Abstract

Chielectric spectroscopy, which is frequency-domain electric-field-induced second-harmonic generation, was developed to study the nonlinear optical response near the glass-transition temperature on short time scales. These measurements, along with time-domain second-harmonic generation and time- and frequency-domain dielectric measurements, were used to characterize the decay of poling-induced electro-optic properties of guest–host and side-chain methacrylate polymers that have glass-transition temperatures in the range 90<Tg<125 °C. Time- and frequency-dependent data were fitted with a three-level model. The temperature dependences of the time constants from the polymeric systems were then compared, and a scaling model for predicting useful lifetimes of poled electro-optic media is discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Lindsay and K. D. Singer, Polymers for Second-Order Nonlinear Optics, ACS Symp. Ser. 601 (1995).
  2. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
    [CrossRef]
  3. R. Lytel, G. F. Lipscomb, J. T. Kenney, and E. S. Binkley, “Large-scale integration of electro-optic polymer waveguides,” in Polymers for Lightwave and Integrated Optics, L. A. Hornack, ed. (Dekker, New York, 1992), pp. 433–472.
  4. G. Meredith, J. VanDusen, and D. Williams, “Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers,” Macromolecules 15, 1385–1389 (1982).
    [CrossRef]
  5. K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).
    [CrossRef]
  6. C. Ye, T. J. Marks, J. Yang, and G. K. Wong, “Synthesis of molecular arrays with nonlinear optical-properties—second-harmonic generation by covalently functionalized glassy-polymers,” Macromolecules 20, 2322–2324 (1987).
    [CrossRef]
  7. H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Orientation and second harmonic-generation in doped polystyrene and poly(methyl methacrylate) films,” Macromolecules 21, 526–528 (1988).
    [CrossRef]
  8. P. Debye, Polar Molecules (Lancaster, Lancaster, Pa., 1929).
  9. D. J. Williams, “Nonlinear optical properties of guest–host polymer structures,” in Nonlinear Optical Properties of Organic Molecules and Crystals 1, D. S. Chemla and J. Zyss, eds. (Academic, New York, 1987).
  10. H. L. Hampsch, J. M. Torkelson, S. J. Bethke, and S. G. Grubb, “Second harmonic-generation in corona poled, doped polymer-films as a function of corona processing,” J. Appl. Phys. 67, 1037–1041 (1990).
    [CrossRef]
  11. C. H. Wang, S. H. Gu, and H. W. Guan, “Polar order and relaxation of second-order nonlinear-optical susceptibility in an electric-field polarized amorphous polymer,” J. Chem. Phys. 99, 5597–5604 (1993).
    [CrossRef]
  12. M. Eich, H. Looser, D. Y. Yoon, R. Twieg, G. C. Bjorklund, and J. C. Baumert, “Second-harmonic generation in poled organic monomeric glasses,” J. Opt. Soc. Am. B 6, 1590–1597 (1989).
    [CrossRef]
  13. C. G. Garton, “The distribution of relaxation times in dielectrics,” Trans. Faraday Soc. XLIIA, 56–60 (1946).
    [CrossRef]
  14. H. Fröhlich, Theory of Dielectric: Dielectric Constant and Dielectric Loss (Clarendon, Oxford, 1949).
  15. J. R. Macdonald, “Some statistical aspects of relaxation time distributions,” Physica (Utrecht) 28, 485–492 (1962).
    [CrossRef]
  16. J. R. Macdonald, “Restrictions on the form of relaxation time distribution functions for a thermally activated process,” J. Chem. Phys. 36, 345–349 (1962).
    [CrossRef]
  17. J. R. Macdonald, “Transient and temperature response of a distributed, thermally activated system,” J. Appl. Phys. 34, 538–552 (1963).
    [CrossRef]
  18. C. J. Böttcher and P. Bordewijk, Theory of Electronic Polarisation (Elsevier, Amsterdam, 1978), Vol. 2.
  19. H. L. Hampsch, J. M. Torkelson, J. Yang, and G. K. Wong, “Second harmonic-generation in doped glassy polymer-films as a function of physical aging and dopant size,” Polymer Commun. 30, 40–43 (1989).
  20. C. P. J. M. van der Vorst and R. A. P. van Gassel, “Thermal relaxation of poled non-linear optical sidechain polymers: a new, semi-empirical model,” Macromol. Symp. 90, 47–64 (1994).
  21. T. Goodson, and C. H. Wang, “Dipolar orientational relaxation in guest host amorphous polymer probed by second-harmonic generation,” Macromolecules 26, 1837–1840 (1993).
    [CrossRef]
  22. H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Dopant orientation dynamics in doped second-order nonlinear optical amorphous polymers. 1. Effects of temperature above and below Tg in corona-poled films,” Macromolecules 23, 3640–3647 (1990).
    [CrossRef]
  23. R. Kohlrausch, Ann. Phys. (Leipzig) 12, 393 (1847).
  24. G. Williams and D. C. Watts, “Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Trans. Faraday Soc. 66, 80–85 (1970).
    [CrossRef]
  25. M. G. Kuzyk, R. C. Moore, and L. A. King, “Second harmonic-generation measurements of the elastic constant of a molecule in a polymer matrix,” J. Opt. Soc. Am. B 7, 64–72 (1990).
    [CrossRef]
  26. K. D. Singer and L. A. King, “Relaxation phenomena in polymer nonlinear optical-materials,” J. Appl. Phys. 70, 3251–3255 (1991).
    [CrossRef]
  27. A. Dhinojwala, G. K. Wong, and J. M. Torkleson, “Rotational reorientation dynamics of nonlinear-optical chromophores in rubbery and glassy-polymers—alpha-relaxation dynamics probed by second-harmonic generation and dielectric-relaxation,” Macromolecules 26, 5943–5953 (1993).
    [CrossRef]
  28. J. Klafter and M. F. Shlesinger, “On the relationship among three theories of relaxation in disordered systems,” Proc. Natl. Acad. Sci. (USA) 83, 848–851 (1986).
