Abstract

We investigated the third-order nonlinear optical properties of several soluble π-conjugated polymers with a goal of reliable determination of the parameters that characterize the nonlinearity, such as the real and imaginary parts of the nonlinear refractive index n2 and the one-photon loss and two-photon loss merit factors W and T, respectively. The measurements were performed at 800 nm with 100-fs pulses from an amplified Ti:sapphire system. We present results of investigations of several 2,5-substituted poly(p-phenylene vinylenes), including poly[2-methoxy-5-(2-ethyl-hexyloxy)-p-phenylenevinylene] and a soluble ladder poly (p-phenylene) polymer. In particular, Z-scan measurements of polymer solutions were found to be useful for the determination of the complex nonlinear refractive index. The results could be verified by time-dependent degenerate four-wave mixing studies performed on thin films of the polymers. We found generally good agreement between the values of n2 determined from Z scan and those from degenerate four-wave mixing. The results indicate that the nonlinear refractive index of the order of 10-12 cm2/W can be readily obtained for various conjugated polymers. However, the two-photon merit factors T larger than unity are commonly encountered within the two-photon absorption ranges of these compounds.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  2. M. Kuzyk, “All-optical materials and devices,” in Organic Thin Films for Waveguiding Nonlinear Optics, F. Kajzar and J. D. Swalen, eds. (Gordon & Breach, Amsterdam, 1996), pp. 759–820.
  3. G. T. Boyd, “Polymers for nonlinear optics,” in Polymers for Electronic and Photonic Applications, C. P. Wong, ed. (Academic, Boston, Mass., 1993), pp. 467–505.
  4. M. G. Kuzyk, “Polymers as third-order nonlinear-optical materials,” in Polymers for Electronic and Photonic Applications, C. P. Wong, ed. (Academic, Boston, Mass., 1993), pp. 507–548.
  5. J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. M. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
    [CrossRef]
  6. K.-S. Lee, M. Samoc, and P. N. Prasad, “Polymers for photonic applications,” in Comprehensive Polymer Science, 1st suppl., S. L. Aggarwal and S. Russo, eds. (Pergamon, Oxford, 1992), pp. 407–447.
  7. C. Bubeck, “Relations between structure and third-order nonlinearities of molecules and polymers,” in Organic Thin Films for Waveguiding Nonlinear Optics, F. Kajzar and J. D. Swalen, eds. (Gordon & Breach, Amsterdam, 1996), pp. 137–161.
  8. R. L. Sutherland, Handbook of Nonlinear Optics (Dekker, New York, 1996).
  9. B. Luther-Davies and M. Samoc, “Third-order nonlinear optical organic materials for photonic switching,” Curr. Opin. Solid State Phys. 2, 213–219 (1997).
  10. G. I. Stegeman, “Nonlinear guided wave optics,” in Contemporary Nonlinear Optics, G. P. Agrawal and R. W. Boyd, eds. (Academic, San Diego, Calif., 1992), pp. 1–40.
  11. G. I. Stegeman, and W. E. Torruellas, “Nonlinear materials for information processing and communications,” Philos. Trans. R. Soc. London Ser. A 1354, 745–756 (1996).
    [CrossRef]
  12. M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  13. G. M. Carter, “Excited state dynamics and temporally resolved nonresonant nonlinear-optical processes in polydiacetylenes,” J. Opt. Soc. Am. B 4, 1018–1024 (1987).
    [CrossRef]
  14. X. F. Cao, J. P. Jiang, D. P. Bloch, R. W. Hellwarth, L. P. Yu, and L. Dalton, “Picosecond nonlinear optical response of three rugged polyquinoxaline-based aromatic conjugated ladder-polymer thin films,” J. Appl. Phys. 65, 5012–5018 (1989).
    [CrossRef]
