(-)-2-[(10-acryloyloxy)decyl]oxy}-3-nitrophenyl 4-{4- [(11-acryloyloxy)undecyloxy]phenyl}benzoate and A1b, 4 -((R)-(+)-2-octyloxy) -3 -nitro phenyl 4-(4 -[(11-acryloyloxy)undecyloxy]phenyl) benzoate. Both liquid-crystal monomers have a NO2 substituent to enhance the nonlinear optical properties, and one of the monomers, A2c, permits polymerization to a cross-linked polymer. During the polymerization an electric field of approximately 25–50 V/μm was applied over the ferroelectric liquid-crystal cells. All cases of polymers formed from the chiral smectic C* phase showed a second-harmonic-generated signal with no external field present, indicating that polar order became fixed. The orientation dependence of the second-harmonic-generated intensity was similar to that of the ferroelectric liquid-crystal monomer; however, some changes were observed that might be due to changes in the dielectric axes of the system. The highest d16 and d23 coefficients were found to be in the range 0.65–0.8 pm/V and differed depending on the detailed preparation of the sample. Experimental results of several polarization combinations of the pump and frequency-doubled light are presented and discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bass, ed., Devices, Measurements and Properties, Vol. II of Handbook of Optics (McGraw-Hill, New York, 1995).
  2. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  3. Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1995).
  4. D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1987).
  5. K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).
    [CrossRef]
  6. R. B. Meyer, L. Liébert, L. Strzelecki, and P. Keller, “Ferroelectric liquid crystals,” J. Phys. (France) Lett. 36, L69–L71 (1975).
  7. N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1980).
    [CrossRef]
  8. M. Schadt, “Linear and nonlinear liquid crystal materials, electro-optical effects and surface interactions. Their application in present and future devices,” Liq. Cryst. 14, 73–104 (1993).
    [CrossRef]
  9. K. Schmitt, R.-P. Herr, M. Schadt, J. Funfschilling, R. Buchecker, X. H. Chen, and C. Benecke, “Strongly nonlinear optical ferroelectric liquid crystals for frequency doubling,” Liq. Cryst. 14, 1735–1752 (1993).
    [CrossRef]
  10. D. M. Walba, M. B. Ros, N. A. Clark, R. Shao, K. M. Johnson, M. G. Robinson, J. Y. Liu, and D. Doroski, “An approach to the design of ferroelectric liquid crystals with high second order electronic nonlinear optical susceptibility,” Mol. Cryst. Liq. Cryst. 198, 51–60 (1991).
    [CrossRef]
  11. M. Trollsås, C. Orrenius, F. Sahlén, U. W. Gedde, T. Norin, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, and J. Lindström, “Preparation of a novel cross-linked polymer for second-order nonlinear optics,” J. Am. Chem. Soc. 36, 8542–8548 (1996).
    [CrossRef]
  12. F. Sahlén, M. Trollsås, A. Hult, U. W. Gedde, D. Hermann, P. Rudquist, L. Komitov, and S. T. Lagerwall, “Spontaneous polarization of novel chiral and non-chiral liquid crystalline acrylate monomer mixtures,” submitted to Liq. Cryst.
  13. M. Trollsås, F. Sahlén, U. W. Gedde, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, B. Stebler, J. Lindström, and O. Rydlund, “Novel thermally stable polymer materials for second order nonlinear optics,” Macromolecules 29, 2590–2598 (1996).
    [CrossRef]
  14. A. Hult, F. Sahlén, M. Trollsås, S. T. Lagerwall, D. Hermann, L. Komitov, P. Rudquist, and B. Stebler, “A pyroelectric liquid crystal polymer (PLCP) for second harmonic generation,” Liq. Cryst. 20, 23–28 (1996).
    [CrossRef]
  15. L. A. Hornak, ed., Polymers for Lightwave and Integrated Optics—Technology and Applications (Dekker, New York, 1992).
  16. J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
    [CrossRef]
  17. M. Ozaki and K. Yoshino, “Dynamic response of second harmonic generation in ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 28, L1830–L1832 (1989).
    [CrossRef]
  18. B. Park, M. Lim, J.-H. Lee, J.-H. Kim, and S.-D. Lee, “Nonlinear optical anisotropy associated with polar ordering in ferroelectric liquid crystals,” Ferroelectrics 179, 231–240 (1996).
    [CrossRef]
  19. M. G. Kuzyk, K. D. Singer, H. E. Zahn, and L. A. King, “Second-order nonlinear-optical tensor properties of poled films under stress,” J. Opt. Soc. Am. B 6, 742–752 (1989).
    [CrossRef]
  20. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997).
  21. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical properties in orientationally ordered materials: relation between molecular and macroscopic order,” J. Opt. Soc. Am. B 4, 968–976 (1987).
    [CrossRef]

