Abstract

Fabry–Perot microcavities were used for the enhancement and inhibition of photoluminescence (PL) in a hydrogenated amorphous silicon nitride (a-SiNx:H) microcavity fabricated with and without ammonia. A planar microcavity was realized that included a metallic back mirror and an a-SiNx:H–air or a metallic front mirror. The PL extends from the red part of the spectrum to the near infrared for the samples grown without ammonia. The PL is in the blue-green part of the spectrum for the samples grown with ammonia. The PL amplitude is enhanced and the PL linewidth is reduced with respect to those in bulk a-SiNx:H. The numerically calculated transmittance, reflectance, and absorbance spectra agree well with the experimentally measured spectra.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120 (1996).
    [CrossRef]
  2. C. Gorecki, F. Chollet, E. Bonnonte, and H. Kawakatsu, “Silicon-based integrated interferometer with phase modulation driven by surface acoustic waves,” Opt. Lett. 22, 1784 (1997).
    [CrossRef]
  3. D. J. Lockwood, “Optical properties of porous silicon,” Solid State Commun. 92, 101 (1994).
    [CrossRef]
  4. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046 (1990).
    [CrossRef]
  5. P. C. Sercel, D. Kwon, T. Vilbrandt, W. Yang, J. Hautala, J. D. Cohen, and H. Lee, “Visible electroluminescence from porous silicon/hydrogenated amorphous silicon pn-heterojunction devices,” Appl. Phys. Lett. 68, 684 (1996).
    [CrossRef]
  6. J. Rarity and C. Weisbuch, eds., Microcavities and Photonic Bandgaps: Physics and Applications (Kluwer, Dordrecht, The Netherlands, 1996).
  7. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  8. F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
    [CrossRef] [PubMed]
  9. H. Yokoyama and S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801 (1989).
    [CrossRef]
  10. M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607 (1995).
    [CrossRef]
  11. E. F. Schubert, Y.-H. Wang, A. Y. Cho, I. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921 (1992).
    [CrossRef]
  12. H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814 (1990).
    [CrossRef]
  13. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
    [CrossRef]
  14. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire lasers,” Phys. Rev. Lett. 75, 2678 (1995).
    [CrossRef] [PubMed]
  15. L. Pavesi, R. Guardini, and C. Mazolleni, “Porous silicon resonant cavity light emitting diodes,” Solid State Commun. 97, 1051 (1996).
    [CrossRef]
  16. B. T. Sullivan, D. J. Lockwood, H. J. Labbe, and Z.-H. Lu, “Photoluminescence in amorphous Si/SiOx superlattices fabricated by magnetron sputtering,” Appl. Phys. Lett. 69, 3149 (1996).
    [CrossRef]
  17. F. N. Timofeev, A. Aydinli, R. Ellialtioglu, K. Türkoglu, M. Güre, V. N. Mikhailov, and O. A. Lavrova, “Visible photoluminescence from SiOx films grown by low temperature plasma enhanced chemical vapor deposition,” Solid State Commun. 95, 443 (1995).
    [CrossRef]
  18. A. Serpengüzel, A. Aydinli, and A. Bek, “Enhancement and inhibition of photoluminescence in hydrogenated amorphous silicon nitride microcavities,” Opt. Express 1, 108 (1997).
    [CrossRef]
  19. A. Aydinli, A. Serpengüzel, and D. Vardar, “Visible photoluminescence from low temperature deposited hydrogenated amorphous silicon nitride,” Solid State Commun. 98, 273 (1996).
    [CrossRef]
  20. M. J. Estes and G. Moddel, “A model of size dependent photoluminescence in amorphous silicon nanostructures: comparison with observations of porous silicon,” Appl. Phys. Lett. 68, 1814 (1996).
    [CrossRef]
  21. M. H. Brodsky, “Quantum well model of the hydrogenated amorphous silicon,” Solid State Commun. 36, 55 (1980).
    [CrossRef]
  22. R. Fisher, in Amorphous Semiconductors, M. H. Brodsky, ed. (Springer-Verlag, Berlin, 1985), pp. 159–187.