  15. Y. Pang, M. Samoc, and P. N. Prasad, “Third-order nonlinearity and two-photon-induced molecular dynamics: femtosecond time-resolved transient absorption, Kerr gate and degenerate four-wave mixing studies in poly (p-phenylene vinylene)/sol-gel silica film,” J. Chem. Phys. 94, 5282–5290 (1991).
    [CrossRef]
  16. F. P. Strohkendl, L. R. Dalton, R. W. Hellwarth, H. W. Sarkas, and Z. H. Kafafi, “Phase-mismatched degenerate four-wave mixing: complex third-order susceptibility tensor elements of C60 at 768 nm,” J. Opt. Soc. Am. B 14, 92–98 (1997).
    [CrossRef]
  17. M. Zhao, Y. Cui, M. Samoc, P. N. Prasad, M. Unroe, and B. A. Reinhardt, “Influence of two-photon absorption on third-order nonlinear optical processes as studied by degenerate four-wave mixing: the study of soluble didecyloxy substituted polyphenyls,” J. Chem. Phys. 95, 3991–4001 (1991).
    [CrossRef]
  18. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, New York, 1990).
  19. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
    [CrossRef]
  20. K. S. Kim, R. H. Stolen, W. A. Reed, and K. W. Quoi, “Measurement of the nonlinear index of silica-core and dispersion-shifted fibers,” Opt. Lett. 19, 257–259 (1994).
    [CrossRef] [PubMed]
  21. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
    [CrossRef]
  22. Z. Bao, Y. Chen, R. Cai, and L. Yu, “Conjugated liquid crystalline polymers—soluble and fusible poly(phenylenevinylene) by the Heck coupling reaction,” Macromolecules 26, 5281–5286 (1993).
    [CrossRef]
  23. U. Scherf and K. Muellen, The Synthesis of Ladder Polymers, Vol. 123 of Advances in Polymer Science (Springer-Verlag, Berlin, 1995), pp. 1–40.
    [CrossRef]
  24. M. Samoc, A. Samoc, B. Luther-Davies, and U. Scherf, “Linear and nonlinear optical properties of a ladder poly(p-phenylene) polymer,” Synth. Metals 87, 197–200 (1997).
    [CrossRef]
  25. A. Samoc, M. Samoc, B. Luther-Davies, C. Q. Jin, and J. W. White, “Effect of doping on linear and nonlinear optical properties of polyaniline investigated by femtosecond degenerate four wave mixing and Z-scan at 800 nm,” in International Quantum Electronics Conference, OSA 1996 Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 256–257.
  26. B. Luther-Davies, M. Samoc, J. Swiatkiewicz, A. Samoc, M. Woodruff, R. Trebino, and K. W. Delong, “Diagnostics of femtosecond laser pulses using films of poly(p-phenylenevinylene),” Opt. Commun. 131, 301–306 (1996).
    [CrossRef]
  27. B. Luther-Davies, M. Samoc, A. Samoc, and M. Woodruff, “Third-order nonlinearity of poly(p-phenylenevinylene) at 800 nm,” Nonlinear Opt. 14, 161–167 (1995).
  28. A. Samoc, M. Samoc, M. Woodruff, and B. Luther-Davies, “Tuning the properties of poly(p-phenylenevinylene) for use in all-optical switching,” Opt. Lett. 20, 1241–1243 (1995).
    [CrossRef] [PubMed]
  29. A. D. Buckingham and J. A. Pople, “Theoretical studies of the Kerr effect. I. Deviations from a linear polarization law,” Proc. Phys. Soc. London Sec. A 58, 905–909 (1995).
  30. R. G. Kepler, V. S. Valencia, S. J. Jacobs, and J. J. McNamara, “Exciton–exciton annihilation in poly(p- phenylenevinylene) films,” Synth. Met. 78, 227–230 (1996).
    [CrossRef]
  31. W. E. Torruellas, B. L. Lawrence, and G. Baker, “Two-photon saturation in the band gap of a molecular quantum wire,” Opt. Lett. 21, 1777–1779 (1996).
    [CrossRef] [PubMed]
  32. M. Samoc, A. Samoc, B. Luther-Davies, J. Swiatkiewicz, C. Q. Jin, and J. W. White, “Real and imaginary components of the third-order nonlinearity of polyaniline dodecylbenzenesulfonic salt,” Opt. Lett. 20, 2478–2480 (1995).
    [CrossRef] [PubMed]