1996 (4)

M. Trollsås, C. Orrenius, F. Sahlén, U. W. Gedde, T. Norin, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, and J. Lindström, “Preparation of a novel cross-linked polymer for second-order nonlinear optics,” J. Am. Chem. Soc. 36, 8542–8548 (1996).
[CrossRef]

M. Trollsås, F. Sahlén, U. W. Gedde, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, B. Stebler, J. Lindström, and O. Rydlund, “Novel thermally stable polymer materials for second order nonlinear optics,” Macromolecules 29, 2590–2598 (1996).
[CrossRef]

A. Hult, F. Sahlén, M. Trollsås, S. T. Lagerwall, D. Hermann, L. Komitov, P. Rudquist, and B. Stebler, “A pyroelectric liquid crystal polymer (PLCP) for second harmonic generation,” Liq. Cryst. 20, 23–28 (1996).
[CrossRef]

B. Park, M. Lim, J.-H. Lee, J.-H. Kim, and S.-D. Lee, “Nonlinear optical anisotropy associated with polar ordering in ferroelectric liquid crystals,” Ferroelectrics 179, 231–240 (1996).
[CrossRef]

1993 (2)

M. Schadt, “Linear and nonlinear liquid crystal materials, electro-optical effects and surface interactions. Their application in present and future devices,” Liq. Cryst. 14, 73–104 (1993).
[CrossRef]

K. Schmitt, R.-P. Herr, M. Schadt, J. Funfschilling, R. Buchecker, X. H. Chen, and C. Benecke, “Strongly nonlinear optical ferroelectric liquid crystals for frequency doubling,” Liq. Cryst. 14, 1735–1752 (1993).
[CrossRef]

1991 (1)

D. M. Walba, M. B. Ros, N. A. Clark, R. Shao, K. M. Johnson, M. G. Robinson, J. Y. Liu, and D. Doroski, “An approach to the design of ferroelectric liquid crystals with high second order electronic nonlinear optical susceptibility,” Mol. Cryst. Liq. Cryst. 198, 51–60 (1991).
[CrossRef]

1989 (2)

M. Ozaki and K. Yoshino, “Dynamic response of second harmonic generation in ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 28, L1830–L1832 (1989).
[CrossRef]

M. G. Kuzyk, K. D. Singer, H. E. Zahn, and L. A. King, “Second-order nonlinear-optical tensor properties of poled films under stress,” J. Opt. Soc. Am. B 6, 742–752 (1989).
[CrossRef]

1987 (1)

1986 (1)

K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).
[CrossRef]

1980 (1)

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1980).
[CrossRef]

1975 (1)

R. B. Meyer, L. Liébert, L. Strzelecki, and P. Keller, “Ferroelectric liquid crystals,” J. Phys. (France) Lett. 36, L69–L71 (1975).

1970 (1)

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

Benecke, C.

K. Schmitt, R.-P. Herr, M. Schadt, J. Funfschilling, R. Buchecker, X. H. Chen, and C. Benecke, “Strongly nonlinear optical ferroelectric liquid crystals for frequency doubling,” Liq. Cryst. 14, 1735–1752 (1993).
[CrossRef]

Buchecker, R.

