Abstract

We present a polymer in-line fiber modulator with a rugged and low-loss interface to single-mode fibers that can be engineered to have a bias point that yields linear modulation over a large dynamic range. Two classes of large-bandwidth modulators, each of which benefits from different properties provided by polymers, are demonstrated. A lumped capacitor modulator, which uses a decal deposition technique, and a traveling-wave modulator, which takes advantage of polymer conformal coating and reactive ion etching to accurately trim the thickness of the polymer waveguide, are presented. Because the in-line fiber modulator configuration requires moderate loss to achieve a large dynamic range, an operational wavelength closer to the absorption peak of an electro-optic polymer can be used to exploit the resonant enhancement of electro-optic coefficients.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, and N. R. Samant, “Maximum dynamic range operation of a microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
    [CrossRef]
  2. M. L. Farwell, W. S. C. Chang, and D. R. Huber, “Increased linear dynamic range by low biasing the Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 5, 779–782 (1993).
    [CrossRef]
  3. J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional couplers,” IEEE Photonics Technol. Lett. 6, 273–275 (1994).
    [CrossRef]
  4. W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microwave Theory Tech. 43, 2184–2197 (1995).
    [CrossRef]
  5. K. Noguchi, H. Miyazawa, and O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
    [CrossRef]
  6. D. G. Girton, S. L. Kwiatkowski, G. F. Lipscomb, and R. S. Lytel, “20-GHz electro-optic polymer Mach–Zehnder modulator,” Appl. Phys. Lett. 58, 1730–1732 (1991).
    [CrossRef]
  7. C. C. Teng, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth,” Appl. Phys. Lett. 60, 1538–1540 (1992).
    [CrossRef]
  8. W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, and L. R. Dalton, “Traveling-wave electro-optic phase modulator using cross-linked nonlinear optical polymer,” Appl. Phys. Lett. 65, 929–931 (1994).
    [CrossRef]
  9. Y. Shuto, S. Tomaru, M. Hikita, and M. Amano, “Optical intensity modulators using diazo-dye-substituted polymer channel waveguides,” IEEE J. Quantum Electron. 31, 1451–1460 (1995).
    [CrossRef]
  10. A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
    [CrossRef]
  11. R. A. Bergh, G. Kotler, and H. J. Shaw, “Single-mode fibre optic directional coupler,” Electron. Lett. 16, 260–261 (1980).
    [CrossRef]
  12. S.-M. Tseng and C.-L. Chen, “Side-polished fibers,” Appl. Opt. 31, 3438–3447 (1992).
    [CrossRef] [PubMed]
  13. M. Zhang and E. Garmire, “Single-mode fiber-film directional coupler,” J. Lightwave Technol. LT-5, 260–267 (1987).
    [CrossRef]
  14. W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
    [CrossRef]
  15. A. K. Das and A. K. Ganguly, “Efficient method of coupling from a single-mode fiber to a thin-film waveguide,” Opt. Lett. 19, 2110–2112 (1994).
    [CrossRef] [PubMed]
  16. D. Flannery, S. W. James, R. P. Tatam, and G. J. Ashwell, “pH sensor using Langmuir–Blodgett overlays on polished optical fibers,” Opt. Lett. 22, 567–569 (1997).
    [CrossRef] [PubMed]
  17. S. G. Lee, J. P. Sokoloff, B. P. McGinnis, and H. Sasabe, “Fabrication of a side-polished fiber polarizer with a birefringent polymer overlay,” Opt. Lett. 22, 606–608 (1997).
    [CrossRef] [PubMed]
  18. D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
    [CrossRef]
  19. A. T. Andreev and K. P. Panajotov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
    [CrossRef]
  20. K. Panajotov, “Polarization properties of a fiber-to-asymmetric planar waveguide coupler,” J. Lightwave Technol. 12, 983–988 (1994).
    [CrossRef]
  21. A. T. Andreev, K. Panajotov, and E. I. Karakoleva, “Wavelength division action of a distributed single-mode fiber-to-symmetrical planar waveguide coupler,” IEEE Photonics Technol. Lett. 6, 1238–1240 (1994).
    [CrossRef]
  22. A. Andreev, B. Zafirova, K. Panajotov, and I. Koprinarova, “Experimental investigation of the influence of the refractive index of the intermediate planar layer on the properties of a polished type single-mode fibre coupler,” J. Mod. Opt. 43, 1111–1125 (1996).
    [CrossRef]
  23. K. P. Panajotov and A. T. Andreev, “Distributed coupling between a single-mode fiber and a planar waveguide,” J. Opt. Soc. Am. B 11, 826–834 (1997).
    [CrossRef]
  24. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
    [CrossRef]
  25. Refer to various papers in Technical Program for the Sixth Annual ARPA Symposium on Photonic Systems for Antenna Applications (Advanced Research Projects Agency, Monterey, Calif., 1996).
  26. M. Wilkinson, J. R. Hill, and S. A. Cassidy, “Optical fibre modulator using electro-optic polymer overlayer,” Electron. Lett. 27, 979–981 (1991).
    [CrossRef]
  27. G. Fawcett, W. Johnstone, and I. Andonovic, “Fibre optic intensity modulator using multi-mode electro-optic polymer overlay,” in Components for Fiber Optic Applications VII, P. M. Kopera, ed., Proc. SPIE 1792, 132–136 (1992).
    [CrossRef]
  28. G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
    [CrossRef]
  29. R. A. Hill, G. C. Bjorklund, S. A. Hamilton, D. R. Yankelevich, and A. Knoesen, “Low-distortion, high-speed polymeric in-line fiber modulator,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 332–333.
  30. R. A. Hill, G. C. Bjorklund, S. A. Hamilton, D. R. Yankelevich, and A. Knoesen, “Polymeric in-line fiber modulator using novel processing techniques,” in Optical Fiber Communication, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 166–167.
  31. Ph. Prêtre, L.-M. Wu, R. A. Hill, and A. Knoesen, “Characterization of electro-optic polymer films by use of decal-deposited reflection Fabry–Perot microcavities,” J. Opt. Soc. Am. B 15, 379–392 (1998).
    [CrossRef]
  32. G. Khanarian, M. A. Mortazavi, and A. J. East, “Phase-matched second-harmonic generation from free-standing periodically stacked polymer films,” Appl. Phys. Lett. 63, 1462–1464 (1993).
    [CrossRef]
  33. D. R. Yankelevich, R. A. Hill, A. Knoesen, M. A. Mortazavi, H. N. Yoon, and S. T. Kowel, “Polymeric modulator for high frequency optical interconnects,” IEEE Photonics Technol. Lett. 6, 386–389 (1994).
    [CrossRef]
  34. S. Creaney, W. Johnstone, and K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photonics Technol. Lett. 8, 355–357 (1996).
    [CrossRef]
  35. A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers,” Appl. Phys. Lett. 65, 2389–2391 (1994).
    [CrossRef]
  36. M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335–337 (1996).
    [CrossRef]
  37. D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, and P. Nicholas, “Polymeric electro-optic waveguide modulator; materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khamarian, ed., Proc. SPIE 1147, 222–232 (1989).
    [CrossRef]

1998

1997

1996

A. Andreev, B. Zafirova, K. Panajotov, and I. Koprinarova, “Experimental investigation of the influence of the refractive index of the intermediate planar layer on the properties of a polished type single-mode fibre coupler,” J. Mod. Opt. 43, 1111–1125 (1996).
[CrossRef]

S. Creaney, W. Johnstone, and K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photonics Technol. Lett. 8, 355–357 (1996).
[CrossRef]

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335–337 (1996).
[CrossRef]

1995

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microwave Theory Tech. 43, 2184–2197 (1995).
[CrossRef]

Y. Shuto, S. Tomaru, M. Hikita, and M. Amano, “Optical intensity modulators using diazo-dye-substituted polymer channel waveguides,” IEEE J. Quantum Electron. 31, 1451–1460 (1995).
[CrossRef]

1994

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional couplers,” IEEE Photonics Technol. Lett. 6, 273–275 (1994).
[CrossRef]

K. Noguchi, H. Miyazawa, and O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
[CrossRef]

A. K. Das and A. K. Ganguly, “Efficient method of coupling from a single-mode fiber to a thin-film waveguide,” Opt. Lett. 19, 2110–2112 (1994).
[CrossRef] [PubMed]

W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, and L. R. Dalton, “Traveling-wave electro-optic phase modulator using cross-linked nonlinear optical polymer,” Appl. Phys. Lett. 65, 929–931 (1994).
[CrossRef]

D. R. Yankelevich, R. A. Hill, A. Knoesen, M. A. Mortazavi, H. N. Yoon, and S. T. Kowel, “Polymeric modulator for high frequency optical interconnects,” IEEE Photonics Technol. Lett. 6, 386–389 (1994).
[CrossRef]

A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers,” Appl. Phys. Lett. 65, 2389–2391 (1994).
[CrossRef]

K. Panajotov, “Polarization properties of a fiber-to-asymmetric planar waveguide coupler,” J. Lightwave Technol. 12, 983–988 (1994).
[CrossRef]

A. T. Andreev, K. Panajotov, and E. I. Karakoleva, “Wavelength division action of a distributed single-mode fiber-to-symmetrical planar waveguide coupler,” IEEE Photonics Technol. Lett. 6, 1238–1240 (1994).
[CrossRef]

1993

G. Khanarian, M. A. Mortazavi, and A. J. East, “Phase-matched second-harmonic generation from free-standing periodically stacked polymer films,” Appl. Phys. Lett. 63, 1462–1464 (1993).
[CrossRef]

A. T. Andreev and K. P. Panajotov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
[CrossRef]

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, and N. R. Samant, “Maximum dynamic range operation of a microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