1997 (2)

1996 (5)

B. Luther-Davies, M. Samoc, J. Swiatkiewicz, A. Samoc, M. Woodruff, R. Trebino, and K. W. Delong, “Diagnostics of femtosecond laser pulses using films of poly(p-phenylenevinylene),” Opt. Commun. 131, 301–306 (1996).
[CrossRef]

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

R. G. Kepler, V. S. Valencia, S. J. Jacobs, and J. J. McNamara, “Exciton–exciton annihilation in poly(p- phenylenevinylene) films,” Synth. Met. 78, 227–230 (1996).
[CrossRef]

W. E. Torruellas, B. L. Lawrence, and G. Baker, “Two-photon saturation in the band gap of a molecular quantum wire,” Opt. Lett. 21, 1777–1779 (1996).
[CrossRef] [PubMed]

G. I. Stegeman, and W. E. Torruellas, “Nonlinear materials for information processing and communications,” Philos. Trans. R. Soc. London Ser. A 1354, 745–756 (1996).
[CrossRef]

1995 (3)

1994 (2)

J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. M. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

K. S. Kim, R. H. Stolen, W. A. Reed, and K. W. Quoi, “Measurement of the nonlinear index of silica-core and dispersion-shifted fibers,” Opt. Lett. 19, 257–259 (1994).
[CrossRef] [PubMed]

1993 (1)

Z. Bao, Y. Chen, R. Cai, and L. Yu, “Conjugated liquid crystalline polymers—soluble and fusible poly(phenylenevinylene) by the Heck coupling reaction,” Macromolecules 26, 5281–5286 (1993).
[CrossRef]

1991 (2)

Y. Pang, M. Samoc, and P. N. Prasad, “Third-order nonlinearity and two-photon-induced molecular dynamics: femtosecond time-resolved transient absorption, Kerr gate and degenerate four-wave mixing studies in poly (p-phenylene vinylene)/sol-gel silica film,” J. Chem. Phys. 94, 5282–5290 (1991).
[CrossRef]

M. Zhao, Y. Cui, M. Samoc, P. N. Prasad, M. Unroe, and B. A. Reinhardt, “Influence of two-photon absorption on third-order nonlinear optical processes as studied by degenerate four-wave mixing: the study of soluble didecyloxy substituted polyphenyls,” J. Chem. Phys. 95, 3991–4001 (1991).
[CrossRef]

1990 (1)

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

1989 (1)

X. F. Cao, J. P. Jiang, D. P. Bloch, R. W. Hellwarth, L. P. Yu, and L. Dalton, “Picosecond nonlinear optical response of three rugged polyquinoxaline-based aromatic conjugated ladder-polymer thin films,” J. Appl. Phys. 65, 5012–5018 (1989).
[CrossRef]

1987 (1)

1978 (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Adant, C.

J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. M. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

Baker, G.

Bao, Z.

Z. Bao, Y. Chen, R. Cai, and L. Yu, “Conjugated liquid crystalline polymers—soluble and fusible poly(phenylenevinylene) by the Heck coupling reaction,” Macromolecules 26, 5281–5286 (1993).
[CrossRef]

Bloch, D. P.

X. F. Cao, J. P. Jiang, D. P. Bloch, R. W. Hellwarth, L. P. Yu, and L. Dalton, “Picosecond nonlinear optical response of three rugged polyquinoxaline-based aromatic conjugated ladder-polymer thin films,” J. Appl. Phys. 65, 5012–5018 (1989).
[CrossRef]

Bredas, J. L.

J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. M. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

Cai, R.

Z. Bao, Y. Chen, R. Cai, and L. Yu, “Conjugated liquid crystalline polymers—soluble and fusible poly(phenylenevinylene) by the Heck coupling reaction,” Macromolecules 26, 5281–5286 (1993).
[CrossRef]

Cao, X. F.

X. F. Cao, J. P. Jiang, D. P. Bloch, R. W. Hellwarth, L. P. Yu, and L. Dalton, “Picosecond nonlinear optical response of three rugged polyquinoxaline-based aromatic conjugated ladder-polymer thin films,” J. Appl. Phys. 65, 5012–5018 (1989).
[CrossRef]

Carter, G. M.

Chen, Y.

Z. Bao, Y. Chen, R. Cai, and L. Yu, “Conjugated liquid crystalline polymers—soluble and fusible poly(phenylenevinylene) by the Heck coupling reaction,” Macromolecules 26, 5281–5286 (1993).
[CrossRef]

Cui, Y.

M. Zhao, Y. Cui, M. Samoc, P. N. Prasad, M. Unroe, and B. A. Reinhardt, “Influence of two-photon absorption on third-order nonlinear optical processes as studied by degenerate four-wave mixing: the study of soluble didecyloxy substituted polyphenyls,” J. Chem. Phys. 95, 3991–4001 (1991).
[CrossRef]

Dalton, L.

