Abstract

We give the results of piezospectroscopic studies of ZnS crystals and solid-solution ZnxCd1-xSe belonging to different crystallographic modifications: zinc blende, crystals with stacking faults, and wurtzite. We found a correspondence between spectra of piezoreflection of anisotropic phases and spectra of cubic crystal deformed along 〈111〉, and we measured the corresponding deformation potentials.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Verma and P. Crishna, Polytypism and Polymorphism in Crystals (Wiley, New York, 1996).
  2. J. L. Birman, “Simplified LCAO method for zinc blende, wurtzite and mixed crystals structures,” Phys. Rev. 115, 1493–1505 (1959).
    [CrossRef]
  3. G. W. Ananieva, K. K. Dubenskii, A. I. Ryskin, and G. I. Khilko, “Structure of ZnS sulfide single crystals grown from the melt under pressure,” Sov. Phys. Solid State 10, 1417–1421 (1968).
  4. A. G. Areshkin, G. S. Pecar, G. N. Polisskii, T. B. Popova, L. G. Suslina, and D. L. Fedorov, “Composition dependence of the band gap of ZnxCd1−xSe semiconductor solutions having different crystal structures,” Sov. Phys. Solid State 28, 2109–2111 (1986).
  5. S. D. Baranovskii and A. L. Efros, “Band edge smearing in solid solutions,” Sov. Phys. Semicond. 12, 2233–2237 (1973).
  6. G. L. Bir, G. E. Pikus, L. G. Suslina, and D. L. Fedorov, “Exchange interaction and piezooptical property of exciton in cubic ZnS crystals,” Sov. Phys. Solid State 12, 3218–3228 (1970).
  7. G. L. Bir, G. E. Pikus, L. G. Suslina, and D. L. Fedorov, “Exciton spectra and exchange interaction in deformed ZnS crystals containing stacking faults,” Sov. Phys. Solid State 13, 3551–3565 (1971).
  8. M. Aven and J. S. Prener, Physics and Chemistry of Compounds A2B6 (North-Holland, Amsterdam, 1967), p. 624.
  9. D. Berlincourt, H. Jaffe, and L. R. Shiozava, “Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium,” Phys. Rev. 129, 1009–1017 (1963).
    [CrossRef]

1986 (1)

A. G. Areshkin, G. S. Pecar, G. N. Polisskii, T. B. Popova, L. G. Suslina, and D. L. Fedorov, “Composition dependence of the band gap of ZnxCd1−xSe semiconductor solutions having different crystal structures,” Sov. Phys. Solid State 28, 2109–2111 (1986).

1973 (1)

S. D. Baranovskii and A. L. Efros, “Band edge smearing in solid solutions,” Sov. Phys. Semicond. 12, 2233–2237 (1973).

1971 (1)

G. L. Bir, G. E. Pikus, L. G. Suslina, and D. L. Fedorov, “Exciton spectra and exchange interaction in deformed ZnS crystals containing stacking faults,” Sov. Phys. Solid State 13, 3551–3565 (1971).

1970 (1)

G. L. Bir, G. E. Pikus, L. G. Suslina, and D. L. Fedorov, “Exchange interaction and piezooptical property of exciton in cubic ZnS crystals,” Sov. Phys. Solid State 12, 3218–3228 (1970).

1968 (1)

G. W. Ananieva, K. K. Dubenskii, A. I. Ryskin, and G. I. Khilko, “Structure of ZnS sulfide single crystals grown from the melt under pressure,” Sov. Phys. Solid State 10, 1417–1421 (1968).

1963 (1)

D. Berlincourt, H. Jaffe, and L. R. Shiozava, “Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium,” Phys. Rev. 129, 1009–1017 (1963).
[CrossRef]

1959 (1)

J. L. Birman, “Simplified LCAO method for zinc blende, wurtzite and mixed crystals structures,” Phys. Rev. 115, 1493–1505 (1959).
[CrossRef]

Ananieva, G. W.

G. W. Ananieva, K. K. Dubenskii, A. I. Ryskin, and G. I. Khilko, “Structure of ZnS sulfide single crystals grown from the melt under pressure,” Sov. Phys. Solid State 10, 1417–1421 (1968).

Areshkin, A. G.

A. G. Areshkin, G. S. Pecar, G. N. Polisskii, T. B. Popova, L. G. Suslina, and D. L. Fedorov, “Composition dependence of the band gap of ZnxCd1−xSe semiconductor solutions having different crystal structures,” Sov. Phys. Solid State 28, 2109–2111 (1986).

Baranovskii, S. D.

S. D. Baranovskii and A. L. Efros, “Band edge smearing in solid solutions,” Sov. Phys. Semicond. 12, 2233–2237 (1973).

Berlincourt, D.

D. Berlincourt, H. Jaffe, and L. R. Shiozava, “Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium,” Phys. Rev. 129, 1009–1017 (1963).
[CrossRef]

Bir, G. L.