    [CrossRef]
  29. K. Weron, “A probabilistic mechanism hidden behind the universal power law for dielectric-relaxation—general relaxation equation,” J. Phys. Condens. Matter 3, 9151–9162 (1991).
    [CrossRef]
  30. M. F. Shlesinger and J. Klafter, “The nature of temporal hierarchies underlying relaxation in disordered systems,” in Fractal in Physics, L. P. Pietronero and E. Tosatti, eds. (North-Holland, Amsterdam, 1986), p. 393–398.
  31. F. Ghebremichael and M. G. Kuzyk, “Optical second-harmonic generation as a probe of the temperature dependence of the distribution of sites in a poly(methyl methacrylate) polymer doped with Disperse Red 1 azo dye,” J. Appl. Phys. 77, 2896–2901 (1995).
    [CrossRef]
  32. A. Dhinojwala, G. K. Wong, and J. M. Torkleson, “Rotational reorientation dynamics of Disperse Red-1 in polystyrene—alpha-relaxation dynamics probed by second-harmonic generation and dielectric-relaxation,” J. Chem. Phys. 100, 6046–6054 (1994).
    [CrossRef]
  33. P. Kaatz, P. Pretre, U. Meier, C. Bosshard, P. Gunter, B. Zysset, M. Stahelin, M. Ahlheim, and F. Lehr, “Relaxation in nonlinear optical polyimide side-chain polymers,” Macromolecules 29, 1666–1678 (1996).
    [CrossRef]
  34. J. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. Am. B 8, 142–152 (1991).
    [CrossRef]
  35. S. C. Brower and L. M. Hayden, “Activation volume associated with the relaxation of the second-order nonlinear-optical susceptibility in a guest–host polymer,” Appl. Phys. Lett. 63, 2059–2061 (1993).
    [CrossRef]
  36. L. Liu, D. Ramkrishna, and H. S. Lackritz, “Rotational Brownian-motion of chromophores and electric-field effects in polymer-films for second-order nonlinear optics,” Macromolecules 27, 5987–5999 (1994).
    [CrossRef]
  37. T. Verbiest and D. M. Burland, “The use of the Wagner function to describe poled-order relaxation processes in electrooptic polymers,” Chem. Phys. Lett. 236, 253–258 (1995).
    [CrossRef]
  38. L. A. Dissado and R. M. Hill, “Non-exponential decay in dielectrics and dynamics of correlated systems,” Nature 279, 685–689 (1979).
    [CrossRef]
  39. A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1983).
  40. K. L. Ngai and C. T. White, “Frequency dependence of dielectric loss in condensed matter,” Phys. Rev. B 20, 2475–2486 (1979).
    [CrossRef]
  41. L. J. Slater, Generalized Hypergeometric Functions (Cambridge U. Press, Cambridge, 1966).
  42. L. J. Slater, Confluent Hypergeometric Functions (Cambridge U. Press, Cambridge, 1960).
  43. A. J. Kovacs, J. M. Hutchinson, and J. J. Aklonis, “Isobaric volume and enthalpy recovery in glasses. I. A critical survey of recent phenomenological approaches,” in The Structure of Non-Crystalline Materials, P. H. Gaskell, ed. (Taylor & Francis, London, 1977), pp. 167–174.
  44. M. Stähelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. Twieg, W. Volksen, and C. A. Walsh, “Reevaluation of the thermal-stability of optically nonlinear polymeric guest–host systems,” Appl. Phys. Lett. 61, 1626–1628 (1992).
    [CrossRef]
  45. J. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1961).
  46. M. I. Klinger, Glassy Disordered System: Topology, Atomic Dynamics, and Localized Electron States (Elsevier/North-Holland, Amsterdam, 1989).
  47. J. H. Gibbs and E. A. DiMarzio, “Nature of the glass transition and the glassy state,” J. Chem. Phys. 28, 373–383 (1958).
    [CrossRef]
  48. G. Adam and J. H. Gibbs, “On the temperature dependence of cooperative relaxation properties in glass-forming liquids,” J. Chem. Phys. 43, 139–146 (1965).
    [CrossRef]
  49. G. W. Scherer, “Use of the Adam–Gibbs equation in the analysis of structural relaxation,” J. Am. Ceram. Soc. 67, 504–511 (1984).
    [CrossRef]
  50. A. Q. Tool, “Relation between inelastic deformability and thermal expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29, 240–253 (1946).
    [CrossRef]
  51. O. S. Narayanaswamy, “A model of structural relaxation in glass,” J. Am. Ceram. Soc. 54, 491–498 (1971).
    [CrossRef]
  52. I. M. Hodge and A. R. Berens, “Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling,” Macromolecules 15, 762–770 (1982).
    [CrossRef]
  53. C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Witerman, R. P. Moeller, H. Sasabe, and J. A. Wilder, “Structural relaxation in vitreous materials,” Ann. N.Y. Acad. Sci. 279, 15–35 (1976).
    [CrossRef]
  54. M. A. DeBolt, A. J. Easteal, P. B. Macedo, and C. T. Moynihan, “Analysis of structural relaxation in glass using rate heating data,” J. Am. Ceram. Soc. 59, 16–21 (1976).
    [CrossRef]
  55. J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).
  56. Purchased from IBM Almaden Research Center, San Jose, Calif.
  57. J. A. Cline and W. N. Herman, “Chi-electric relaxation frequency domain chromophore dynamics in nonlinear optical polymers,” in Organic Thin Films, Vol. 21 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997) pp. MD39/1–MD39/4.
  58. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
    [CrossRef]
  59. G. T. Boyd, C. V. Francis, J. E. Trend, and D. A. Ender, “Second-harmonic generation as a probe of rotational mobility in poled polymers,” J. Opt. Soc. Am. B 8, 887–894 (1991).
    [CrossRef]
  60. J. W. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. Am. B 8, 142–152 (1991).
    [CrossRef]
  61. N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Relaxation in Polymeric Solids (Wiley, London, 1967).