X. F. Cao, J. P. Jiang, D. P. Bloch, R. W. Hellwarth, L. P. Yu, and L. Dalton, “Picosecond nonlinear optical response of three rugged polyquinoxaline-based aromatic conjugated ladder-polymer thin films,” J. Appl. Phys. 65, 5012–5018 (1989).
[CrossRef]

Dalton, L. R.

Delong, K. W.

B. Luther-Davies, M. Samoc, J. Swiatkiewicz, A. Samoc, M. Woodruff, R. Trebino, and K. W. Delong, “Diagnostics of femtosecond laser pulses using films of poly(p-phenylenevinylene),” Opt. Commun. 131, 301–306 (1996).
[CrossRef]

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Hellwarth, R. W.

F. P. Strohkendl, L. R. Dalton, R. W. Hellwarth, H. W. Sarkas, and Z. H. Kafafi, “Phase-mismatched degenerate four-wave mixing: complex third-order susceptibility tensor elements of C60 at 768 nm,” J. Opt. Soc. Am. B 14, 92–98 (1997).
[CrossRef]

X. F. Cao, J. P. Jiang, D. P. Bloch, R. W. Hellwarth, L. P. Yu, and L. Dalton, “Picosecond nonlinear optical response of three rugged polyquinoxaline-based aromatic conjugated ladder-polymer thin films,” J. Appl. Phys. 65, 5012–5018 (1989).
[CrossRef]

Jacobs, S. J.

R. G. Kepler, V. S. Valencia, S. J. Jacobs, and J. J. McNamara, “Exciton–exciton annihilation in poly(p- phenylenevinylene) films,” Synth. Met. 78, 227–230 (1996).
[CrossRef]

Jiang, J. P.

X. F. Cao, J. P. Jiang, D. P. Bloch, R. W. Hellwarth, L. P. Yu, and L. Dalton, “Picosecond nonlinear optical response of three rugged polyquinoxaline-based aromatic conjugated ladder-polymer thin films,” J. Appl. Phys. 65, 5012–5018 (1989).
[CrossRef]

Jin, C. Q.

Kafafi, Z. H.

Kepler, R. G.

R. G. Kepler, V. S. Valencia, S. J. Jacobs, and J. J. McNamara, “Exciton–exciton annihilation in poly(p- phenylenevinylene) films,” Synth. Met. 78, 227–230 (1996).
[CrossRef]

Kim, K. S.

Lawrence, B. L.

Lin, C.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Luther-Davies, B.

M. Samoc, A. Samoc, B. Luther-Davies, and U. Scherf, “Linear and nonlinear optical properties of a ladder poly(p-phenylene) polymer,” Synth. Metals 87, 197–200 (1997).
[CrossRef]

B. Luther-Davies, M. Samoc, J. Swiatkiewicz, A. Samoc, M. Woodruff, R. Trebino, and K. W. Delong, “Diagnostics of femtosecond laser pulses using films of poly(p-phenylenevinylene),” Opt. Commun. 131, 301–306 (1996).
[CrossRef]

B. Luther-Davies, M. Samoc, A. Samoc, and M. Woodruff, “Third-order nonlinearity of poly(p-phenylenevinylene) at 800 nm,” Nonlinear Opt. 14, 161–167 (1995).

A. Samoc, M. Samoc, M. Woodruff, and B. Luther-Davies, “Tuning the properties of poly(p-phenylenevinylene) for use in all-optical switching,” Opt. Lett. 20, 1241–1243 (1995).
[CrossRef] [PubMed]

M. Samoc, A. Samoc, B. Luther-Davies, J. Swiatkiewicz, C. Q. Jin, and J. W. White, “Real and imaginary components of the third-order nonlinearity of polyaniline dodecylbenzenesulfonic salt,” Opt. Lett. 20, 2478–2480 (1995).
[CrossRef] [PubMed]

McNamara, J. J.

R. G. Kepler, V. S. Valencia, S. J. Jacobs, and J. J. McNamara, “Exciton–exciton annihilation in poly(p- phenylenevinylene) films,” Synth. Met. 78, 227–230 (1996).
[CrossRef]

Pang, Y.

Y. Pang, M. Samoc, and P. N. Prasad, “Third-order nonlinearity and two-photon-induced molecular dynamics: femtosecond time-resolved transient absorption, Kerr gate and degenerate four-wave mixing studies in poly (p-phenylene vinylene)/sol-gel silica film,” J. Chem. Phys. 94, 5282–5290 (1991).
[CrossRef]

Persoons, A.

J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. M. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

Pierce, B. M.

J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. M. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

Prasad, P. N.

Y. Pang, M. Samoc, and P. N. Prasad, “Third-order nonlinearity and two-photon-induced molecular dynamics: femtosecond time-resolved transient absorption, Kerr gate and degenerate four-wave mixing studies in poly (p-phenylene vinylene)/sol-gel silica film,” J. Chem. Phys. 94, 5282–5290 (1991).
[CrossRef]

M. Zhao, Y. Cui, M. Samoc, P. N. Prasad, M. Unroe, and B. A. Reinhardt, “Influence of two-photon absorption on third-order nonlinear optical processes as studied by degenerate four-wave mixing: the study of soluble didecyloxy substituted polyphenyls,” J. Chem. Phys. 95, 3991–4001 (1991).
[CrossRef]

Quoi, K. W.

Reed, W. A.

Reinhardt, B. A.

M. Zhao, Y. Cui, M. Samoc, P. N. Prasad, M. Unroe, and B. A. Reinhardt, “Influence of two-photon absorption on third-order nonlinear optical processes as studied by degenerate four-wave mixing: the study of soluble didecyloxy substituted polyphenyls,” J. Chem. Phys. 95, 3991–4001 (1991).
[CrossRef]

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Samoc, A.

M. Samoc, A. Samoc, B. Luther-Davies, and U. Scherf, “Linear and nonlinear optical properties of a ladder poly(p-phenylene) polymer,” Synth. Metals 87, 197–200 (1997).
[CrossRef]

B. Luther-Davies, M. Samoc, J. Swiatkiewicz, A. Samoc, M. Woodruff, R. Trebino, and K. W. Delong, “Diagnostics of femtosecond laser pulses using films of poly(p-phenylenevinylene),” Opt. Commun. 131, 301–306 (1996).
[CrossRef]

B. Luther-Davies, M. Samoc, A. Samoc, and M. Woodruff, “Third-order nonlinearity of poly(p-phenylenevinylene) at 800 nm,” Nonlinear Opt. 14, 161–167 (1995).

A. Samoc, M. Samoc, M. Woodruff, and B. Luther-Davies, “Tuning the properties of poly(p-phenylenevinylene) for use in all-optical switching,” Opt. Lett. 20, 1241–1243 (1995).
[CrossRef] [PubMed]

M. Samoc, A. Samoc, B. Luther-Davies, J. Swiatkiewicz, C. Q. Jin, and J. W. White, “Real and imaginary components of the third-order nonlinearity of polyaniline dodecylbenzenesulfonic salt,” Opt. Lett. 20, 2478–2480 (1995).
[CrossRef] [PubMed]

Samoc, M.

M. Samoc, A. Samoc, B. Luther-Davies, and U. Scherf, “Linear and nonlinear optical properties of a ladder poly(p-phenylene) polymer,” Synth. Metals 87, 197–200 (1997).
[CrossRef]

B. Luther-Davies, M. Samoc, J. Swiatkiewicz, A. Samoc, M. Woodruff, R. Trebino, and K. W. Delong, “Diagnostics of femtosecond laser pulses using films of poly(p-phenylenevinylene),” Opt. Commun. 131, 301–306 (1996).
[CrossRef]

B. Luther-Davies, M. Samoc, A. Samoc, and M. Woodruff, “Third-order nonlinearity of poly(p-phenylenevinylene) at 800 nm,” Nonlinear Opt. 14, 161–167 (1995).

A. Samoc, M. Samoc, M. Woodruff, and B. Luther-Davies, “Tuning the properties of poly(p-phenylenevinylene) for use in all-optical switching,” Opt. Lett. 20, 1241–1243 (1995).
[CrossRef] [PubMed]

M. Samoc, A. Samoc, B. Luther-Davies, J. Swiatkiewicz, C. Q. Jin, and J. W. White, “Real and imaginary components of the third-order nonlinearity of polyaniline dodecylbenzenesulfonic salt,” Opt. Lett. 20, 2478–2480 (1995).
[CrossRef] [PubMed]

M. Zhao, Y. Cui, M. Samoc, P. N. Prasad, M. Unroe, and B. A. Reinhardt, “Influence of two-photon absorption on third-order nonlinear optical processes as studied by degenerate four-wave mixing: the study of soluble didecyloxy substituted polyphenyls,” J. Chem. Phys. 95, 3991–4001 (1991).
[CrossRef]

Y. Pang, M. Samoc, and P. N. Prasad, “Third-order nonlinearity and two-photon-induced molecular dynamics: femtosecond time-resolved transient absorption, Kerr gate and degenerate four-wave mixing studies in poly (p-phenylene vinylene)/sol-gel silica film,” J. Chem. Phys. 94, 5282–5290 (1991).
[CrossRef]

Sarkas, H. W.