M. L. Farwell, W. S. C. Chang, and D. R. Huber, “Increased linear dynamic range by low biasing the Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 5, 779–782 (1993).
[CrossRef]

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

1992

C. C. Teng, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth,” Appl. Phys. Lett. 60, 1538–1540 (1992).
[CrossRef]

S.-M. Tseng and C.-L. Chen, “Side-polished fibers,” Appl. Opt. 31, 3438–3447 (1992).
[CrossRef] [PubMed]

G. Fawcett, W. Johnstone, and I. Andonovic, “Fibre optic intensity modulator using multi-mode electro-optic polymer overlay,” in Components for Fiber Optic Applications VII, P. M. Kopera, ed., Proc. SPIE 1792, 132–136 (1992).
[CrossRef]

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

1991

M. Wilkinson, J. R. Hill, and S. A. Cassidy, “Optical fibre modulator using electro-optic polymer overlayer,” Electron. Lett. 27, 979–981 (1991).
[CrossRef]

D. G. Girton, S. L. Kwiatkowski, G. F. Lipscomb, and R. S. Lytel, “20-GHz electro-optic polymer Mach–Zehnder modulator,” Appl. Phys. Lett. 58, 1730–1732 (1991).
[CrossRef]

1990

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

1989

D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
[CrossRef]

D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, and P. Nicholas, “Polymeric electro-optic waveguide modulator; materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khamarian, ed., Proc. SPIE 1147, 222–232 (1989).
[CrossRef]

1987

M. Zhang and E. Garmire, “Single-mode fiber-film directional coupler,” J. Lightwave Technol. LT-5, 260–267 (1987).
[CrossRef]

1980

R. A. Bergh, G. Kotler, and H. J. Shaw, “Single-mode fibre optic directional coupler,” Electron. Lett. 16, 260–261 (1980).
[CrossRef]

1973

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
[CrossRef]

Ackerman, E.

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, and N. R. Samant, “Maximum dynamic range operation of a microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

Ahlheim, M.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335–337 (1996).
[CrossRef]

Amano, M.

Y. Shuto, S. Tomaru, M. Hikita, and M. Amano, “Optical intensity modulators using diazo-dye-substituted polymer channel waveguides,” IEEE J. Quantum Electron. 31, 1451–1460 (1995).
[CrossRef]

Andonovic, I.

G. Fawcett, W. Johnstone, and I. Andonovic, “Fibre optic intensity modulator using multi-mode electro-optic polymer overlay,” in Components for Fiber Optic Applications VII, P. M. Kopera, ed., Proc. SPIE 1792, 132–136 (1992).
[CrossRef]

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Andreev, A.

A. Andreev, B. Zafirova, K. Panajotov, and I. Koprinarova, “Experimental investigation of the influence of the refractive index of the intermediate planar layer on the properties of a polished type single-mode fibre coupler,” J. Mod. Opt. 43, 1111–1125 (1996).
[CrossRef]

Andreev, A. T.

K. P. Panajotov and A. T. Andreev, “Distributed coupling between a single-mode fiber and a planar waveguide,” J. Opt. Soc. Am. B 11, 826–834 (1997).
[CrossRef]

A. T. Andreev, K. Panajotov, and E. I. Karakoleva, “Wavelength division action of a distributed single-mode fiber-to-symmetrical planar waveguide coupler,” IEEE Photonics Technol. Lett. 6, 1238–1240 (1994).
[CrossRef]

A. T. Andreev and K. P. Panajotov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
[CrossRef]

Ashwell, G. J.

Barzoukas, M.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335–337 (1996).
[CrossRef]

Bedworth, P. V.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335–337 (1996).
[CrossRef]

Bergh, R. A.

R. A. Bergh, G. Kotler, and H. J. Shaw, “Single-mode fibre optic directional coupler,” Electron. Lett. 16, 260–261 (1980).
[CrossRef]

Blanchard-Desce, M.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335–337 (1996).
[CrossRef]

Bone, D. J.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Bridges, W. B.

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microwave Theory Tech. 43, 2184–2197 (1995).
[CrossRef]

Carter, N.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Cassidy, S. A.

M. Wilkinson, J. R. Hill, and S. A. Cassidy, “Optical fibre modulator using electro-optic polymer overlayer,” Electron. Lett. 27, 979–981 (1991).
[CrossRef]

Chang, W. S. C.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional couplers,” IEEE Photonics Technol. Lett. 6, 273–275 (1994).
[CrossRef]

M. L. Farwell, W. S. C. Chang, and D. R. Huber, “Increased linear dynamic range by low biasing the Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 5, 779–782 (1993).
[CrossRef]

Chen, C.-L.

Chen, D.

W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, and L. R. Dalton, “Traveling-wave electro-optic phase modulator using cross-linked nonlinear optical polymer,” Appl. Phys. Lett. 65, 929–931 (1994).
[CrossRef]

Creaney, S.

S. Creaney, W. Johnstone, and K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photonics Technol. Lett. 8, 355–357 (1996).
[CrossRef]

Cross, G.