G. L. Bir, G. E. Pikus, L. G. Suslina, and D. L. Fedorov, “Exciton spectra and exchange interaction in deformed ZnS crystals containing stacking faults,” Sov. Phys. Solid State 13, 3551–3565 (1971).

G. L. Bir, G. E. Pikus, L. G. Suslina, and D. L. Fedorov, “Exchange interaction and piezooptical property of exciton in cubic ZnS crystals,” Sov. Phys. Solid State 12, 3218–3228 (1970).

Birman, J. L.

J. L. Birman, “Simplified LCAO method for zinc blende, wurtzite and mixed crystals structures,” Phys. Rev. 115, 1493–1505 (1959).
[CrossRef]

Dubenskii, K. K.

G. W. Ananieva, K. K. Dubenskii, A. I. Ryskin, and G. I. Khilko, “Structure of ZnS sulfide single crystals grown from the melt under pressure,” Sov. Phys. Solid State 10, 1417–1421 (1968).

Efros, A. L.

S. D. Baranovskii and A. L. Efros, “Band edge smearing in solid solutions,” Sov. Phys. Semicond. 12, 2233–2237 (1973).

Fedorov, D. L.

A. G. Areshkin, G. S. Pecar, G. N. Polisskii, T. B. Popova, L. G. Suslina, and D. L. Fedorov, “Composition dependence of the band gap of ZnxCd1−xSe semiconductor solutions having different crystal structures,” Sov. Phys. Solid State 28, 2109–2111 (1986).

G. L. Bir, G. E. Pikus, L. G. Suslina, and D. L. Fedorov, “Exciton spectra and exchange interaction in deformed ZnS crystals containing stacking faults,” Sov. Phys. Solid State 13, 3551–3565 (1971).

G. L. Bir, G. E. Pikus, L. G. Suslina, and D. L. Fedorov, “Exchange interaction and piezooptical property of exciton in cubic ZnS crystals,” Sov. Phys. Solid State 12, 3218–3228 (1970).

Jaffe, H.

D. Berlincourt, H. Jaffe, and L. R. Shiozava, “Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium,” Phys. Rev. 129, 1009–1017 (1963).
[CrossRef]

Khilko, G. I.

G. W. Ananieva, K. K. Dubenskii, A. I. Ryskin, and G. I. Khilko, “Structure of ZnS sulfide single crystals grown from the melt under pressure,” Sov. Phys. Solid State 10, 1417–1421 (1968).

Pecar, G. S.

A. G. Areshkin, G. S. Pecar, G. N. Polisskii, T. B. Popova, L. G. Suslina, and D. L. Fedorov, “Composition dependence of the band gap of ZnxCd1−xSe semiconductor solutions having different crystal structures,” Sov. Phys. Solid State 28, 2109–2111 (1986).

Pikus, G. E.

G. L. Bir, G. E. Pikus, L. G. Suslina, and D. L. Fedorov, “Exciton spectra and exchange interaction in deformed ZnS crystals containing stacking faults,” Sov. Phys. Solid State 13, 3551–3565 (1971).

G. L. Bir, G. E. Pikus, L. G. Suslina, and D. L. Fedorov, “Exchange interaction and piezooptical property of exciton in cubic ZnS crystals,” Sov. Phys. Solid State 12, 3218–3228 (1970).

Polisskii, G. N.

A. G. Areshkin, G. S. Pecar, G. N. Polisskii, T. B. Popova, L. G. Suslina, and D. L. Fedorov, “Composition dependence of the band gap of ZnxCd1−xSe semiconductor solutions having different crystal structures,” Sov. Phys. Solid State 28, 2109–2111 (1986).

Popova, T. B.

A. G. Areshkin, G. S. Pecar, G. N. Polisskii, T. B. Popova, L. G. Suslina, and D. L. Fedorov, “Composition dependence of the band gap of ZnxCd1−xSe semiconductor solutions having different crystal structures,” Sov. Phys. Solid State 28, 2109–2111 (1986).

Ryskin, A. I.

G. W. Ananieva, K. K. Dubenskii, A. I. Ryskin, and G. I. Khilko, “Structure of ZnS sulfide single crystals grown from the melt under pressure,” Sov. Phys. Solid State 10, 1417–1421 (1968).

Shiozava, L. R.

D. Berlincourt, H. Jaffe, and L. R. Shiozava, “Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium,” Phys. Rev. 129, 1009–1017 (1963).
[CrossRef]

Suslina, L. G.

A. G. Areshkin, G. S. Pecar, G. N. Polisskii, T. B. Popova, L. G. Suslina, and D. L. Fedorov, “Composition dependence of the band gap of ZnxCd1−xSe semiconductor solutions having different crystal structures,” Sov. Phys. Solid State 28, 2109–2111 (1986).

G. L. Bir, G. E. Pikus, L. G. Suslina, and D. L. Fedorov, “Exciton spectra and exchange interaction in deformed ZnS crystals containing stacking faults,” Sov. Phys. Solid State 13, 3551–3565 (1971).

G. L. Bir, G. E. Pikus, L. G. Suslina, and D. L. Fedorov, “Exchange interaction and piezooptical property of exciton in cubic ZnS crystals,” Sov. Phys. Solid State 12, 3218–3228 (1970).

Phys. Rev. (2)

J. L. Birman, “Simplified LCAO method for zinc blende, wurtzite and mixed crystals structures,” Phys. Rev. 115, 1493–1505 (1959).
[CrossRef]

D. Berlincourt, H. Jaffe, and L. R. Shiozava, “Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium,” Phys. Rev. 129, 1009–1017 (1963).
[CrossRef]

Sov. Phys. Semicond. (1)

S. D. Baranovskii and A. L. Efros, “Band edge smearing in solid solutions,” Sov. Phys. Semicond. 12, 2233–2237 (1973).

Sov. Phys. Solid State (4)

G. L. Bir, G. E. Pikus, L. G. Suslina, and D. L. Fedorov, “Exchange interaction and piezooptical property of exciton in cubic ZnS crystals,” Sov. Phys. Solid State 12, 3218–3228 (1970).

G. L. Bir, G. E. Pikus, L. G. Suslina, and D. L. Fedorov, “Exciton spectra and exchange interaction in deformed ZnS crystals containing stacking faults,” Sov. Phys. Solid State 13, 3551–3565 (1971).

G. W. Ananieva, K. K. Dubenskii, A. I. Ryskin, and G. I. Khilko, “Structure of ZnS sulfide single crystals grown from the melt under pressure,” Sov. Phys. Solid State 10, 1417–1421 (1968).

A. G. Areshkin, G. S. Pecar, G. N. Polisskii, T. B. Popova, L. G. Suslina, and D. L. Fedorov, “Composition dependence of the band gap of ZnxCd1−xSe semiconductor solutions having different crystal structures,” Sov. Phys. Solid State 28, 2109–2111 (1986).

Other (2)

A. R. Verma and P. Crishna, Polytypism and Polymorphism in Crystals (Wiley, New York, 1996).

M. Aven and J. S. Prener, Physics and Chemistry of Compounds A2B6 (North-Holland, Amsterdam, 1967), p. 624.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematics of energetic bands of A2B6 crystals with (a) zinc blende and (b) wurtzite structures near k=0.

Fig. 2
Fig. 2

Microphotogram of the reflection spectrum of cubic monocrystal ZnS at T=77 K and P  111: (a) P=0; (b), (c) P=17.3 kg/mm2 [(b) is polarization E  P, where π means p polarization, and (c) is polarization E  P, where б means s polarization].

Fig. 3
Fig. 3

Dependence of exciton-line positions on the applied stress P at T=77 K. Points are experimental results; lines are theoretical dependences. (a) Spectrum of zinc blende crystals (α=0) at stress P  111. (b), (c) Spectra of SF crystals [(b) is α=0.11; (c) is α=0.3] at stress P  0001.

Fig. 4
Fig. 4

Dependence of exciton-reflection line positions n=1A and n=1B on applied stress P  0001 for hexagonal ZnS crystal at 77 K. Points are experimental results; lines are theoretical dependences.

Fig. 5
Fig. 5

Photoelectric record of the exciton-reflection spectrum of a Zn0.9Cd0.1Se cubic monocrystal (T=77 K): (a) without deformation; (b), (c) with uniaxial compression P  111 at P =14 kg/mm2 [(b) is E  P; (c) is E  P].

Fig. 6
Fig. 6

Dependence of exciton-reflection line positions in piezoreflection spectra of ZnxCd1-xSe crystals (0<x<1) on applied stress P  111 and P  0001.Points are experimental results; lines are theoretical dependences.

Fig. 7
Fig. 7

Dependence of exciton-reflection line positions in piezoreflection spectra of the ZnxCd1-xSe crystals (0<x<1) on applied stress P  111 related to the isotropic point.

Fig. 8
Fig. 8

(a) Potential dependence of line splitting of exciton reflection A and B in SSS ZnxCd1-xSe (0<x<1) at T=77 K. (b) Concentration dependence of deformation potential values d and E1g for the ZnxCd1-xSe system (0<x<1).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E1,2=3Δ12±d3 zz+E1gSp,
E3,4=-Δ12±d3 zz+2Δ1+E1gSp,
E5,7=E6,8=-Δ12±dzz32+4Δ12-2Δ1×dzz31/2+E1gSp,
zz=(P/2)S44,
Sp=P(S11+S12),
Δ1=-(0.7±0.1)×10-3eV,
d=-(5.0±0.7)eV,
E1g=-(4.2±0.6)eV.
d=-(2.7±0.6)eV,E1g=-(4.4±0.6)eV,
Δ=4Δ1=-(3.0±0.5)×10-3eV;
d=-(3.5±0.6)eV,E1g=-(5.7±0.6)eV,
Δ=4Δ1=-(3.0±0.5)×10-3eV.

Metrics