Scherf, U.

M. Samoc, A. Samoc, B. Luther-Davies, and U. Scherf, “Linear and nonlinear optical properties of a ladder poly(p-phenylene) polymer,” Synth. Metals 87, 197–200 (1997).
[CrossRef]

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Sheikh-Bahae, M.

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman, and W. E. Torruellas, “Nonlinear materials for information processing and communications,” Philos. Trans. R. Soc. London Ser. A 1354, 745–756 (1996).
[CrossRef]

Stolen, R. H.

Strohkendl, F. P.

Swiatkiewicz, J.

B. Luther-Davies, M. Samoc, J. Swiatkiewicz, A. Samoc, M. Woodruff, R. Trebino, and K. W. Delong, “Diagnostics of femtosecond laser pulses using films of poly(p-phenylenevinylene),” Opt. Commun. 131, 301–306 (1996).
[CrossRef]

M. Samoc, A. Samoc, B. Luther-Davies, J. Swiatkiewicz, C. Q. Jin, and J. W. White, “Real and imaginary components of the third-order nonlinearity of polyaniline dodecylbenzenesulfonic salt,” Opt. Lett. 20, 2478–2480 (1995).
[CrossRef] [PubMed]

Tackx, P.

J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. M. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

Torruellas, W. E.

G. I. Stegeman, and W. E. Torruellas, “Nonlinear materials for information processing and communications,” Philos. Trans. R. Soc. London Ser. A 1354, 745–756 (1996).
[CrossRef]

W. E. Torruellas, B. L. Lawrence, and G. Baker, “Two-photon saturation in the band gap of a molecular quantum wire,” Opt. Lett. 21, 1777–1779 (1996).
[CrossRef] [PubMed]

Trebino, R.

B. Luther-Davies, M. Samoc, J. Swiatkiewicz, A. Samoc, M. Woodruff, R. Trebino, and K. W. Delong, “Diagnostics of femtosecond laser pulses using films of poly(p-phenylenevinylene),” Opt. Commun. 131, 301–306 (1996).
[CrossRef]

Unroe, M.

M. Zhao, Y. Cui, M. Samoc, P. N. Prasad, M. Unroe, and B. A. Reinhardt, “Influence of two-photon absorption on third-order nonlinear optical processes as studied by degenerate four-wave mixing: the study of soluble didecyloxy substituted polyphenyls,” J. Chem. Phys. 95, 3991–4001 (1991).
[CrossRef]

Valencia, V. S.

R. G. Kepler, V. S. Valencia, S. J. Jacobs, and J. J. McNamara, “Exciton–exciton annihilation in poly(p- phenylenevinylene) films,” Synth. Met. 78, 227–230 (1996).
[CrossRef]

Van Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Wei, T.

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

White, J. W.

Woodruff, M.

B. Luther-Davies, M. Samoc, J. Swiatkiewicz, A. Samoc, M. Woodruff, R. Trebino, and K. W. Delong, “Diagnostics of femtosecond laser pulses using films of poly(p-phenylenevinylene),” Opt. Commun. 131, 301–306 (1996).
[CrossRef]

A. Samoc, M. Samoc, M. Woodruff, and B. Luther-Davies, “Tuning the properties of poly(p-phenylenevinylene) for use in all-optical switching,” Opt. Lett. 20, 1241–1243 (1995).
[CrossRef] [PubMed]

B. Luther-Davies, M. Samoc, A. Samoc, and M. Woodruff, “Third-order nonlinearity of poly(p-phenylenevinylene) at 800 nm,” Nonlinear Opt. 14, 161–167 (1995).

Yu, L.

Z. Bao, Y. Chen, R. Cai, and L. Yu, “Conjugated liquid crystalline polymers—soluble and fusible poly(phenylenevinylene) by the Heck coupling reaction,” Macromolecules 26, 5281–5286 (1993).
[CrossRef]

Yu, L. P.

X. F. Cao, J. P. Jiang, D. P. Bloch, R. W. Hellwarth, L. P. Yu, and L. Dalton, “Picosecond nonlinear optical response of three rugged polyquinoxaline-based aromatic conjugated ladder-polymer thin films,” J. Appl. Phys. 65, 5012–5018 (1989).
[CrossRef]

Zhao, M.

M. Zhao, Y. Cui, M. Samoc, P. N. Prasad, M. Unroe, and B. A. Reinhardt, “Influence of two-photon absorption on third-order nonlinear optical processes as studied by degenerate four-wave mixing: the study of soluble didecyloxy substituted polyphenyls,” J. Chem. Phys. 95, 3991–4001 (1991).
[CrossRef]

Chem. Rev. (1)

J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. M. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

J. Appl. Phys. (1)

X. F. Cao, J. P. Jiang, D. P. Bloch, R. W. Hellwarth, L. P. Yu, and L. Dalton, “Picosecond nonlinear optical response of three rugged polyquinoxaline-based aromatic conjugated ladder-polymer thin films,” J. Appl. Phys. 65, 5012–5018 (1989).
[CrossRef]

J. Chem. Phys. (2)

Y. Pang, M. Samoc, and P. N. Prasad, “Third-order nonlinearity and two-photon-induced molecular dynamics: femtosecond time-resolved transient absorption, Kerr gate and degenerate four-wave mixing studies in poly (p-phenylene vinylene)/sol-gel silica film,” J. Chem. Phys. 94, 5282–5290 (1991).
[CrossRef]

M. Zhao, Y. Cui, M. Samoc, P. N. Prasad, M. Unroe, and B. A. Reinhardt, “Influence of two-photon absorption on third-order nonlinear optical processes as studied by degenerate four-wave mixing: the study of soluble didecyloxy substituted polyphenyls,” J. Chem. Phys. 95, 3991–4001 (1991).
[CrossRef]

J. Opt. Soc. Am. B (2)

Macromolecules (1)

Z. Bao, Y. Chen, R. Cai, and L. Yu, “Conjugated liquid crystalline polymers—soluble and fusible poly(phenylenevinylene) by the Heck coupling reaction,” Macromolecules 26, 5281–5286 (1993).
[CrossRef]

Nonlinear Opt. (1)

B. Luther-Davies, M. Samoc, A. Samoc, and M. Woodruff, “Third-order nonlinearity of poly(p-phenylenevinylene) at 800 nm,” Nonlinear Opt. 14, 161–167 (1995).

Opt. Commun. (1)

B. Luther-Davies, M. Samoc, J. Swiatkiewicz, A. Samoc, M. Woodruff, R. Trebino, and K. W. Delong, “Diagnostics of femtosecond laser pulses using films of poly(p-phenylenevinylene),” Opt. Commun. 131, 301–306 (1996).
[CrossRef]

Opt. Lett. (4)

Philos. Trans. R. Soc. London Ser. A (1)

G. I. Stegeman, and W. E. Torruellas, “Nonlinear materials for information processing and communications,” Philos. Trans. R. Soc. London Ser. A 1354, 745–756 (1996).
[CrossRef]

Phys. Rev. A (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Synth. Met. (1)

R. G. Kepler, V. S. Valencia, S. J. Jacobs, and J. J. McNamara, “Exciton–exciton annihilation in poly(p- phenylenevinylene) films,” Synth. Met. 78, 227–230 (1996).
[CrossRef]

Synth. Metals (1)

M. Samoc, A. Samoc, B. Luther-Davies, and U. Scherf, “Linear and nonlinear optical properties of a ladder poly(p-phenylene) polymer,” Synth. Metals 87, 197–200 (1997).
[CrossRef]

Other (13)

A. Samoc, M. Samoc, B. Luther-Davies, C. Q. Jin, and J. W. White, “Effect of doping on linear and nonlinear optical properties of polyaniline investigated by femtosecond degenerate four wave mixing and Z-scan at 800 nm,” in International Quantum Electronics Conference, OSA 1996 Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 256–257.

U. Scherf and K. Muellen, The Synthesis of Ladder Polymers, Vol. 123 of Advances in Polymer Science (Springer-Verlag, Berlin, 1995), pp. 1–40.
[CrossRef]

A. D. Buckingham and J. A. Pople, “Theoretical studies of the Kerr effect. I. Deviations from a linear polarization law,” Proc. Phys. Soc. London Sec. A 58, 905–909 (1995).

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, New York, 1990).

K.-S. Lee, M. Samoc, and P. N. Prasad, “Polymers for photonic applications,” in Comprehensive Polymer Science, 1st suppl., S. L. Aggarwal and S. Russo, eds. (Pergamon, Oxford, 1992), pp. 407–447.

C. Bubeck, “Relations between structure and third-order nonlinearities of molecules and polymers,” in Organic Thin Films for Waveguiding Nonlinear Optics, F. Kajzar and J. D. Swalen, eds. (Gordon & Breach, Amsterdam, 1996), pp. 137–161.

R. L. Sutherland, Handbook of Nonlinear Optics (Dekker, New York, 1996).

B. Luther-Davies and M. Samoc, “Third-order nonlinear optical organic materials for photonic switching,” Curr. Opin. Solid State Phys. 2, 213–219 (1997).

G. I. Stegeman, “Nonlinear guided wave optics,” in Contemporary Nonlinear Optics, G. P. Agrawal and R. W. Boyd, eds. (Academic, San Diego, Calif., 1992), pp. 1–40.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

M. Kuzyk, “All-optical materials and devices,” in Organic Thin Films for Waveguiding Nonlinear Optics, F. Kajzar and J. D. Swalen, eds. (Gordon & Breach, Amsterdam, 1996), pp. 759–820.

G. T. Boyd, “Polymers for nonlinear optics,” in Polymers for Electronic and Photonic Applications, C. P. Wong, ed. (Academic, Boston, Mass., 1993), pp. 467–505.

M. G. Kuzyk, “Polymers as third-order nonlinear-optical materials,” in Polymers for Electronic and Photonic Applications, C. P. Wong, ed. (Academic, Boston, Mass., 1993), pp. 507–548.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of a simultaneous closed-aperture and open-aperture Z-scan measurement. The transmitted beam is split after the sample; the first detector measures the open-aperture transmittance, and the detector marked Det.2 measures the closed-aperture transmittance as a function of the sample position.

Fig. 2
Fig. 2

Normalized closed-aperture transmittances obtained in Z scans on a 1=mm cell filled with the solvent TCE and solutions of the soluble PPV polymer PPV-9H (see Table 1 below for polymer formula).

Fig. 3
Fig. 3

Concentration dependence of open-aperture Z scans in solutions of PPV-AC8H (see Table 1 below for polymer formula) in tetrachloroethane. The solid curves are theoretical fits.

Fig. 4
Fig. 4

Concentration dependence of the real and the imaginary parts of the nonlinear phase shift in PPV-AC8H solutions in TCE.

Fig. 5
Fig. 5

Geometry of the DFWM experiment. Beams 1–3 are coincident on the sample. Two signals monitored in the experiment are the phase-matched signal that occurs because of the interaction k4=k3-k2+k1 and a non-phase-matched signal that occurs because of the k3+k2-k1 interaction.

Fig. 6
Fig. 6

Example of a time-resolved DFWM scan on a 0.5-μm-thick film of PPV-9H. The solid curve denotes a fit assuming a 100-fs sech2 laser pulse and a small contribution of a 30-ps lifetime excited species (based on equations presented in Ref. 15). The value of |n2| determined from the comparison with silica is 1.7×10-12 cm2/W.

Fig. 7
Fig. 7

Dependence of the shape of DFWM time-resolved transients on the input power in a film of MEH-PPV. The numbers correspond to the incident light intensities (in GW/cm2).

Fig. 8
Fig. 8

Power dependence of the magnitude of the DFWM signal from a film of MEH-PPV.

Tables (1)

Tables Icon

Table 1 Femtosecond Z-Scan and DFWM-Determined n2 Values for Several Soluble Conjugated Polymers

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δϕ=2πλ 0Ln2I(z)dz,
W=n2Isatαλ,
1T=n2βλ,
Δϕ=2πn2ILeff/λ,
n2=gn2,polymer+(1-g)n2,solvent,
n2 eff,chloroform=(Δϕchloroform/Δϕsilica)n2,silica
n2=C1χ(3)/n2
χ(3)=L4ΣNiγi,
n2extrapol/n2=(Lsolvent/Lpolymer)4(npolymer/nsolvent)2×(ρsolvent/ρpolymer)Cor,
IDFWM=const. |χ(3)|2n4 L2I3=const.|n2|2L2I3,

Metrics