D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, and P. Nicholas, “Polymeric electro-optic waveguide modulator; materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khamarian, ed., Proc. SPIE 1147, 222–232 (1989).
[CrossRef]

Culshaw, B.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

Dalton, L. R.

W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, and L. R. Dalton, “Traveling-wave electro-optic phase modulator using cross-linked nonlinear optical polymer,” Appl. Phys. Lett. 65, 929–931 (1994).
[CrossRef]

Daryoush, A. S.

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, and N. R. Samant, “Maximum dynamic range operation of a microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

Das, A. K.

East, A. J.

G. Khanarian, M. A. Mortazavi, and A. J. East, “Phase-matched second-harmonic generation from free-standing periodically stacked polymer films,” Appl. Phys. Lett. 63, 1462–1464 (1993).
[CrossRef]

Farwell, M. L.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional couplers,” IEEE Photonics Technol. Lett. 6, 273–275 (1994).
[CrossRef]

M. L. Farwell, W. S. C. Chang, and D. R. Huber, “Increased linear dynamic range by low biasing the Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 5, 779–782 (1993).
[CrossRef]

Fawcett, G.

G. Fawcett, W. Johnstone, and I. Andonovic, “Fibre optic intensity modulator using multi-mode electro-optic polymer overlay,” in Components for Fiber Optic Applications VII, P. M. Kopera, ed., Proc. SPIE 1792, 132–136 (1992).
[CrossRef]

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Fetterman, H. R.

W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, and L. R. Dalton, “Traveling-wave electro-optic phase modulator using cross-linked nonlinear optical polymer,” Appl. Phys. Lett. 65, 929–931 (1994).
[CrossRef]

Flannery, D.

Fort, A.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335–337 (1996).
[CrossRef]

Gaeta, C. J.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional couplers,” IEEE Photonics Technol. Lett. 6, 273–275 (1994).
[CrossRef]

Ganguly, A. K.

Garmire, E.

M. Zhang and E. Garmire, “Single-mode fiber-film directional coupler,” J. Lightwave Technol. LT-5, 260–267 (1987).
[CrossRef]

Girton, D. G.

D. G. Girton, S. L. Kwiatkowski, G. F. Lipscomb, and R. S. Lytel, “20-GHz electro-optic polymer Mach–Zehnder modulator,” Appl. Phys. Lett. 58, 1730–1732 (1991).
[CrossRef]

Haas, D.

D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, and P. Nicholas, “Polymeric electro-optic waveguide modulator; materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khamarian, ed., Proc. SPIE 1147, 222–232 (1989).
[CrossRef]

Hart, T.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

Harvey, T. G.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Hikita, M.

Y. Shuto, S. Tomaru, M. Hikita, and M. Amano, “Optical intensity modulators using diazo-dye-substituted polymer channel waveguides,” IEEE J. Quantum Electron. 31, 1451–1460 (1995).
[CrossRef]

Hill, J. R.

M. Wilkinson, J. R. Hill, and S. A. Cassidy, “Optical fibre modulator using electro-optic polymer overlayer,” Electron. Lett. 27, 979–981 (1991).
[CrossRef]

Hill, R. A.

Ph. Prêtre, L.-M. Wu, R. A. Hill, and A. Knoesen, “Characterization of electro-optic polymer films by use of decal-deposited reflection Fabry–Perot microcavities,” J. Opt. Soc. Am. B 15, 379–392 (1998).
[CrossRef]

D. R. Yankelevich, R. A. Hill, A. Knoesen, M. A. Mortazavi, H. N. Yoon, and S. T. Kowel, “Polymeric modulator for high frequency optical interconnects,” IEEE Photonics Technol. Lett. 6, 386–389 (1994).
[CrossRef]

Horsthuis, W. H. G.

A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers,” Appl. Phys. Lett. 65, 2389–2391 (1994).
[CrossRef]

Hu, Z.-Y.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335–337 (1996).
[CrossRef]

Huber, D. R.

M. L. Farwell, W. S. C. Chang, and D. R. Huber, “Increased linear dynamic range by low biasing the Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 5, 779–782 (1993).
[CrossRef]

James, S. W.

Johnstone, W.

S. Creaney, W. Johnstone, and K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photonics Technol. Lett. 8, 355–357 (1996).
[CrossRef]

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

G. Fawcett, W. Johnstone, and I. Andonovic, “Fibre optic intensity modulator using multi-mode electro-optic polymer overlay,” in Components for Fiber Optic Applications VII, P. M. Kopera, ed., Proc. SPIE 1792, 132–136 (1992).
[CrossRef]

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

Joyce, R. L.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional couplers,” IEEE Photonics Technol. Lett. 6, 273–275 (1994).
[CrossRef]

Jurich, M.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

Karakoleva, E. I.

A. T. Andreev, K. Panajotov, and E. I. Karakoleva, “Wavelength division action of a distributed single-mode fiber-to-symmetrical planar waveguide coupler,” IEEE Photonics Technol. Lett. 6, 1238–1240 (1994).
[CrossRef]

Kasemset, D.