1996 (1)

P. Kaatz, P. Pretre, U. Meier, C. Bosshard, P. Gunter, B. Zysset, M. Stahelin, M. Ahlheim, and F. Lehr, “Relaxation in nonlinear optical polyimide side-chain polymers,” Macromolecules 29, 1666–1678 (1996).
[CrossRef]

1995 (2)

F. Ghebremichael and M. G. Kuzyk, “Optical second-harmonic generation as a probe of the temperature dependence of the distribution of sites in a poly(methyl methacrylate) polymer doped with Disperse Red 1 azo dye,” J. Appl. Phys. 77, 2896–2901 (1995).
[CrossRef]

T. Verbiest and D. M. Burland, “The use of the Wagner function to describe poled-order relaxation processes in electrooptic polymers,” Chem. Phys. Lett. 236, 253–258 (1995).
[CrossRef]

1994 (3)

L. Liu, D. Ramkrishna, and H. S. Lackritz, “Rotational Brownian-motion of chromophores and electric-field effects in polymer-films for second-order nonlinear optics,” Macromolecules 27, 5987–5999 (1994).
[CrossRef]

A. Dhinojwala, G. K. Wong, and J. M. Torkleson, “Rotational reorientation dynamics of Disperse Red-1 in polystyrene—alpha-relaxation dynamics probed by second-harmonic generation and dielectric-relaxation,” J. Chem. Phys. 100, 6046–6054 (1994).
[CrossRef]

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[CrossRef]

1993 (4)

C. H. Wang, S. H. Gu, and H. W. Guan, “Polar order and relaxation of second-order nonlinear-optical susceptibility in an electric-field polarized amorphous polymer,” J. Chem. Phys. 99, 5597–5604 (1993).
[CrossRef]

T. Goodson, and C. H. Wang, “Dipolar orientational relaxation in guest host amorphous polymer probed by second-harmonic generation,” Macromolecules 26, 1837–1840 (1993).
[CrossRef]

A. Dhinojwala, G. K. Wong, and J. M. Torkleson, “Rotational reorientation dynamics of nonlinear-optical chromophores in rubbery and glassy-polymers—alpha-relaxation dynamics probed by second-harmonic generation and dielectric-relaxation,” Macromolecules 26, 5943–5953 (1993).
[CrossRef]

S. C. Brower and L. M. Hayden, “Activation volume associated with the relaxation of the second-order nonlinear-optical susceptibility in a guest–host polymer,” Appl. Phys. Lett. 63, 2059–2061 (1993).
[CrossRef]

1992 (1)

M. Stähelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. Twieg, W. Volksen, and C. A. Walsh, “Reevaluation of the thermal-stability of optically nonlinear polymeric guest–host systems,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

1991 (5)

1990 (3)

H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Dopant orientation dynamics in doped second-order nonlinear optical amorphous polymers. 1. Effects of temperature above and below Tg in corona-poled films,” Macromolecules 23, 3640–3647 (1990).
[CrossRef]

M. G. Kuzyk, R. C. Moore, and L. A. King, “Second harmonic-generation measurements of the elastic constant of a molecule in a polymer matrix,” J. Opt. Soc. Am. B 7, 64–72 (1990).
[CrossRef]

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, and S. G. Grubb, “Second harmonic-generation in corona poled, doped polymer-films as a function of corona processing,” J. Appl. Phys. 67, 1037–1041 (1990).
[CrossRef]

1989 (2)

M. Eich, H. Looser, D. Y. Yoon, R. Twieg, G. C. Bjorklund, and J. C. Baumert, “Second-harmonic generation in poled organic monomeric glasses,” J. Opt. Soc. Am. B 6, 1590–1597 (1989).
[CrossRef]

H. L. Hampsch, J. M. Torkelson, J. Yang, and G. K. Wong, “Second harmonic-generation in doped glassy polymer-films as a function of physical aging and dopant size,” Polymer Commun. 30, 40–43 (1989).

1988 (1)

H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Orientation and second harmonic-generation in doped polystyrene and poly(methyl methacrylate) films,” Macromolecules 21, 526–528 (1988).
[CrossRef]

1987 (2)

C. Ye, T. J. Marks, J. Yang, and G. K. Wong, “Synthesis of molecular arrays with nonlinear optical-properties—second-harmonic generation by covalently functionalized glassy-polymers,” Macromolecules 20, 2322–2324 (1987).
[CrossRef]

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
[CrossRef]

1986 (2)

K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).
[CrossRef]

J. Klafter and M. F. Shlesinger, “On the relationship among three theories of relaxation in disordered systems,” Proc. Natl. Acad. Sci. (USA) 83, 848–851 (1986).
[CrossRef]

1984 (1)

G. W. Scherer, “Use of the Adam–Gibbs equation in the analysis of structural relaxation,” J. Am. Ceram. Soc. 67, 504–511 (1984).
[CrossRef]

1982 (2)

G. Meredith, J. VanDusen, and D. Williams, “Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers,” Macromolecules 15, 1385–1389 (1982).
[CrossRef]