1997 (2)

1996 (6)

A. Aydinli, A. Serpengüzel, and D. Vardar, “Visible photoluminescence from low temperature deposited hydrogenated amorphous silicon nitride,” Solid State Commun. 98, 273 (1996).
[CrossRef]

M. J. Estes and G. Moddel, “A model of size dependent photoluminescence in amorphous silicon nanostructures: comparison with observations of porous silicon,” Appl. Phys. Lett. 68, 1814 (1996).
[CrossRef]

L. Pavesi, R. Guardini, and C. Mazolleni, “Porous silicon resonant cavity light emitting diodes,” Solid State Commun. 97, 1051 (1996).
[CrossRef]

B. T. Sullivan, D. J. Lockwood, H. J. Labbe, and Z.-H. Lu, “Photoluminescence in amorphous Si/SiOx superlattices fabricated by magnetron sputtering,” Appl. Phys. Lett. 69, 3149 (1996).
[CrossRef]

P. C. Sercel, D. Kwon, T. Vilbrandt, W. Yang, J. Hautala, J. D. Cohen, and H. Lee, “Visible electroluminescence from porous silicon/hydrogenated amorphous silicon pn-heterojunction devices,” Appl. Phys. Lett. 68, 684 (1996).
[CrossRef]

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120 (1996).
[CrossRef]

1995 (3)

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607 (1995).
[CrossRef]

F. N. Timofeev, A. Aydinli, R. Ellialtioglu, K. Türkoglu, M. Güre, V. N. Mikhailov, and O. A. Lavrova, “Visible photoluminescence from SiOx films grown by low temperature plasma enhanced chemical vapor deposition,” Solid State Commun. 95, 443 (1995).
[CrossRef]

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire lasers,” Phys. Rev. Lett. 75, 2678 (1995).
[CrossRef] [PubMed]

1994 (1)

D. J. Lockwood, “Optical properties of porous silicon,” Solid State Commun. 92, 101 (1994).
[CrossRef]

1992 (2)

E. F. Schubert, Y.-H. Wang, A. Y. Cho, I. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921 (1992).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

1990 (2)

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814 (1990).
[CrossRef]

T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046 (1990).
[CrossRef]

1989 (1)

H. Yokoyama and S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801 (1989).
[CrossRef]

1987 (1)

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
[CrossRef] [PubMed]

1980 (1)

M. H. Brodsky, “Quantum well model of the hydrogenated amorphous silicon,” Solid State Commun. 36, 55 (1980).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Agarwal, A. M.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120 (1996).
[CrossRef]

Anan, T.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814 (1990).
[CrossRef]

Aydinli, A.

A. Serpengüzel, A. Aydinli, and A. Bek, “Enhancement and inhibition of photoluminescence in hydrogenated amorphous silicon nitride microcavities,” Opt. Express 1, 108 (1997).
[CrossRef]

A. Aydinli, A. Serpengüzel, and D. Vardar, “Visible photoluminescence from low temperature deposited hydrogenated amorphous silicon nitride,” Solid State Commun. 98, 273 (1996).
[CrossRef]

F. N. Timofeev, A. Aydinli, R. Ellialtioglu, K. Türkoglu, M. Güre, V. N. Mikhailov, and O. A. Lavrova, “Visible photoluminescence from SiOx films grown by low temperature plasma enhanced chemical vapor deposition,” Solid State Commun. 95, 443 (1995).
[CrossRef]

Bek, A.

Bi, W. G.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire lasers,” Phys. Rev. Lett. 75, 2678 (1995).
[CrossRef] [PubMed]

Black, M. R.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120 (1996).
[CrossRef]

Bonnonte, E.

Brodsky, M. H.

M. H. Brodsky, “Quantum well model of the hydrogenated amorphous silicon,” Solid State Commun. 36, 55 (1980).
[CrossRef]

Brorson, S. D.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814 (1990).
[CrossRef]

H. Yokoyama and S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801 (1989).
[CrossRef]

Canham, T.

T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046 (1990).
[CrossRef]

Cho, A. Y.

E. F. Schubert, Y.-H. Wang, A. Y. Cho, I. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921 (1992).
[CrossRef]

Chollet, F.

Chu, D. Y.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire lasers,” Phys. Rev. Lett. 75, 2678 (1995).
[CrossRef] [PubMed]

Cohen, J. D.

P. C. Sercel, D. Kwon, T. Vilbrandt, W. Yang, J. Hautala, J. D. Cohen, and H. Lee, “Visible electroluminescence from porous silicon/hydrogenated amorphous silicon pn-heterojunction devices,” Appl. Phys. Lett. 68, 684 (1996).
[CrossRef]

De Martini, F.

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
[CrossRef] [PubMed]

Duan, X.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120 (1996).
[CrossRef]

Ellialtioglu, R.

F. N. Timofeev, A. Aydinli, R. Ellialtioglu, K. Türkoglu, M. Güre, V. N. Mikhailov, and O. A. Lavrova, “Visible photoluminescence from SiOx films grown by low temperature plasma enhanced chemical vapor deposition,” Solid State Commun. 95, 443 (1995).
[CrossRef]

Estes, M. J.

M. J. Estes and G. Moddel, “A model of size dependent photoluminescence in amorphous silicon nanostructures: comparison with observations of porous silicon,” Appl. Phys. Lett. 68, 1814 (1996).
[CrossRef]

Foresi, J. S.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120 (1996).
[CrossRef]

Gorecki, C.

Guardini, R.

L. Pavesi, R. Guardini, and C. Mazolleni, “Porous silicon resonant cavity light emitting diodes,” Solid State Commun. 97, 1051 (1996).
[CrossRef]

Güre, M.

F. N. Timofeev, A. Aydinli, R. Ellialtioglu, K. Türkoglu, M. Güre, V. N. Mikhailov, and O. A. Lavrova, “Visible photoluminescence from SiOx films grown by low temperature plasma enhanced chemical vapor deposition,” Solid State Commun. 95, 443 (1995).
[CrossRef]

Hautala, J.

P. C. Sercel, D. Kwon, T. Vilbrandt, W. Yang, J. Hautala, J. D. Cohen, and H. Lee, “Visible electroluminescence from porous silicon/hydrogenated amorphous silicon pn-heterojunction devices,” Appl. Phys. Lett. 68, 684 (1996).
[CrossRef]

Ho, S. T.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire lasers,” Phys. Rev. Lett. 75, 2678 (1995).
[CrossRef] [PubMed]

Innocenti, G.

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
[CrossRef] [PubMed]

Ippen, E. P.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814 (1990).
[CrossRef]

Jacobowitz, G. R.

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
[CrossRef] [PubMed]

Kawakatsu, H.

Kimerling, L. C.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120 (1996).
[CrossRef]

Kwon, D.

P. C. Sercel, D. Kwon, T. Vilbrandt, W. Yang, J. Hautala, J. D. Cohen, and H. Lee, “Visible electroluminescence from porous silicon/hydrogenated amorphous silicon pn-heterojunction devices,” Appl. Phys. Lett. 68, 684 (1996).
[CrossRef]

Labbe, H. J.

B. T. Sullivan, D. J. Lockwood, H. J. Labbe, and Z.-H. Lu, “Photoluminescence in amorphous Si/SiOx superlattices fabricated by magnetron sputtering,” Appl. Phys. Lett. 69, 3149 (1996).
[CrossRef]

Lavrova, O. A.

F. N. Timofeev, A. Aydinli, R. Ellialtioglu, K. Türkoglu, M. Güre, V. N. Mikhailov, and O. A. Lavrova, “Visible photoluminescence from SiOx films grown by low temperature plasma enhanced chemical vapor deposition,” Solid State Commun. 95, 443 (1995).
[CrossRef]

Lee, H.

P. C. Sercel, D. Kwon, T. Vilbrandt, W. Yang, J. Hautala, J. D. Cohen, and H. Lee, “Visible electroluminescence from porous silicon/hydrogenated amorphous silicon pn-heterojunction devices,” Appl. Phys. Lett. 68, 684 (1996).
[CrossRef]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Liao, L.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120 (1996).
[CrossRef]

Lockwood, D. J.

B. T. Sullivan, D. J. Lockwood, H. J. Labbe, and Z.-H. Lu, “Photoluminescence in amorphous Si/SiOx superlattices fabricated by magnetron sputtering,” Appl. Phys. Lett. 69, 3149 (1996).
[CrossRef]

D. J. Lockwood, “Optical properties of porous silicon,” Solid State Commun. 92, 101 (1994).
[CrossRef]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Lu, Z.-H.

B. T. Sullivan, D. J. Lockwood, H. J. Labbe, and Z.-H. Lu, “Photoluminescence in amorphous Si/SiOx superlattices fabricated by magnetron sputtering,” Appl. Phys. Lett. 69, 3149 (1996).
[CrossRef]

Mataloni, P.

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
[CrossRef] [PubMed]

Mazolleni, C.

L. Pavesi, R. Guardini, and C. Mazolleni, “Porous silicon resonant cavity light emitting diodes,” Solid State Commun. 97, 1051 (1996).
[CrossRef]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Mikhailov, V. N.

F. N. Timofeev, A. Aydinli, R. Ellialtioglu, K. Türkoglu, M. Güre, V. N. Mikhailov, and O. A. Lavrova, “Visible photoluminescence from SiOx films grown by low temperature plasma enhanced chemical vapor deposition,” Solid State Commun. 95, 443 (1995).
[CrossRef]

Moddel, G.

M. J. Estes and G. Moddel, “A model of size dependent photoluminescence in amorphous silicon nanostructures: comparison with observations of porous silicon,” Appl. Phys. Lett. 68, 1814 (1996).
[CrossRef]

Nishi, K.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814 (1990).
[CrossRef]

Pavesi, L.

L. Pavesi, R. Guardini, and C. Mazolleni, “Porous silicon resonant cavity light emitting diodes,” Solid State Commun. 97, 1051 (1996).
[CrossRef]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Schubert, E. F.

E. F. Schubert, Y.-H. Wang, A. Y. Cho, I. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921 (1992).
[CrossRef]

Sercel, P. C.

P. C. Sercel, D. Kwon, T. Vilbrandt, W. Yang, J. Hautala, J. D. Cohen, and H. Lee, “Visible electroluminescence from porous silicon/hydrogenated amorphous silicon pn-heterojunction devices,” Appl. Phys. Lett. 68, 684 (1996).
[CrossRef]

Serpengüzel, A.

A. Serpengüzel, A. Aydinli, and A. Bek, “Enhancement and inhibition of photoluminescence in hydrogenated amorphous silicon nitride microcavities,” Opt. Express 1, 108 (1997).
[CrossRef]

A. Aydinli, A. Serpengüzel, and D. Vardar, “Visible photoluminescence from low temperature deposited hydrogenated amorphous silicon nitride,” Solid State Commun. 98, 273 (1996).
[CrossRef]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Strite, S.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607 (1995).
[CrossRef]

Sullivan, B. T.

B. T. Sullivan, D. J. Lockwood, H. J. Labbe, and Z.-H. Lu, “Photoluminescence in amorphous Si/SiOx superlattices fabricated by magnetron sputtering,” Appl. Phys. Lett. 69, 3149 (1996).
[CrossRef]

Tiberio, R. C.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire lasers,” Phys. Rev. Lett. 75, 2678 (1995).
[CrossRef] [PubMed]

Timofeev, F. N.

F. N. Timofeev, A. Aydinli, R. Ellialtioglu, K. Türkoglu, M. Güre, V. N. Mikhailov, and O. A. Lavrova, “Visible photoluminescence from SiOx films grown by low temperature plasma enhanced chemical vapor deposition,” Solid State Commun. 95, 443 (1995).
[CrossRef]

Tu, C. W.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire lasers,” Phys. Rev. Lett. 75, 2678 (1995).
[CrossRef] [PubMed]

Tu, I. W.

E. F. Schubert, Y.-H. Wang, A. Y. Cho, I. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921 (1992).
[CrossRef]

Türkoglu, K.

F. N. Timofeev, A. Aydinli, R. Ellialtioglu, K. Türkoglu, M. Güre, V. N. Mikhailov, and O. A. Lavrova, “Visible photoluminescence from SiOx films grown by low temperature plasma enhanced chemical vapor deposition,” Solid State Commun. 95, 443 (1995).
[CrossRef]

Ünlü, M. S.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607 (1995).
[CrossRef]

Vardar, D.

A. Aydinli, A. Serpengüzel, and D. Vardar, “Visible photoluminescence from low temperature deposited hydrogenated amorphous silicon nitride,” Solid State Commun. 98, 273 (1996).
[CrossRef]

Vilbrandt, T.

P. C. Sercel, D. Kwon, T. Vilbrandt, W. Yang, J. Hautala, J. D. Cohen, and H. Lee, “Visible electroluminescence from porous silicon/hydrogenated amorphous silicon pn-heterojunction devices,” Appl. Phys. Lett. 68, 684 (1996).
[CrossRef]

Wang, Y.-H.

E. F. Schubert, Y.-H. Wang, A. Y. Cho, I. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921 (1992).
[CrossRef]

Wu, S. L.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire lasers,” Phys. Rev. Lett. 75, 2678 (1995).
[CrossRef] [PubMed]

Yamada, H.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814 (1990).
[CrossRef]

Yang, W.

P. C. Sercel, D. Kwon, T. Vilbrandt, W. Yang, J. Hautala, J. D. Cohen, and H. Lee, “Visible electroluminescence from porous silicon/hydrogenated amorphous silicon pn-heterojunction devices,” Appl. Phys. Lett. 68, 684 (1996).
[CrossRef]

Yokoyama, H.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814 (1990).
[CrossRef]

H. Yokoyama and S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801 (1989).
[CrossRef]

Zhang, J. P.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire lasers,” Phys. Rev. Lett. 75, 2678 (1995).
[CrossRef] [PubMed]

Zydzik, G. J.

E. F. Schubert, Y.-H. Wang, A. Y. Cho, I. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921 (1992).
[CrossRef]

Appl. Phys. Lett. (7)

T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046 (1990).
[CrossRef]

P. C. Sercel, D. Kwon, T. Vilbrandt, W. Yang, J. Hautala, J. D. Cohen, and H. Lee, “Visible electroluminescence from porous silicon/hydrogenated amorphous silicon pn-heterojunction devices,” Appl. Phys. Lett. 68, 684 (1996).
[CrossRef]

E. F. Schubert, Y.-H. Wang, A. Y. Cho, I. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921 (1992).
[CrossRef]

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814 (1990).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

B. T. Sullivan, D. J. Lockwood, H. J. Labbe, and Z.-H. Lu, “Photoluminescence in amorphous Si/SiOx superlattices fabricated by magnetron sputtering,” Appl. Phys. Lett. 69, 3149 (1996).
[CrossRef]

M. J. Estes and G. Moddel, “A model of size dependent photoluminescence in amorphous silicon nanostructures: comparison with observations of porous silicon,” Appl. Phys. Lett. 68, 1814 (1996).
[CrossRef]

J. Appl. Phys. (3)

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120 (1996).
[CrossRef]

H. Yokoyama and S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801 (1989).
[CrossRef]

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. Lett. (2)

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
[CrossRef] [PubMed]

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire lasers,” Phys. Rev. Lett. 75, 2678 (1995).
[CrossRef] [PubMed]

Solid State Commun. (5)

L. Pavesi, R. Guardini, and C. Mazolleni, “Porous silicon resonant cavity light emitting diodes,” Solid State Commun. 97, 1051 (1996).
[CrossRef]

A. Aydinli, A. Serpengüzel, and D. Vardar, “Visible photoluminescence from low temperature deposited hydrogenated amorphous silicon nitride,” Solid State Commun. 98, 273 (1996).
[CrossRef]

F. N. Timofeev, A. Aydinli, R. Ellialtioglu, K. Türkoglu, M. Güre, V. N. Mikhailov, and O. A. Lavrova, “Visible photoluminescence from SiOx films grown by low temperature plasma enhanced chemical vapor deposition,” Solid State Commun. 95, 443 (1995).
[CrossRef]

D. J. Lockwood, “Optical properties of porous silicon,” Solid State Commun. 92, 101 (1994).
[CrossRef]

M. H. Brodsky, “Quantum well model of the hydrogenated amorphous silicon,” Solid State Commun. 36, 55 (1980).
[CrossRef]

Other (2)

R. Fisher, in Amorphous Semiconductors, M. H. Brodsky, ed. (Springer-Verlag, Berlin, 1985), pp. 159–187.

J. Rarity and C. Weisbuch, eds., Microcavities and Photonic Bandgaps: Physics and Applications (Kluwer, Dordrecht, The Netherlands, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental and theoretical transmittance, reflectance, and absorbance spectra of an a-SiNx:H microcavity fabricated without NH3.

Fig. 2
Fig. 2

PL spectra of an a-SiNx:H microcavity fabricated without NH3 (a) without the Au back mirror and (b) with the Au back mirror.

Fig. 3
Fig. 3

Experimental and theoretical transmittance, reflectance, and absorbance spectra of an a-SiNx:H microcavity fabricated with NH3.

Fig. 4
Fig. 4

PL spectra of the a-SiNx:H microcavity fabricated with NH3 (a) without and (b) with the Al mirror.

Fig. 5
Fig. 5

PL spectra of the a-SiNx:H microcavity fabricated with NH3 (a) without the Al back mirror and (b) with the Al back and front mirrors.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λm=2Lnm,

Metrics