K. Schmitt, R.-P. Herr, M. Schadt, J. Funfschilling, R. Buchecker, X. H. Chen, and C. Benecke, “Strongly nonlinear optical ferroelectric liquid crystals for frequency doubling,” Liq. Cryst. 14, 1735–1752 (1993).
[CrossRef]

Chen, X. H.

K. Schmitt, R.-P. Herr, M. Schadt, J. Funfschilling, R. Buchecker, X. H. Chen, and C. Benecke, “Strongly nonlinear optical ferroelectric liquid crystals for frequency doubling,” Liq. Cryst. 14, 1735–1752 (1993).
[CrossRef]

Clark, N. A.

D. M. Walba, M. B. Ros, N. A. Clark, R. Shao, K. M. Johnson, M. G. Robinson, J. Y. Liu, and D. Doroski, “An approach to the design of ferroelectric liquid crystals with high second order electronic nonlinear optical susceptibility,” Mol. Cryst. Liq. Cryst. 198, 51–60 (1991).
[CrossRef]

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1980).
[CrossRef]

Doroski, D.

D. M. Walba, M. B. Ros, N. A. Clark, R. Shao, K. M. Johnson, M. G. Robinson, J. Y. Liu, and D. Doroski, “An approach to the design of ferroelectric liquid crystals with high second order electronic nonlinear optical susceptibility,” Mol. Cryst. Liq. Cryst. 198, 51–60 (1991).
[CrossRef]

Funfschilling, J.

K. Schmitt, R.-P. Herr, M. Schadt, J. Funfschilling, R. Buchecker, X. H. Chen, and C. Benecke, “Strongly nonlinear optical ferroelectric liquid crystals for frequency doubling,” Liq. Cryst. 14, 1735–1752 (1993).
[CrossRef]

Gedde, U. W.

M. Trollsås, C. Orrenius, F. Sahlén, U. W. Gedde, T. Norin, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, and J. Lindström, “Preparation of a novel cross-linked polymer for second-order nonlinear optics,” J. Am. Chem. Soc. 36, 8542–8548 (1996).
[CrossRef]

M. Trollsås, F. Sahlén, U. W. Gedde, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, B. Stebler, J. Lindström, and O. Rydlund, “Novel thermally stable polymer materials for second order nonlinear optics,” Macromolecules 29, 2590–2598 (1996).
[CrossRef]

Hermann, D.

M. Trollsås, F. Sahlén, U. W. Gedde, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, B. Stebler, J. Lindström, and O. Rydlund, “Novel thermally stable polymer materials for second order nonlinear optics,” Macromolecules 29, 2590–2598 (1996).
[CrossRef]

M. Trollsås, C. Orrenius, F. Sahlén, U. W. Gedde, T. Norin, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, and J. Lindström, “Preparation of a novel cross-linked polymer for second-order nonlinear optics,” J. Am. Chem. Soc. 36, 8542–8548 (1996).
[CrossRef]

A. Hult, F. Sahlén, M. Trollsås, S. T. Lagerwall, D. Hermann, L. Komitov, P. Rudquist, and B. Stebler, “A pyroelectric liquid crystal polymer (PLCP) for second harmonic generation,” Liq. Cryst. 20, 23–28 (1996).
[CrossRef]

Herr, R.-P.

K. Schmitt, R.-P. Herr, M. Schadt, J. Funfschilling, R. Buchecker, X. H. Chen, and C. Benecke, “Strongly nonlinear optical ferroelectric liquid crystals for frequency doubling,” Liq. Cryst. 14, 1735–1752 (1993).
[CrossRef]

Hult, A.

M. Trollsås, C. Orrenius, F. Sahlén, U. W. Gedde, T. Norin, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, and J. Lindström, “Preparation of a novel cross-linked polymer for second-order nonlinear optics,” J. Am. Chem. Soc. 36, 8542–8548 (1996).
[CrossRef]

M. Trollsås, F. Sahlén, U. W. Gedde, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, B. Stebler, J. Lindström, and O. Rydlund, “Novel thermally stable polymer materials for second order nonlinear optics,” Macromolecules 29, 2590–2598 (1996).
[CrossRef]

A. Hult, F. Sahlén, M. Trollsås, S. T. Lagerwall, D. Hermann, L. Komitov, P. Rudquist, and B. Stebler, “A pyroelectric liquid crystal polymer (PLCP) for second harmonic generation,” Liq. Cryst. 20, 23–28 (1996).
[CrossRef]

Jerphagnon, J.

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

Johnson, K. M.

D. M. Walba, M. B. Ros, N. A. Clark, R. Shao, K. M. Johnson, M. G. Robinson, J. Y. Liu, and D. Doroski, “An approach to the design of ferroelectric liquid crystals with high second order electronic nonlinear optical susceptibility,” Mol. Cryst. Liq. Cryst. 198, 51–60 (1991).
[CrossRef]

Keller, P.

R. B. Meyer, L. Liébert, L. Strzelecki, and P. Keller, “Ferroelectric liquid crystals,” J. Phys. (France) Lett. 36, L69–L71 (1975).

Kim, J.-H.

B. Park, M. Lim, J.-H. Lee, J.-H. Kim, and S.-D. Lee, “Nonlinear optical anisotropy associated with polar ordering in ferroelectric liquid crystals,” Ferroelectrics 179, 231–240 (1996).
[CrossRef]

King, L. A.

Komitov, L.

M. Trollsås, F. Sahlén, U. W. Gedde, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, B. Stebler, J. Lindström, and O. Rydlund, “Novel thermally stable polymer materials for second order nonlinear optics,” Macromolecules 29, 2590–2598 (1996).
[CrossRef]

M. Trollsås, C. Orrenius, F. Sahlén, U. W. Gedde, T. Norin, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, and J. Lindström, “Preparation of a novel cross-linked polymer for second-order nonlinear optics,” J. Am. Chem. Soc. 36, 8542–8548 (1996).
[CrossRef]

A. Hult, F. Sahlén, M. Trollsås, S. T. Lagerwall, D. Hermann, L. Komitov, P. Rudquist, and B. Stebler, “A pyroelectric liquid crystal polymer (PLCP) for second harmonic generation,” Liq. Cryst. 20, 23–28 (1996).
[CrossRef]

Kurtz, S. K.

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

Kuzyk, M. G.

Lagerwall, S. T.

A. Hult, F. Sahlén, M. Trollsås, S. T. Lagerwall, D. Hermann, L. Komitov, P. Rudquist, and B. Stebler, “A pyroelectric liquid crystal polymer (PLCP) for second harmonic generation,” Liq. Cryst. 20, 23–28 (1996).
[CrossRef]

M. Trollsås, C. Orrenius, F. Sahlén, U. W. Gedde, T. Norin, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, and J. Lindström, “Preparation of a novel cross-linked polymer for second-order nonlinear optics,” J. Am. Chem. Soc. 36, 8542–8548 (1996).
[CrossRef]

M. Trollsås, F. Sahlén, U. W. Gedde, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, B. Stebler, J. Lindström, and O. Rydlund, “Novel thermally stable polymer materials for second order nonlinear optics,” Macromolecules 29, 2590–2598 (1996).
[CrossRef]

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1980).
[CrossRef]

Lalama, S. J.

K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).
[CrossRef]

Lee, J.-H.

B. Park, M. Lim, J.-H. Lee, J.-H. Kim, and S.-D. Lee, “Nonlinear optical anisotropy associated with polar ordering in ferroelectric liquid crystals,” Ferroelectrics 179, 231–240 (1996).
[CrossRef]

Lee, S.-D.

B. Park, M. Lim, J.-H. Lee, J.-H. Kim, and S.-D. Lee, “Nonlinear optical anisotropy associated with polar ordering in ferroelectric liquid crystals,” Ferroelectrics 179, 231–240 (1996).
[CrossRef]

Liébert, L.

R. B. Meyer, L. Liébert, L. Strzelecki, and P. Keller, “Ferroelectric liquid crystals,” J. Phys. (France) Lett. 36, L69–L71 (1975).

Lim, M.

B. Park, M. Lim, J.-H. Lee, J.-H. Kim, and S.-D. Lee, “Nonlinear optical anisotropy associated with polar ordering in ferroelectric liquid crystals,” Ferroelectrics 179, 231–240 (1996).
[CrossRef]

Lindström, J.

M. Trollsås, F. Sahlén, U. W. Gedde, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, B. Stebler, J. Lindström, and O. Rydlund, “Novel thermally stable polymer materials for second order nonlinear optics,” Macromolecules 29, 2590–2598 (1996).
[CrossRef]

M. Trollsås, C. Orrenius, F. Sahlén, U. W. Gedde, T. Norin, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, and J. Lindström, “Preparation of a novel cross-linked polymer for second-order nonlinear optics,” J. Am. Chem. Soc. 36, 8542–8548 (1996).
[CrossRef]

Liu, J. Y.

D. M. Walba, M. B. Ros, N. A. Clark, R. Shao, K. M. Johnson, M. G. Robinson, J. Y. Liu, and D. Doroski, “An approach to the design of ferroelectric liquid crystals with high second order electronic nonlinear optical susceptibility,” Mol. Cryst. Liq. Cryst. 198, 51–60 (1991).
[CrossRef]

Meyer, R. B.

R. B. Meyer, L. Liébert, L. Strzelecki, and P. Keller, “Ferroelectric liquid crystals,” J. Phys. (France) Lett. 36, L69–L71 (1975).

Norin, T.

M. Trollsås, C. Orrenius, F. Sahlén, U. W. Gedde, T. Norin, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, and J. Lindström, “Preparation of a novel cross-linked polymer for second-order nonlinear optics,” J. Am. Chem. Soc. 36, 8542–8548 (1996).
[CrossRef]

Orrenius, C.

M. Trollsås, C. Orrenius, F. Sahlén, U. W. Gedde, T. Norin, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, and J. Lindström, “Preparation of a novel cross-linked polymer for second-order nonlinear optics,” J. Am. Chem. Soc. 36, 8542–8548 (1996).
[CrossRef]

Ozaki, M.

M. Ozaki and K. Yoshino, “Dynamic response of second harmonic generation in ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 28, L1830–L1832 (1989).
[CrossRef]

Park, B.

B. Park, M. Lim, J.-H. Lee, J.-H. Kim, and S.-D. Lee, “Nonlinear optical anisotropy associated with polar ordering in ferroelectric liquid crystals,” Ferroelectrics 179, 231–240 (1996).
[CrossRef]

Robinson, M. G.

D. M. Walba, M. B. Ros, N. A. Clark, R. Shao, K. M. Johnson, M. G. Robinson, J. Y. Liu, and D. Doroski, “An approach to the design of ferroelectric liquid crystals with high second order electronic nonlinear optical susceptibility,” Mol. Cryst. Liq. Cryst. 198, 51–60 (1991).
[CrossRef]

Ros, M. B.

D. M. Walba, M. B. Ros, N. A. Clark, R. Shao, K. M. Johnson, M. G. Robinson, J. Y. Liu, and D. Doroski, “An approach to the design of ferroelectric liquid crystals with high second order electronic nonlinear optical susceptibility,” Mol. Cryst. Liq. Cryst. 198, 51–60 (1991).
[CrossRef]

Rudquist, P.

A. Hult, F. Sahlén, M. Trollsås, S. T. Lagerwall, D. Hermann, L. Komitov, P. Rudquist, and B. Stebler, “A pyroelectric liquid crystal polymer (PLCP) for second harmonic generation,” Liq. Cryst. 20, 23–28 (1996).
[CrossRef]

M. Trollsås, C. Orrenius, F. Sahlén, U. W. Gedde, T. Norin, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, and J. Lindström, “Preparation of a novel cross-linked polymer for second-order nonlinear optics,” J. Am. Chem. Soc. 36, 8542–8548 (1996).
[CrossRef]

M. Trollsås, F. Sahlén, U. W. Gedde, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, B. Stebler, J. Lindström, and O. Rydlund, “Novel thermally stable polymer materials for second order nonlinear optics,” Macromolecules 29, 2590–2598 (1996).
[CrossRef]

Rydlund, O.

M. Trollsås, F. Sahlén, U. W. Gedde, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, B. Stebler, J. Lindström, and O. Rydlund, “Novel thermally stable polymer materials for second order nonlinear optics,” Macromolecules 29, 2590–2598 (1996).
[CrossRef]

Sahlén, F.

M. Trollsås, F. Sahlén, U. W. Gedde, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, B. Stebler, J. Lindström, and O. Rydlund, “Novel thermally stable polymer materials for second order nonlinear optics,” Macromolecules 29, 2590–2598 (1996).
[CrossRef]

M. Trollsås, C. Orrenius, F. Sahlén, U. W. Gedde, T. Norin, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, and J. Lindström, “Preparation of a novel cross-linked polymer for second-order nonlinear optics,” J. Am. Chem. Soc. 36, 8542–8548 (1996).
[CrossRef]

A. Hult, F. Sahlén, M. Trollsås, S. T. Lagerwall, D. Hermann, L. Komitov, P. Rudquist, and B. Stebler, “A pyroelectric liquid crystal polymer (PLCP) for second harmonic generation,” Liq. Cryst. 20, 23–28 (1996).
[CrossRef]

Schadt, M.

K. Schmitt, R.-P. Herr, M. Schadt, J. Funfschilling, R. Buchecker, X. H. Chen, and C. Benecke, “Strongly nonlinear optical ferroelectric liquid crystals for frequency doubling,” Liq. Cryst. 14, 1735–1752 (1993).
[CrossRef]

M. Schadt, “Linear and nonlinear liquid crystal materials, electro-optical effects and surface interactions. Their application in present and future devices,” Liq. Cryst. 14, 73–104 (1993).
[CrossRef]

Schmitt, K.

K. Schmitt, R.-P. Herr, M. Schadt, J. Funfschilling, R. Buchecker, X. H. Chen, and C. Benecke, “Strongly nonlinear optical ferroelectric liquid crystals for frequency doubling,” Liq. Cryst. 14, 1735–1752 (1993).
[CrossRef]

Shao, R.

D. M. Walba, M. B. Ros, N. A. Clark, R. Shao, K. M. Johnson, M. G. Robinson, J. Y. Liu, and D. Doroski, “An approach to the design of ferroelectric liquid crystals with high second order electronic nonlinear optical susceptibility,” Mol. Cryst. Liq. Cryst. 198, 51–60 (1991).
[CrossRef]

Singer, K. D.

Sohn, J. E.

Stebler, B.

M. Trollsås, F. Sahlén, U. W. Gedde, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, B. Stebler, J. Lindström, and O. Rydlund, “Novel thermally stable polymer materials for second order nonlinear optics,” Macromolecules 29, 2590–2598 (1996).
[CrossRef]

A. Hult, F. Sahlén, M. Trollsås, S. T. Lagerwall, D. Hermann, L. Komitov, P. Rudquist, and B. Stebler, “A pyroelectric liquid crystal polymer (PLCP) for second harmonic generation,” Liq. Cryst. 20, 23–28 (1996).
[CrossRef]

Strzelecki, L.

R. B. Meyer, L. Liébert, L. Strzelecki, and P. Keller, “Ferroelectric liquid crystals,” J. Phys. (France) Lett. 36, L69–L71 (1975).

Trollsås, M.

A. Hult, F. Sahlén, M. Trollsås, S. T. Lagerwall, D. Hermann, L. Komitov, P. Rudquist, and B. Stebler, “A pyroelectric liquid crystal polymer (PLCP) for second harmonic generation,” Liq. Cryst. 20, 23–28 (1996).
[CrossRef]

M. Trollsås, F. Sahlén, U. W. Gedde, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, B. Stebler, J. Lindström, and O. Rydlund, “Novel thermally stable polymer materials for second order nonlinear optics,” Macromolecules 29, 2590–2598 (1996).
[CrossRef]

M. Trollsås, C. Orrenius, F. Sahlén, U. W. Gedde, T. Norin, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, and J. Lindström, “Preparation of a novel cross-linked polymer for second-order nonlinear optics,” J. Am. Chem. Soc. 36, 8542–8548 (1996).
[CrossRef]

Walba, D. M.

D. M. Walba, M. B. Ros, N. A. Clark, R. Shao, K. M. Johnson, M. G. Robinson, J. Y. Liu, and D. Doroski, “An approach to the design of ferroelectric liquid crystals with high second order electronic nonlinear optical susceptibility,” Mol. Cryst. Liq. Cryst. 198, 51–60 (1991).
[CrossRef]

Yoshino, K.

M. Ozaki and K. Yoshino, “Dynamic response of second harmonic generation in ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 28, L1830–L1832 (1989).
[CrossRef]

Zahn, H. E.

Appl. Phys. Lett. (2)

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1980).
[CrossRef]

K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).
[CrossRef]

Ferroelectrics (1)

B. Park, M. Lim, J.-H. Lee, J.-H. Kim, and S.-D. Lee, “Nonlinear optical anisotropy associated with polar ordering in ferroelectric liquid crystals,” Ferroelectrics 179, 231–240 (1996).
[CrossRef]

J. Am. Chem. Soc. (1)

M. Trollsås, C. Orrenius, F. Sahlén, U. W. Gedde, T. Norin, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, and J. Lindström, “Preparation of a novel cross-linked polymer for second-order nonlinear optics,” J. Am. Chem. Soc. 36, 8542–8548 (1996).
[CrossRef]

J. Appl. Phys. (1)

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. (France) Lett. (1)

R. B. Meyer, L. Liébert, L. Strzelecki, and P. Keller, “Ferroelectric liquid crystals,” J. Phys. (France) Lett. 36, L69–L71 (1975).

Jpn. J. Appl. Phys. (1)

M. Ozaki and K. Yoshino, “Dynamic response of second harmonic generation in ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 28, L1830–L1832 (1989).
[CrossRef]

Liq. Cryst. (3)

A. Hult, F. Sahlén, M. Trollsås, S. T. Lagerwall, D. Hermann, L. Komitov, P. Rudquist, and B. Stebler, “A pyroelectric liquid crystal polymer (PLCP) for second harmonic generation,” Liq. Cryst. 20, 23–28 (1996).
[CrossRef]

M. Schadt, “Linear and nonlinear liquid crystal materials, electro-optical effects and surface interactions. Their application in present and future devices,” Liq. Cryst. 14, 73–104 (1993).
[CrossRef]

K. Schmitt, R.-P. Herr, M. Schadt, J. Funfschilling, R. Buchecker, X. H. Chen, and C. Benecke, “Strongly nonlinear optical ferroelectric liquid crystals for frequency doubling,” Liq. Cryst. 14, 1735–1752 (1993).
[CrossRef]

Macromolecules (1)

M. Trollsås, F. Sahlén, U. W. Gedde, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, B. Stebler, J. Lindström, and O. Rydlund, “Novel thermally stable polymer materials for second order nonlinear optics,” Macromolecules 29, 2590–2598 (1996).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

D. M. Walba, M. B. Ros, N. A. Clark, R. Shao, K. M. Johnson, M. G. Robinson, J. Y. Liu, and D. Doroski, “An approach to the design of ferroelectric liquid crystals with high second order electronic nonlinear optical susceptibility,” Mol. Cryst. Liq. Cryst. 198, 51–60 (1991).
[CrossRef]

Other (7)

M. Bass, ed., Devices, Measurements and Properties, Vol. II of Handbook of Optics (McGraw-Hill, New York, 1995).

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1995).

D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1987).

L. A. Hornak, ed., Polymers for Lightwave and Integrated Optics—Technology and Applications (Dekker, New York, 1992).

F. Sahlén, M. Trollsås, A. Hult, U. W. Gedde, D. Hermann, P. Rudquist, L. Komitov, and S. T. Lagerwall, “Spontaneous polarization of novel chiral and non-chiral liquid crystalline acrylate monomer mixtures,” submitted to Liq. Cryst.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Molecular structures of the liquid-crystal monomers, A1b (top) and A2c (bottom), used for polymerization to PLCP in this study.

Fig. 2
Fig. 2

Schematic of the experimental setup used for SHG measurements. Details on the components are given in Section 2. GS/s, gigasamples/second; GPIB, general-purpose interface bus.

Fig. 3
Fig. 3

Schematic of a FLC or a PLCP defining the laboratory (XYZ) and the sample (xyz) coordinate frames.

Fig. 4
Fig. 4

SHG intensity as a function of angles θ and ϕ of the A2c monomer with a 100-V field applied over the FLC cell. Top, p- (pump) to p- (detected) conversion; bottom, p-to-s conversion.

Fig. 5
Fig. 5

SHG intensity as a function of angles θ and ϕ of the PLCP based on the A1b monomer. Top, p- (pump) to p- (detected) conversion; bottom, p-to-s conversion.  

Fig. 6
Fig. 6

SHG intensity as a function of angle ϕ with θ kept fixed. The PLCP sample is based on a mixture of A1b:A2c monomers in the proportions 60:40. (a) p- (pump) to p- (detected) conversion; (b) p-to-s conversion, θ=+40°; (c) p-to-s conversion, θ=-40°. The solid curves connecting the data points (circles) are included to guide the eye and have no other meaning.

Fig. 7
Fig. 7

Simulation of the s- and p-transmitted light for a uniaxial liquid-crystal system with the optic axis (molecular director) as the z axis in the film plane. The incoming light is assumed to be p polarized in an experimental setup corresponding to the setup used for the SHG measurements. Parameters: nz=1.57, nx=ny=1.47, sample thickness 4 μm, wavelength 1100 nm. θ=40°.

Fig. 8
Fig. 8

SHG intensity as a function of the angle ϕ while θ is kept fixed (40°). The PLCP sample is based on (a) 100% A1b, tilt angle 31°; (b) A1b:A2c monomers with the proportions 60:40, tilt angle 25°; (c) A1b:A2c monomers with the proportions 40:60, tilt angle 17°; (d) 100% A2c, tilt angle 4°. All experiments are for p-to-p conversion. The boldface number at the top of each figure refers to the largest value of detected SHG intensity for that case. The tilt angles were measured with a polarizing microscope after the SHG measurements. The solid curves are included to guide the eye and have no other meaning.

Fig. 9
Fig. 9

Fits of the measured SHG intensity of a PLCP made from 100% A1b, tilt angle 31°, from Eqs. 4(a) and 4(c). The refractive indices were taken as noω=1.47, neω=1.57, no2ω =1.52, ne2ω=1.62, nglassω=1.46, and nglass2ω=1.5. λpump =1.1 μm, film thickness 4 μm. The angles were approximated according to θ2ω=θω, and the θ-dependent refractive index for the e wave was neglected [i.e., ne(θ)=ne].

Fig. 10
Fig. 10

Fits of the measured SHG intensity of a z-cut LiNbO3 sample. The experiment was made for the p-to-s conversion with the x axis in the plane of incidence. The refractive indices corrected for temperature were taken from Ref. 20, along with a d22 coefficient of 2.76×10-12 m/V.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P2ω=CPω2deff2tω4T2ω1nω2-n2ω22×sin22πlλ (nω cos θω-n2ω cos θ2ω),
deff=e^2ωd˜:e^ωe^ω,
d˜=000d140d16d16d22d230d140000d230d14,
deff=d16(sin 2θω cos θ2ω+cos2 θω sin θ2ω)+d22 sin2 θω sin θ2ωp-p,
deff=-d14 sin 2θωp-s;
deff=d23(cos2 θω sin θ2ω+sin 2θω cos θ2ω)+d22 sin2 θω sin θ2ωp-p,
deff=d14 sin 2θωp-s.

Metrics