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, and N. R. Samant, “Maximum dynamic range operation of a microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

Khanarian, G.

G. Khanarian, M. A. Mortazavi, and A. J. East, “Phase-matched second-harmonic generation from free-standing periodically stacked polymer films,” Appl. Phys. Lett. 63, 1462–1464 (1993).
[CrossRef]

Knoesen, A.

Ph. Prêtre, L.-M. Wu, R. A. Hill, and A. Knoesen, “Characterization of electro-optic polymer films by use of decal-deposited reflection Fabry–Perot microcavities,” J. Opt. Soc. Am. B 15, 379–392 (1998).
[CrossRef]

D. R. Yankelevich, R. A. Hill, A. Knoesen, M. A. Mortazavi, H. N. Yoon, and S. T. Kowel, “Polymeric modulator for high frequency optical interconnects,” IEEE Photonics Technol. Lett. 6, 386–389 (1994).
[CrossRef]

Koprinarova, I.

A. Andreev, B. Zafirova, K. Panajotov, and I. Koprinarova, “Experimental investigation of the influence of the refractive index of the intermediate planar layer on the properties of a polished type single-mode fibre coupler,” J. Mod. Opt. 43, 1111–1125 (1996).
[CrossRef]

Kotler, G.

R. A. Bergh, G. Kotler, and H. J. Shaw, “Single-mode fibre optic directional coupler,” Electron. Lett. 16, 260–261 (1980).
[CrossRef]

Kowel, S. T.

D. R. Yankelevich, R. A. Hill, A. Knoesen, M. A. Mortazavi, H. N. Yoon, and S. T. Kowel, “Polymeric modulator for high frequency optical interconnects,” IEEE Photonics Technol. Lett. 6, 386–389 (1994).
[CrossRef]

Kwiatkowski, S. L.

D. G. Girton, S. L. Kwiatkowski, G. F. Lipscomb, and R. S. Lytel, “20-GHz electro-optic polymer Mach–Zehnder modulator,” Appl. Phys. Lett. 58, 1730–1732 (1991).
[CrossRef]

Lam, J. F.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional couplers,” IEEE Photonics Technol. Lett. 6, 273–275 (1994).
[CrossRef]

Lee, S. G.

Lipscomb, G. F.

D. G. Girton, S. L. Kwiatkowski, G. F. Lipscomb, and R. S. Lytel, “20-GHz electro-optic polymer Mach–Zehnder modulator,” Appl. Phys. Lett. 58, 1730–1732 (1991).
[CrossRef]

Lytel, R. S.

D. G. Girton, S. L. Kwiatkowski, G. F. Lipscomb, and R. S. Lytel, “20-GHz electro-optic polymer Mach–Zehnder modulator,” Appl. Phys. Lett. 58, 1730–1732 (1991).
[CrossRef]

Man, H.

D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, and P. Nicholas, “Polymeric electro-optic waveguide modulator; materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khamarian, ed., Proc. SPIE 1147, 222–232 (1989).
[CrossRef]

Mann, S.

D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, and P. Nicholas, “Polymeric electro-optic waveguide modulator; materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khamarian, ed., Proc. SPIE 1147, 222–232 (1989).
[CrossRef]

Marcuse, D.

D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
[CrossRef]

Marder, S. R.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335–337 (1996).
[CrossRef]

McCallion, K.

S. Creaney, W. Johnstone, and K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photonics Technol. Lett. 8, 355–357 (1996).
[CrossRef]

McGinnis, B. P.

Mitomi, O.

K. Noguchi, H. Miyazawa, and O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
[CrossRef]

Miyazawa, H.

K. Noguchi, H. Miyazawa, and O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
[CrossRef]

Möhlmann, G. R.

A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers,” Appl. Phys. Lett. 65, 2389–2391 (1994).
[CrossRef]

Mortazavi, M. A.

D. R. Yankelevich, R. A. Hill, A. Knoesen, M. A. Mortazavi, H. N. Yoon, and S. T. Kowel, “Polymeric modulator for high frequency optical interconnects,” IEEE Photonics Technol. Lett. 6, 386–389 (1994).
[CrossRef]

G. Khanarian, M. A. Mortazavi, and A. J. East, “Phase-matched second-harmonic generation from free-standing periodically stacked polymer films,” Appl. Phys. Lett. 63, 1462–1464 (1993).
[CrossRef]

Nicholas, P.

D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, and P. Nicholas, “Polymeric electro-optic waveguide modulator; materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khamarian, ed., Proc. SPIE 1147, 222–232 (1989).
[CrossRef]

Noguchi, K.

K. Noguchi, H. Miyazawa, and O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
[CrossRef]

Otomo, A.

A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers,” Appl. Phys. Lett. 65, 2389–2391 (1994).
[CrossRef]

Panajotov, K.

A. Andreev, B. Zafirova, K. Panajotov, and I. Koprinarova, “Experimental investigation of the influence of the refractive index of the intermediate planar layer on the properties of a polished type single-mode fibre coupler,” J. Mod. Opt. 43, 1111–1125 (1996).
[CrossRef]

A. T. Andreev, K. Panajotov, and E. I. Karakoleva, “Wavelength division action of a distributed single-mode fiber-to-symmetrical planar waveguide coupler,” IEEE Photonics Technol. Lett. 6, 1238–1240 (1994).
[CrossRef]

K. Panajotov, “Polarization properties of a fiber-to-asymmetric planar waveguide coupler,” J. Lightwave Technol. 12, 983–988 (1994).
[CrossRef]

Panajotov, K. P.

K. P. Panajotov and A. T. Andreev, “Distributed coupling between a single-mode fiber and a planar waveguide,” J. Opt. Soc. Am. B 11, 826–834 (1997).
[CrossRef]

A. T. Andreev and K. P. Panajotov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
[CrossRef]

Perry, J. W.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335–337 (1996).
[CrossRef]

Prêtre, Ph.

Runser, C.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335–337 (1996).
[CrossRef]

Ryan, T. G.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Samant, N. R.

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, and N. R. Samant, “Maximum dynamic range operation of a microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

Sasabe, H.

Schaffner, J. H.

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microwave Theory Tech. 43, 2184–2197 (1995).
[CrossRef]

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional couplers,” IEEE Photonics Technol. Lett. 6, 273–275 (1994).
[CrossRef]

Shaw, H. J.

R. A. Bergh, G. Kotler, and H. J. Shaw, “Single-mode fibre optic directional coupler,” Electron. Lett. 16, 260–261 (1980).
[CrossRef]

Shi, Y.

W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, and L. R. Dalton, “Traveling-wave electro-optic phase modulator using cross-linked nonlinear optical polymer,” Appl. Phys. Lett. 65, 929–931 (1994).
[CrossRef]

Shuto, Y.

Y. Shuto, S. Tomaru, M. Hikita, and M. Amano, “Optical intensity modulators using diazo-dye-substituted polymer channel waveguides,” IEEE J. Quantum Electron. 31, 1451–1460 (1995).
[CrossRef]

Skumanich, A.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

Sokoloff, J. P.

Staehelin, M.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335–337 (1996).
[CrossRef]

Stegeman, G. I.

A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers,” Appl. Phys. Lett. 65, 2389–2391 (1994).
[CrossRef]

Steier, W. H.

W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, and L. R. Dalton, “Traveling-wave electro-optic phase modulator using cross-linked nonlinear optical polymer,” Appl. Phys. Lett. 65, 929–931 (1994).
[CrossRef]

Stewart, G.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

Swalen, J. D.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

Tangonan, G. L.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional couplers,” IEEE Photonics Technol. Lett. 6, 273–275 (1994).
[CrossRef]

Tatam, R. P.

Teng, C. C.

C. C. Teng, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth,” Appl. Phys. Lett. 60, 1538–1540 (1992).
[CrossRef]

Tomaru, S.

Y. Shuto, S. Tomaru, M. Hikita, and M. Amano, “Optical intensity modulators using diazo-dye-substituted polymer channel waveguides,” IEEE J. Quantum Electron. 31, 1451–1460 (1995).
[CrossRef]

Tseng, S.-M.

Wang, W.

W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, and L. R. Dalton, “Traveling-wave electro-optic phase modulator using cross-linked nonlinear optical polymer,” Appl. Phys. Lett. 65, 929–931 (1994).
[CrossRef]

Wanuga, S.

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, and N. R. Samant, “Maximum dynamic range operation of a microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

Wilkinson, M.

M. Wilkinson, J. R. Hill, and S. A. Cassidy, “Optical fibre modulator using electro-optic polymer overlayer,” Electron. Lett. 27, 979–981 (1991).
[CrossRef]

Wu, L.-M.

Yankelevich, D. R.

D. R. Yankelevich, R. A. Hill, A. Knoesen, M. A. Mortazavi, H. N. Yoon, and S. T. Kowel, “Polymeric modulator for high frequency optical interconnects,” IEEE Photonics Technol. Lett. 6, 386–389 (1994).
[CrossRef]

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
[CrossRef]

Yoon, H.

D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, and P. Nicholas, “Polymeric electro-optic waveguide modulator; materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khamarian, ed., Proc. SPIE 1147, 222–232 (1989).
[CrossRef]

Yoon, H. N.

D. R. Yankelevich, R. A. Hill, A. Knoesen, M. A. Mortazavi, H. N. Yoon, and S. T. Kowel, “Polymeric modulator for high frequency optical interconnects,” IEEE Photonics Technol. Lett. 6, 386–389 (1994).
[CrossRef]

Zafirova, B.

A. Andreev, B. Zafirova, K. Panajotov, and I. Koprinarova, “Experimental investigation of the influence of the refractive index of the intermediate planar layer on the properties of a polished type single-mode fibre coupler,” J. Mod. Opt. 43, 1111–1125 (1996).
[CrossRef]

Zhang, M.

M. Zhang and E. Garmire, “Single-mode fiber-film directional coupler,” J. Lightwave Technol. LT-5, 260–267 (1987).
[CrossRef]

Zysset, B.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335–337 (1996).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993).
[CrossRef]

D. G. Girton, S. L. Kwiatkowski, G. F. Lipscomb, and R. S. Lytel, “20-GHz electro-optic polymer Mach–Zehnder modulator,” Appl. Phys. Lett. 58, 1730–1732 (1991).
[CrossRef]

C. C. Teng, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth,” Appl. Phys. Lett. 60, 1538–1540 (1992).
[CrossRef]

W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, and L. R. Dalton, “Traveling-wave electro-optic phase modulator using cross-linked nonlinear optical polymer,” Appl. Phys. Lett. 65, 929–931 (1994).
[CrossRef]

G. Khanarian, M. A. Mortazavi, and A. J. East, “Phase-matched second-harmonic generation from free-standing periodically stacked polymer films,” Appl. Phys. Lett. 63, 1462–1464 (1993).
[CrossRef]

A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers,” Appl. Phys. Lett. 65, 2389–2391 (1994).
[CrossRef]

Electron. Lett.

M. Wilkinson, J. R. Hill, and S. A. Cassidy, “Optical fibre modulator using electro-optic polymer overlayer,” Electron. Lett. 27, 979–981 (1991).
[CrossRef]

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

K. Noguchi, H. Miyazawa, and O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
[CrossRef]

R. A. Bergh, G. Kotler, and H. J. Shaw, “Single-mode fibre optic directional coupler,” Electron. Lett. 16, 260–261 (1980).
[CrossRef]

IEEE J. Quantum Electron.

Y. Shuto, S. Tomaru, M. Hikita, and M. Amano, “Optical intensity modulators using diazo-dye-substituted polymer channel waveguides,” IEEE J. Quantum Electron. 31, 1451–1460 (1995).
[CrossRef]

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
[CrossRef]

IEEE Photonics Technol. Lett.

A. T. Andreev, K. Panajotov, and E. I. Karakoleva, “Wavelength division action of a distributed single-mode fiber-to-symmetrical planar waveguide coupler,” IEEE Photonics Technol. Lett. 6, 1238–1240 (1994).
[CrossRef]

D. R. Yankelevich, R. A. Hill, A. Knoesen, M. A. Mortazavi, H. N. Yoon, and S. T. Kowel, “Polymeric modulator for high frequency optical interconnects,” IEEE Photonics Technol. Lett. 6, 386–389 (1994).
[CrossRef]

S. Creaney, W. Johnstone, and K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photonics Technol. Lett. 8, 355–357 (1996).
[CrossRef]

M. L. Farwell, W. S. C. Chang, and D. R. Huber, “Increased linear dynamic range by low biasing the Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 5, 779–782 (1993).
[CrossRef]

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, “Spur-free dynamic range measurements of a fiber optic link with traveling wave linearized directional couplers,” IEEE Photonics Technol. Lett. 6, 273–275 (1994).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microwave Theory Tech. 43, 2184–2197 (1995).
[CrossRef]

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, and N. R. Samant, “Maximum dynamic range operation of a microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

J. Lightwave Technol.

D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
[CrossRef]

A. T. Andreev and K. P. Panajotov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
[CrossRef]

K. Panajotov, “Polarization properties of a fiber-to-asymmetric planar waveguide coupler,” J. Lightwave Technol. 12, 983–988 (1994).
[CrossRef]

M. Zhang and E. Garmire, “Single-mode fiber-film directional coupler,” J. Lightwave Technol. LT-5, 260–267 (1987).
[CrossRef]

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

J. Mod. Opt.

A. Andreev, B. Zafirova, K. Panajotov, and I. Koprinarova, “Experimental investigation of the influence of the refractive index of the intermediate planar layer on the properties of a polished type single-mode fibre coupler,” J. Mod. Opt. 43, 1111–1125 (1996).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Proc. SPIE

D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, and P. Nicholas, “Polymeric electro-optic waveguide modulator; materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khamarian, ed., Proc. SPIE 1147, 222–232 (1989).
[CrossRef]

G. Fawcett, W. Johnstone, and I. Andonovic, “Fibre optic intensity modulator using multi-mode electro-optic polymer overlay,” in Components for Fiber Optic Applications VII, P. M. Kopera, ed., Proc. SPIE 1792, 132–136 (1992).
[CrossRef]

Science

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335–337 (1996).
[CrossRef]

Other

R. A. Hill, G. C. Bjorklund, S. A. Hamilton, D. R. Yankelevich, and A. Knoesen, “Low-distortion, high-speed polymeric in-line fiber modulator,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 332–333.

R. A. Hill, G. C. Bjorklund, S. A. Hamilton, D. R. Yankelevich, and A. Knoesen, “Polymeric in-line fiber modulator using novel processing techniques,” in Optical Fiber Communication, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 166–167.

Refer to various papers in Technical Program for the Sixth Annual ARPA Symposium on Photonic Systems for Antenna Applications (Advanced Research Projects Agency, Monterey, Calif., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

PILF modulator transmittance as a function of Δβ for (a) κ in the 0.1–3.2-mm-1 range, αEOP=1.0 mm-1, and L=1 mm; (b) L in the 0.2–3.2-mm range, αEOP=1.0 mm-1, and κ=1.5 mm-1; (c) αEOP in the 0–3.2-mm-1 range, L=1 mm, and κ =1.5 mm-1.

Fig. 2
Fig. 2

Measured and fitted lumped capacitance PILF modulator transmittance as a function of wavelength. For L=1 mm the fitted parameters were αEOP=18.194 mm-1 and κ=7.641 mm-1.

Fig. 3
Fig. 3

For the bias point κ=0.803 mm-1, L=4 mm, and αEOP=1.062 mm-1:  (a) PILF modulator transmittance as a function of Δβ. Shown is the extended linearity of the device. (b) Dynamic range as a function of Δβ. The second-, third-, and fourth-order limited SFDR is shown for αEOP in the 1.062-mm-1 ±1% range. The hatched region indicates a dynamic range in excess of 80 dB in a 1-MHz bandwidth.

Fig. 4
Fig. 4

Measured PILF modulator transmittance from three devices fabricated by the lift-off deposition technique with sections of the same EOP film. The remarkable similarity among the transmittance scans indicates the repeatability of the lift-off technique.

Fig. 5
Fig. 5

Expanded diagram, not to scale, of the lumped capacitor PILF modulator. The gold and aluminum electrodes had thicknesses of 10 and 200 nm, respectively. The EOP thickness was 3.5 μm.

Fig. 6
Fig. 6

Frequency response for the lumped capacitor PILF modulator that indicates a 3-dB bandwidth of approximately 250 MHz. The solid curve indicates a single-pole low-pass filter fit to the measured data.

Fig. 7
Fig. 7

RF spectral scan for the lumped capacitor PILF modulator. We obtained a dynamic range in excess of 70 dB by driving the device with a signal power of 15 dBm (1.8-V-amplitude) at 200 MHz.

Fig. 8
Fig. 8

Layered schematic diagram, not to scale, of the traveling-wave PILF modulator. The signal electrode and electrode gaps have widths of 370 and 10 μm, respectively. The EOP layer has a thickness of 3.0 μm.

Fig. 9
Fig. 9

Scanning electron microscope image of an EOP-coated CPW fabricated upon a glass slide, which indicates how the EOP layer conforms to the CPW electrode topology.

Fig. 10
Fig. 10

Transmittance as a function of wavelength for the traveling-wave PILF modulator. We trimmed the EOP layer thickness by using RIE to tune the steep slope of the transmittance dip to 1.319 μm.

Fig. 11
Fig. 11

RF insertion loss for the traveling-wave PILF modulator, which indicates a 3-dB bandwidth in excess of 5 GHz.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

VoVIN=PIN(1-Lc)(1-Lp)RRoutTVTbias ,
zAf(z)=-iκAwg(z)exp(iΔβz),
zAwg(z)=-iκ*Af(z)exp(-iΔβz)-αEOPAwg(z),
Af(z)=exp[-(z/2)(αEOP-iΔβ)][(αEOP-iΔβ)sinh(zKr/2)+Kr cosh(zKr/2)]Kr,
Awg(z)=-2i exp[-(z/2)(αEOP+iΔβ)]κ* sinh(zKr/2)Kr,
T(V)=Tbias+VTVTbias+12V22TV2Tbias+16V33TV3Tbias+124V44TV4Tbias .
Vo=IRout=PIN(1-Lc)(1-Lp)RRoutT(VIN).
T(VIN)=Tbias+[V1 sin(ω1t)+V2 sin(ω2t)]TVTbias+V1V22 {cos[(ω1-ω2)t]-cos[(ω1+ω2)t]}2TV2Tbias+V12V28 sin[(2ω1-ω2)t]+V1V228 sin[(2ω2-ω1)t]3TV3Tbias+V12V2232 {cos[(2ω1-2ω2)t]-cos[(2ω1+2ω2)t]} 4TV4Tbias .
Inoise=[2qPINTbiasR(1-Lc)(1-Lp)B]1/2,
Vmin=InoisePIN(1-Lc)(1-Lp)RT/V|Tbias .
Vn max=c(n)InoisePIN(1-Lc)(1-Lp)RnT/Vn|Tbias1/n,
c(n)=2n=28n=332n=4 ,
DRn=Vn max2Vmin2=c(n)nT/Vn|Tbias1/n×PIN(1-Lc)(1-Lp)RInoise(n-1)/nT/V|Tbias2.

Metrics