I. M. Hodge and A. R. Berens, “Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling,” Macromolecules 15, 762–770 (1982).
[CrossRef]

1979 (2)

L. A. Dissado and R. M. Hill, “Non-exponential decay in dielectrics and dynamics of correlated systems,” Nature 279, 685–689 (1979).
[CrossRef]

K. L. Ngai and C. T. White, “Frequency dependence of dielectric loss in condensed matter,” Phys. Rev. B 20, 2475–2486 (1979).
[CrossRef]

1976 (2)

C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Witerman, R. P. Moeller, H. Sasabe, and J. A. Wilder, “Structural relaxation in vitreous materials,” Ann. N.Y. Acad. Sci. 279, 15–35 (1976).
[CrossRef]

M. A. DeBolt, A. J. Easteal, P. B. Macedo, and C. T. Moynihan, “Analysis of structural relaxation in glass using rate heating data,” J. Am. Ceram. Soc. 59, 16–21 (1976).
[CrossRef]

1971 (1)

O. S. Narayanaswamy, “A model of structural relaxation in glass,” J. Am. Ceram. Soc. 54, 491–498 (1971).
[CrossRef]

1970 (1)

G. Williams and D. C. Watts, “Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Trans. Faraday Soc. 66, 80–85 (1970).
[CrossRef]

1965 (1)

G. Adam and J. H. Gibbs, “On the temperature dependence of cooperative relaxation properties in glass-forming liquids,” J. Chem. Phys. 43, 139–146 (1965).
[CrossRef]

1963 (1)

J. R. Macdonald, “Transient and temperature response of a distributed, thermally activated system,” J. Appl. Phys. 34, 538–552 (1963).
[CrossRef]

1962 (2)

J. R. Macdonald, “Some statistical aspects of relaxation time distributions,” Physica (Utrecht) 28, 485–492 (1962).
[CrossRef]

J. R. Macdonald, “Restrictions on the form of relaxation time distribution functions for a thermally activated process,” J. Chem. Phys. 36, 345–349 (1962).
[CrossRef]

1958 (1)

J. H. Gibbs and E. A. DiMarzio, “Nature of the glass transition and the glassy state,” J. Chem. Phys. 28, 373–383 (1958).
[CrossRef]

1946 (2)

A. Q. Tool, “Relation between inelastic deformability and thermal expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29, 240–253 (1946).
[CrossRef]

C. G. Garton, “The distribution of relaxation times in dielectrics,” Trans. Faraday Soc. XLIIA, 56–60 (1946).
[CrossRef]

1847 (1)

R. Kohlrausch, Ann. Phys. (Leipzig) 12, 393 (1847).

Adam, G.

G. Adam and J. H. Gibbs, “On the temperature dependence of cooperative relaxation properties in glass-forming liquids,” J. Chem. Phys. 43, 139–146 (1965).
[CrossRef]

Ahlheim, M.

P. Kaatz, P. Pretre, U. Meier, C. Bosshard, P. Gunter, B. Zysset, M. Stahelin, M. Ahlheim, and F. Lehr, “Relaxation in nonlinear optical polyimide side-chain polymers,” Macromolecules 29, 1666–1678 (1996).
[CrossRef]

Baumert, J. C.

Berens, A. R.

I. M. Hodge and A. R. Berens, “Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling,” Macromolecules 15, 762–770 (1982).
[CrossRef]

Bethke, S. J.

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, and S. G. Grubb, “Second harmonic-generation in corona poled, doped polymer-films as a function of corona processing,” J. Appl. Phys. 67, 1037–1041 (1990).
[CrossRef]

Bjorklund, G. C.

Bosshard, C.

P. Kaatz, P. Pretre, U. Meier, C. Bosshard, P. Gunter, B. Zysset, M. Stahelin, M. Ahlheim, and F. Lehr, “Relaxation in nonlinear optical polyimide side-chain polymers,” Macromolecules 29, 1666–1678 (1996).
[CrossRef]

Boyd, G. T.

Brower, S. C.

S. C. Brower and L. M. Hayden, “Activation volume associated with the relaxation of the second-order nonlinear-optical susceptibility in a guest–host polymer,” Appl. Phys. Lett. 63, 2059–2061 (1993).
[CrossRef]

Burland, D. M.

T. Verbiest and D. M. Burland, “The use of the Wagner function to describe poled-order relaxation processes in electrooptic polymers,” Chem. Phys. Lett. 236, 253–258 (1995).
[CrossRef]

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[CrossRef]

M. Stähelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. Twieg, W. Volksen, and C. A. Walsh, “Reevaluation of the thermal-stability of optically nonlinear polymeric guest–host systems,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

Debolt, M. A.

C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Witerman, R. P. Moeller, H. Sasabe, and J. A. Wilder, “Structural relaxation in vitreous materials,” Ann. N.Y. Acad. Sci. 279, 15–35 (1976).
[CrossRef]

M. A. DeBolt, A. J. Easteal, P. B. Macedo, and C. T. Moynihan, “Analysis of structural relaxation in glass using rate heating data,” J. Am. Ceram. Soc. 59, 16–21 (1976).
[CrossRef]

Dhinojwala, A.

A. Dhinojwala, G. K. Wong, and J. M. Torkleson, “Rotational reorientation dynamics of Disperse Red-1 in polystyrene—alpha-relaxation dynamics probed by second-harmonic generation and dielectric-relaxation,” J. Chem. Phys. 100, 6046–6054 (1994).
[CrossRef]

A. Dhinojwala, G. K. Wong, and J. M. Torkleson, “Rotational reorientation dynamics of nonlinear-optical chromophores in rubbery and glassy-polymers—alpha-relaxation dynamics probed by second-harmonic generation and dielectric-relaxation,” Macromolecules 26, 5943–5953 (1993).
[CrossRef]

Dill, J. F.

C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Witerman, R. P. Moeller, H. Sasabe, and J. A. Wilder, “Structural relaxation in vitreous materials,” Ann. N.Y. Acad. Sci. 279, 15–35 (1976).
[CrossRef]

DiMarzio, E. A.

J. H. Gibbs and E. A. DiMarzio, “Nature of the glass transition and the glassy state,” J. Chem. Phys. 28, 373–383 (1958).
[CrossRef]

Dissado, L. A.

L. A. Dissado and R. M. Hill, “Non-exponential decay in dielectrics and dynamics of correlated systems,” Nature 279, 685–689 (1979).
[CrossRef]

Dom, B. E.

C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Witerman, R. P. Moeller, H. Sasabe, and J. A. Wilder, “Structural relaxation in vitreous materials,” Ann. N.Y. Acad. Sci. 279, 15–35 (1976).
[CrossRef]

Drake, P. W.

C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Witerman, R. P. Moeller, H. Sasabe, and J. A. Wilder, “Structural relaxation in vitreous materials,” Ann. N.Y. Acad. Sci. 279, 15–35 (1976).
[CrossRef]

Easteal, A. J.

C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Witerman, R. P. Moeller, H. Sasabe, and J. A. Wilder, “Structural relaxation in vitreous materials,” Ann. N.Y. Acad. Sci. 279, 15–35 (1976).
[CrossRef]

M. A. DeBolt, A. J. Easteal, P. B. Macedo, and C. T. Moynihan, “Analysis of structural relaxation in glass using rate heating data,” J. Am. Ceram. Soc. 59, 16–21 (1976).
[CrossRef]

Ebert, M.

M. Stähelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. Twieg, W. Volksen, and C. A. Walsh, “Reevaluation of the thermal-stability of optically nonlinear polymeric guest–host systems,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

Eich, M.

Ender, D. A.

Francis, C. V.

Garton, C. G.

C. G. Garton, “The distribution of relaxation times in dielectrics,” Trans. Faraday Soc. XLIIA, 56–60 (1946).
[CrossRef]

Ghebremichael, F.

F. Ghebremichael and M. G. Kuzyk, “Optical second-harmonic generation as a probe of the temperature dependence of the distribution of sites in a poly(methyl methacrylate) polymer doped with Disperse Red 1 azo dye,” J. Appl. Phys. 77, 2896–2901 (1995).
[CrossRef]

Gibbs, J. H.

G. Adam and J. H. Gibbs, “On the temperature dependence of cooperative relaxation properties in glass-forming liquids,” J. Chem. Phys. 43, 139–146 (1965).
[CrossRef]

J. H. Gibbs and E. A. DiMarzio, “Nature of the glass transition and the glassy state,” J. Chem. Phys. 28, 373–383 (1958).
[CrossRef]

Goodson, T.

T. Goodson, and C. H. Wang, “Dipolar orientational relaxation in guest host amorphous polymer probed by second-harmonic generation,” Macromolecules 26, 1837–1840 (1993).
[CrossRef]

Grubb, S. G.

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, and S. G. Grubb, “Second harmonic-generation in corona poled, doped polymer-films as a function of corona processing,” J. Appl. Phys. 67, 1037–1041 (1990).
[CrossRef]

Gu, S. H.

C. H. Wang, S. H. Gu, and H. W. Guan, “Polar order and relaxation of second-order nonlinear-optical susceptibility in an electric-field polarized amorphous polymer,” J. Chem. Phys. 99, 5597–5604 (1993).
[CrossRef]

Guan, H. W.

C. H. Wang, S. H. Gu, and H. W. Guan, “Polar order and relaxation of second-order nonlinear-optical susceptibility in an electric-field polarized amorphous polymer,” J. Chem. Phys. 99, 5597–5604 (1993).
[CrossRef]

Gunter, P.

P. Kaatz, P. Pretre, U. Meier, C. Bosshard, P. Gunter, B. Zysset, M. Stahelin, M. Ahlheim, and F. Lehr, “Relaxation in nonlinear optical polyimide side-chain polymers,” Macromolecules 29, 1666–1678 (1996).
[CrossRef]

Gupta, P. K.

C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Witerman, R. P. Moeller, H. Sasabe, and J. A. Wilder, “Structural relaxation in vitreous materials,” Ann. N.Y. Acad. Sci. 279, 15–35 (1976).
[CrossRef]

Hampsch, H. L.

H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Dopant orientation dynamics in doped second-order nonlinear optical amorphous polymers. 1. Effects of temperature above and below Tg in corona-poled films,” Macromolecules 23, 3640–3647 (1990).
[CrossRef]

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, and S. G. Grubb, “Second harmonic-generation in corona poled, doped polymer-films as a function of corona processing,” J. Appl. Phys. 67, 1037–1041 (1990).
[CrossRef]

H. L. Hampsch, J. M. Torkelson, J. Yang, and G. K. Wong, “Second harmonic-generation in doped glassy polymer-films as a function of physical aging and dopant size,” Polymer Commun. 30, 40–43 (1989).

H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Orientation and second harmonic-generation in doped polystyrene and poly(methyl methacrylate) films,” Macromolecules 21, 526–528 (1988).
[CrossRef]

Hayden, L. M.

S. C. Brower and L. M. Hayden, “Activation volume associated with the relaxation of the second-order nonlinear-optical susceptibility in a guest–host polymer,” Appl. Phys. Lett. 63, 2059–2061 (1993).
[CrossRef]

Hill, R. M.

L. A. Dissado and R. M. Hill, “Non-exponential decay in dielectrics and dynamics of correlated systems,” Nature 279, 685–689 (1979).
[CrossRef]

Hodge, I. M.

I. M. Hodge and A. R. Berens, “Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling,” Macromolecules 15, 762–770 (1982).
[CrossRef]

Kaatz, P.

P. Kaatz, P. Pretre, U. Meier, C. Bosshard, P. Gunter, B. Zysset, M. Stahelin, M. Ahlheim, and F. Lehr, “Relaxation in nonlinear optical polyimide side-chain polymers,” Macromolecules 29, 1666–1678 (1996).
[CrossRef]

King, L. A.

Klafter, J.

J. Klafter and M. F. Shlesinger, “On the relationship among three theories of relaxation in disordered systems,” Proc. Natl. Acad. Sci. (USA) 83, 848–851 (1986).
[CrossRef]

Kohlrausch, R.

R. Kohlrausch, Ann. Phys. (Leipzig) 12, 393 (1847).

Kuzyk, M. G.

Lackritz, H. S.

L. Liu, D. Ramkrishna, and H. S. Lackritz, “Rotational Brownian-motion of chromophores and electric-field effects in polymer-films for second-order nonlinear optics,” Macromolecules 27, 5987–5999 (1994).
[CrossRef]

Lalama, S. J.

K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).
[CrossRef]

Lehr, F.

P. Kaatz, P. Pretre, U. Meier, C. Bosshard, P. Gunter, B. Zysset, M. Stahelin, M. Ahlheim, and F. Lehr, “Relaxation in nonlinear optical polyimide side-chain polymers,” Macromolecules 29, 1666–1678 (1996).
[CrossRef]

Liu, L.

L. Liu, D. Ramkrishna, and H. S. Lackritz, “Rotational Brownian-motion of chromophores and electric-field effects in polymer-films for second-order nonlinear optics,” Macromolecules 27, 5987–5999 (1994).
[CrossRef]

Looser, H.

Macdonald, J. R.

J. R. Macdonald, “Transient and temperature response of a distributed, thermally activated system,” J. Appl. Phys. 34, 538–552 (1963).
[CrossRef]

J. R. Macdonald, “Some statistical aspects of relaxation time distributions,” Physica (Utrecht) 28, 485–492 (1962).
[CrossRef]

J. R. Macdonald, “Restrictions on the form of relaxation time distribution functions for a thermally activated process,” J. Chem. Phys. 36, 345–349 (1962).
[CrossRef]

Macedo, P. B.

C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Witerman, R. P. Moeller, H. Sasabe, and J. A. Wilder, “Structural relaxation in vitreous materials,” Ann. N.Y. Acad. Sci. 279, 15–35 (1976).
[CrossRef]

M. A. DeBolt, A. J. Easteal, P. B. Macedo, and C. T. Moynihan, “Analysis of structural relaxation in glass using rate heating data,” J. Am. Ceram. Soc. 59, 16–21 (1976).
[CrossRef]

Marks, T. J.

C. Ye, T. J. Marks, J. Yang, and G. K. Wong, “Synthesis of molecular arrays with nonlinear optical-properties—second-harmonic generation by covalently functionalized glassy-polymers,” Macromolecules 20, 2322–2324 (1987).
[CrossRef]

Meier, U.

P. Kaatz, P. Pretre, U. Meier, C. Bosshard, P. Gunter, B. Zysset, M. Stahelin, M. Ahlheim, and F. Lehr, “Relaxation in nonlinear optical polyimide side-chain polymers,” Macromolecules 29, 1666–1678 (1996).
[CrossRef]

Meredith, G.

G. Meredith, J. VanDusen, and D. Williams, “Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers,” Macromolecules 15, 1385–1389 (1982).
[CrossRef]

Miller, R. D.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[CrossRef]

M. Stähelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. Twieg, W. Volksen, and C. A. Walsh, “Reevaluation of the thermal-stability of optically nonlinear polymeric guest–host systems,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

Moeller, R. P.

C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Witerman, R. P. Moeller, H. Sasabe, and J. A. Wilder, “Structural relaxation in vitreous materials,” Ann. N.Y. Acad. Sci. 279, 15–35 (1976).
[CrossRef]

Montrose, C. J.

C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Witerman, R. P. Moeller, H. Sasabe, and J. A. Wilder, “Structural relaxation in vitreous materials,” Ann. N.Y. Acad. Sci. 279, 15–35 (1976).
[CrossRef]

Moore, R. C.

Moynihan, C. T.

C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Witerman, R. P. Moeller, H. Sasabe, and J. A. Wilder, “Structural relaxation in vitreous materials,” Ann. N.Y. Acad. Sci. 279, 15–35 (1976).
[CrossRef]

M. A. DeBolt, A. J. Easteal, P. B. Macedo, and C. T. Moynihan, “Analysis of structural relaxation in glass using rate heating data,” J. Am. Ceram. Soc. 59, 16–21 (1976).
[CrossRef]

Narayanaswamy, O. S.

O. S. Narayanaswamy, “A model of structural relaxation in glass,” J. Am. Ceram. Soc. 54, 491–498 (1971).
[CrossRef]

Ngai, K. L.

K. L. Ngai and C. T. White, “Frequency dependence of dielectric loss in condensed matter,” Phys. Rev. B 20, 2475–2486 (1979).
[CrossRef]

Pretre, P.

P. Kaatz, P. Pretre, U. Meier, C. Bosshard, P. Gunter, B. Zysset, M. Stahelin, M. Ahlheim, and F. Lehr, “Relaxation in nonlinear optical polyimide side-chain polymers,” Macromolecules 29, 1666–1678 (1996).
[CrossRef]

Ramkrishna, D.

L. Liu, D. Ramkrishna, and H. S. Lackritz, “Rotational Brownian-motion of chromophores and electric-field effects in polymer-films for second-order nonlinear optics,” Macromolecules 27, 5987–5999 (1994).
[CrossRef]

Sasabe, H.

C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Witerman, R. P. Moeller, H. Sasabe, and J. A. Wilder, “Structural relaxation in vitreous materials,” Ann. N.Y. Acad. Sci. 279, 15–35 (1976).
[CrossRef]

Scherer, G. W.

G. W. Scherer, “Use of the Adam–Gibbs equation in the analysis of structural relaxation,” J. Am. Ceram. Soc. 67, 504–511 (1984).
[CrossRef]

Shlesinger, M. F.

J. Klafter and M. F. Shlesinger, “On the relationship among three theories of relaxation in disordered systems,” Proc. Natl. Acad. Sci. (USA) 83, 848–851 (1986).
[CrossRef]

Singer, K. D.

K. D. Singer and L. A. King, “Relaxation phenomena in polymer nonlinear optical-materials,” J. Appl. Phys. 70, 3251–3255 (1991).
[CrossRef]

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
[CrossRef]

K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).
[CrossRef]

Smith, B. A.

M. Stähelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. Twieg, W. Volksen, and C. A. Walsh, “Reevaluation of the thermal-stability of optically nonlinear polymeric guest–host systems,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

Sohn, J. E.

Stahelin, M.

P. Kaatz, P. Pretre, U. Meier, C. Bosshard, P. Gunter, B. Zysset, M. Stahelin, M. Ahlheim, and F. Lehr, “Relaxation in nonlinear optical polyimide side-chain polymers,” Macromolecules 29, 1666–1678 (1996).
[CrossRef]

Stähelin, M.

M. Stähelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. Twieg, W. Volksen, and C. A. Walsh, “Reevaluation of the thermal-stability of optically nonlinear polymeric guest–host systems,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

Tool, A. Q.

A. Q. Tool, “Relation between inelastic deformability and thermal expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29, 240–253 (1946).
[CrossRef]

Torkelson, J. M.

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, and S. G. Grubb, “Second harmonic-generation in corona poled, doped polymer-films as a function of corona processing,” J. Appl. Phys. 67, 1037–1041 (1990).
[CrossRef]

H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Dopant orientation dynamics in doped second-order nonlinear optical amorphous polymers. 1. Effects of temperature above and below Tg in corona-poled films,” Macromolecules 23, 3640–3647 (1990).
[CrossRef]

H. L. Hampsch, J. M. Torkelson, J. Yang, and G. K. Wong, “Second harmonic-generation in doped glassy polymer-films as a function of physical aging and dopant size,” Polymer Commun. 30, 40–43 (1989).

H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Orientation and second harmonic-generation in doped polystyrene and poly(methyl methacrylate) films,” Macromolecules 21, 526–528 (1988).
[CrossRef]

Torkleson, J. M.

A. Dhinojwala, G. K. Wong, and J. M. Torkleson, “Rotational reorientation dynamics of Disperse Red-1 in polystyrene—alpha-relaxation dynamics probed by second-harmonic generation and dielectric-relaxation,” J. Chem. Phys. 100, 6046–6054 (1994).
[CrossRef]

A. Dhinojwala, G. K. Wong, and J. M. Torkleson, “Rotational reorientation dynamics of nonlinear-optical chromophores in rubbery and glassy-polymers—alpha-relaxation dynamics probed by second-harmonic generation and dielectric-relaxation,” Macromolecules 26, 5943–5953 (1993).
[CrossRef]

Trend, J. E.

Twieg, R.

M. Stähelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. Twieg, W. Volksen, and C. A. Walsh, “Reevaluation of the thermal-stability of optically nonlinear polymeric guest–host systems,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

M. Eich, H. Looser, D. Y. Yoon, R. Twieg, G. C. Bjorklund, and J. C. Baumert, “Second-harmonic generation in poled organic monomeric glasses,” J. Opt. Soc. Am. B 6, 1590–1597 (1989).
[CrossRef]

VanDusen, J.

G. Meredith, J. VanDusen, and D. Williams, “Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers,” Macromolecules 15, 1385–1389 (1982).
[CrossRef]

Verbiest, T.

T. Verbiest and D. M. Burland, “The use of the Wagner function to describe poled-order relaxation processes in electrooptic polymers,” Chem. Phys. Lett. 236, 253–258 (1995).
[CrossRef]

Volksen, W.

M. Stähelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. Twieg, W. Volksen, and C. A. Walsh, “Reevaluation of the thermal-stability of optically nonlinear polymeric guest–host systems,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

Walsh, C. A.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[CrossRef]

M. Stähelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. Twieg, W. Volksen, and C. A. Walsh, “Reevaluation of the thermal-stability of optically nonlinear polymeric guest–host systems,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

Wang, C. H.

C. H. Wang, S. H. Gu, and H. W. Guan, “Polar order and relaxation of second-order nonlinear-optical susceptibility in an electric-field polarized amorphous polymer,” J. Chem. Phys. 99, 5597–5604 (1993).
[CrossRef]

T. Goodson, and C. H. Wang, “Dipolar orientational relaxation in guest host amorphous polymer probed by second-harmonic generation,” Macromolecules 26, 1837–1840 (1993).
[CrossRef]

Watts, D. C.

G. Williams and D. C. Watts, “Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Trans. Faraday Soc. 66, 80–85 (1970).
[CrossRef]

Weron, K.

K. Weron, “A probabilistic mechanism hidden behind the universal power law for dielectric-relaxation—general relaxation equation,” J. Phys. Condens. Matter 3, 9151–9162 (1991).
[CrossRef]

White, C. T.

K. L. Ngai and C. T. White, “Frequency dependence of dielectric loss in condensed matter,” Phys. Rev. B 20, 2475–2486 (1979).
[CrossRef]

Wilder, J. A.

C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Witerman, R. P. Moeller, H. Sasabe, and J. A. Wilder, “Structural relaxation in vitreous materials,” Ann. N.Y. Acad. Sci. 279, 15–35 (1976).
[CrossRef]

Williams, D.

G. Meredith, J. VanDusen, and D. Williams, “Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers,” Macromolecules 15, 1385–1389 (1982).
[CrossRef]

Williams, G.

G. Williams and D. C. Watts, “Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Trans. Faraday Soc. 66, 80–85 (1970).
[CrossRef]

Witerman, P. B.

C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Witerman, R. P. Moeller, H. Sasabe, and J. A. Wilder, “Structural relaxation in vitreous materials,” Ann. N.Y. Acad. Sci. 279, 15–35 (1976).
[CrossRef]

Wong, G. K.

A. Dhinojwala, G. K. Wong, and J. M. Torkleson, “Rotational reorientation dynamics of Disperse Red-1 in polystyrene—alpha-relaxation dynamics probed by second-harmonic generation and dielectric-relaxation,” J. Chem. Phys. 100, 6046–6054 (1994).
[CrossRef]

A. Dhinojwala, G. K. Wong, and J. M. Torkleson, “Rotational reorientation dynamics of nonlinear-optical chromophores in rubbery and glassy-polymers—alpha-relaxation dynamics probed by second-harmonic generation and dielectric-relaxation,” Macromolecules 26, 5943–5953 (1993).
[CrossRef]

H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Dopant orientation dynamics in doped second-order nonlinear optical amorphous polymers. 1. Effects of temperature above and below Tg in corona-poled films,” Macromolecules 23, 3640–3647 (1990).
[CrossRef]

H. L. Hampsch, J. M. Torkelson, J. Yang, and G. K. Wong, “Second harmonic-generation in doped glassy polymer-films as a function of physical aging and dopant size,” Polymer Commun. 30, 40–43 (1989).

H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Orientation and second harmonic-generation in doped polystyrene and poly(methyl methacrylate) films,” Macromolecules 21, 526–528 (1988).
[CrossRef]

C. Ye, T. J. Marks, J. Yang, and G. K. Wong, “Synthesis of molecular arrays with nonlinear optical-properties—second-harmonic generation by covalently functionalized glassy-polymers,” Macromolecules 20, 2322–2324 (1987).
[CrossRef]

Wu, J.

Wu, J. W.

Yang, J.

H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Dopant orientation dynamics in doped second-order nonlinear optical amorphous polymers. 1. Effects of temperature above and below Tg in corona-poled films,” Macromolecules 23, 3640–3647 (1990).
[CrossRef]

H. L. Hampsch, J. M. Torkelson, J. Yang, and G. K. Wong, “Second harmonic-generation in doped glassy polymer-films as a function of physical aging and dopant size,” Polymer Commun. 30, 40–43 (1989).

H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Orientation and second harmonic-generation in doped polystyrene and poly(methyl methacrylate) films,” Macromolecules 21, 526–528 (1988).
[CrossRef]

C. Ye, T. J. Marks, J. Yang, and G. K. Wong, “Synthesis of molecular arrays with nonlinear optical-properties—second-harmonic generation by covalently functionalized glassy-polymers,” Macromolecules 20, 2322–2324 (1987).
[CrossRef]

Ye, C.

C. Ye, T. J. Marks, J. Yang, and G. K. Wong, “Synthesis of molecular arrays with nonlinear optical-properties—second-harmonic generation by covalently functionalized glassy-polymers,” Macromolecules 20, 2322–2324 (1987).
[CrossRef]

Yoon, D. Y.

Zysset, B.

P. Kaatz, P. Pretre, U. Meier, C. Bosshard, P. Gunter, B. Zysset, M. Stahelin, M. Ahlheim, and F. Lehr, “Relaxation in nonlinear optical polyimide side-chain polymers,” Macromolecules 29, 1666–1678 (1996).
[CrossRef]

Ann. N.Y. Acad. Sci. (1)

C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Witerman, R. P. Moeller, H. Sasabe, and J. A. Wilder, “Structural relaxation in vitreous materials,” Ann. N.Y. Acad. Sci. 279, 15–35 (1976).
[CrossRef]

Ann. Phys. (Leipzig) (1)

R. Kohlrausch, Ann. Phys. (Leipzig) 12, 393 (1847).

Appl. Phys. Lett. (3)

S. C. Brower and L. M. Hayden, “Activation volume associated with the relaxation of the second-order nonlinear-optical susceptibility in a guest–host polymer,” Appl. Phys. Lett. 63, 2059–2061 (1993).
[CrossRef]

K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).
[CrossRef]

M. Stähelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. Twieg, W. Volksen, and C. A. Walsh, “Reevaluation of the thermal-stability of optically nonlinear polymeric guest–host systems,” Appl. Phys. Lett. 61, 1626–1628 (1992).
[CrossRef]

Chem. Phys. Lett. (1)

T. Verbiest and D. M. Burland, “The use of the Wagner function to describe poled-order relaxation processes in electrooptic polymers,” Chem. Phys. Lett. 236, 253–258 (1995).
[CrossRef]

Chem. Rev. (1)

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[CrossRef]

J. Am. Ceram. Soc. (4)

M. A. DeBolt, A. J. