Abstract

The upconverted fluorescence dots that appear under photon-avalanche excitation in an erbium-doped fluorozirconate fiber are quantitatively analyzed with respect to the pump-mode structure into the fiber and the energy spatial diffusion between Er3+ ions. By computing the mode-propagation constants, we show that the main luminescent structures periods correspond to beating between low-order pump modes. The observed luminescent dots result from these interferences combined with the excitation intensity threshold of avalanche upconversion. We also investigated the influence of energy-transfer spatial diffusion among Er ions by comparing the pump-mode transverse profiles deduced from avalanche and Addition de Photons par Transfert d’Energie (APTE) emissions. At high pump power the modes widths that correspond to APTE experiments are larger than those obtained from avalanche upconversion by 0.8 μm. We attribute this effect to the resonant energy transfer (4I11/2, 4I15/2)→(4I15/2, 4I11/2), which is negligible in photon avalanches because of strong excited-state absorption. From the experimental broadening we estimate that the one-dimensional diffusion length associated with this transfer is 1.13 μm.

© 1998 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Chivian, W. E. Case, and D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
  2. A. W. Kueny, W. E. Case, and M. E. Koch, “Nonlinear-optical absorption through photon avalanche,” J. Opt. Soc. Am. B 6, 639–642 (1989).
  3. Ph. Goldner and F. Pellé, “Photon avalanche fluorescence and lasers,” Opt. Mater. 5, 239–249 (1996).
  4. W. Lenth and R. M. Macfarlane, “Excitation mechanisms for upconversion lasers,” J. Lumin. 45, 346–350 (1990).
  5. H. Scheife, T. Sandrock, E. Heumann, and G. Huber, “Pr, Yb-doped upconversion fibre laser exceeding 1 W of cw output in the red spectral range,” in Advanced Solid State Lasers, Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 313–315.
  6. F. Auzel and Y. Chen, “Multiphonon pumping in Er3+ ZBLAN bulk and fiber, the first step for the photon avalanche process,” J. Non-Cryst. Solids 184, 57–60 (1995).
  7. F. Auzel and Y. Chen, “Photon avalanche luminescence of Er3+ ions in LiYF4 crystal,” J. Lumin. 65, 45–56 (1995).
  8. Y. Chen and F. Auzel, “Room-temperature photon-avalanche up-conversion in an erbium-doped fluoride fiber,” J. Phys. D 27, 1–5 (1994).
  9. M. F. Joubert, S. Guy, and B. Jacquier, “Model of the photon-avalanche effect,” Phys. Rev. B 48, 10031–10037 (1993).
  10. S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55, 8240–8248 (1997).
  11. F. Auzel, “Multiphonon absorption and photon avalanche criterion in erbium doped materials,” Acta Phys. Pol. A 90, 7–19 (1996).
  12. M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981), Chap. 7.
  13. F. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
  14. C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
  15. D. L. Huber, in Laser Spectroscopy of Solids, W. M. Yen and P. M. Selzer, eds., Vol. 49 of Topics in Applied Physics (Springer-Verlag, Berlin, 1986), p. 87.

1997 (1)

S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55, 8240–8248 (1997).

1996 (2)

F. Auzel, “Multiphonon absorption and photon avalanche criterion in erbium doped materials,” Acta Phys. Pol. A 90, 7–19 (1996).

Ph. Goldner and F. Pellé, “Photon avalanche fluorescence and lasers,” Opt. Mater. 5, 239–249 (1996).

1995 (2)

F. Auzel and Y. Chen, “Multiphonon pumping in Er3+ ZBLAN bulk and fiber, the first step for the photon avalanche process,” J. Non-Cryst. Solids 184, 57–60 (1995).

F. Auzel and Y. Chen, “Photon avalanche luminescence of Er3+ ions in LiYF4 crystal,” J. Lumin. 65, 45–56 (1995).

1994 (1)

Y. Chen and F. Auzel, “Room-temperature photon-avalanche up-conversion in an erbium-doped fluoride fiber,” J. Phys. D 27, 1–5 (1994).

1993 (1)

M. F. Joubert, S. Guy, and B. Jacquier, “Model of the photon-avalanche effect,” Phys. Rev. B 48, 10031–10037 (1993).

1990 (1)

W. Lenth and R. M. Macfarlane, “Excitation mechanisms for upconversion lasers,” J. Lumin. 45, 346–350 (1990).

1989 (1)

1982 (1)

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).

1979 (1)

J. S. Chivian, W. E. Case, and D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).

1973 (1)

F. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).

Auzel, F.

F. Auzel, “Multiphonon absorption and photon avalanche criterion in erbium doped materials,” Acta Phys. Pol. A 90, 7–19 (1996).

F. Auzel and Y. Chen, “Multiphonon pumping in Er3+ ZBLAN bulk and fiber, the first step for the photon avalanche process,” J. Non-Cryst. Solids 184, 57–60 (1995).

F. Auzel and Y. Chen, “Photon avalanche luminescence of Er3+ ions in LiYF4 crystal,” J. Lumin. 65, 45–56 (1995).

Y. Chen and F. Auzel, “Room-temperature photon-avalanche up-conversion in an erbium-doped fluoride fiber,” J. Phys. D 27, 1–5 (1994).

F. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).

Case, W. E.

A. W. Kueny, W. E. Case, and M. E. Koch, “Nonlinear-optical absorption through photon avalanche,” J. Opt. Soc. Am. B 6, 639–642 (1989).

J. S. Chivian, W. E. Case, and D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).

Chen, Y.

F. Auzel and Y. Chen, “Photon avalanche luminescence of Er3+ ions in LiYF4 crystal,” J. Lumin. 65, 45–56 (1995).

F. Auzel and Y. Chen, “Multiphonon pumping in Er3+ ZBLAN bulk and fiber, the first step for the photon avalanche process,” J. Non-Cryst. Solids 184, 57–60 (1995).

Y. Chen and F. Auzel, “Room-temperature photon-avalanche up-conversion in an erbium-doped fluoride fiber,” J. Phys. D 27, 1–5 (1994).

Chivian, J. S.

J. S. Chivian, W. E. Case, and D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).

Eden, D. D.

J. S. Chivian, W. E. Case, and D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).

Goldner, Ph.

Ph. Goldner and F. Pellé, “Photon avalanche fluorescence and lasers,” Opt. Mater. 5, 239–249 (1996).

Guy, S.

S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55, 8240–8248 (1997).

M. F. Joubert, S. Guy, and B. Jacquier, “Model of the photon-avalanche effect,” Phys. Rev. B 48, 10031–10037 (1993).

Jacquier, B.

S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55, 8240–8248 (1997).

M. F. Joubert, S. Guy, and B. Jacquier, “Model of the photon-avalanche effect,” Phys. Rev. B 48, 10031–10037 (1993).

Joubert, M. F.

S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55, 8240–8248 (1997).

M. F. Joubert, S. Guy, and B. Jacquier, “Model of the photon-avalanche effect,” Phys. Rev. B 48, 10031–10037 (1993).

Koch, M. E.

Kueny, A. W.

Lawson, C. M.

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).

Lenth, W.

W. Lenth and R. M. Macfarlane, “Excitation mechanisms for upconversion lasers,” J. Lumin. 45, 346–350 (1990).

Macfarlane, R. M.

W. Lenth and R. M. Macfarlane, “Excitation mechanisms for upconversion lasers,” J. Lumin. 45, 346–350 (1990).

Pellé, F.

Ph. Goldner and F. Pellé, “Photon avalanche fluorescence and lasers,” Opt. Mater. 5, 239–249 (1996).

Powell, R. C.

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).

Zwicker, W. K.

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).

Acta Phys. Pol. A (1)

F. Auzel, “Multiphonon absorption and photon avalanche criterion in erbium doped materials,” Acta Phys. Pol. A 90, 7–19 (1996).

Appl. Phys. Lett. (1)

J. S. Chivian, W. E. Case, and D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).

J. Lumin. (2)

W. Lenth and R. M. Macfarlane, “Excitation mechanisms for upconversion lasers,” J. Lumin. 45, 346–350 (1990).

F. Auzel and Y. Chen, “Photon avalanche luminescence of Er3+ ions in LiYF4 crystal,” J. Lumin. 65, 45–56 (1995).

J. Non-Cryst. Solids (1)

F. Auzel and Y. Chen, “Multiphonon pumping in Er3+ ZBLAN bulk and fiber, the first step for the photon avalanche process,” J. Non-Cryst. Solids 184, 57–60 (1995).

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

Y. Chen and F. Auzel, “Room-temperature photon-avalanche up-conversion in an erbium-doped fluoride fiber,” J. Phys. D 27, 1–5 (1994).

Opt. Mater. (1)

Ph. Goldner and F. Pellé, “Photon avalanche fluorescence and lasers,” Opt. Mater. 5, 239–249 (1996).

Phys. Rev. B (3)

M. F. Joubert, S. Guy, and B. Jacquier, “Model of the photon-avalanche effect,” Phys. Rev. B 48, 10031–10037 (1993).

S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55, 8240–8248 (1997).

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).

Proc. IEEE (1)

F. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).

Other (3)

D. L. Huber, in Laser Spectroscopy of Solids, W. M. Yen and P. M. Selzer, eds., Vol. 49 of Topics in Applied Physics (Springer-Verlag, Berlin, 1986), p. 87.

M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981), Chap. 7.

H. Scheife, T. Sandrock, E. Heumann, and G. Huber, “Pr, Yb-doped upconversion fibre laser exceeding 1 W of cw output in the red spectral range,” in Advanced Solid State Lasers, Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 313–315.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics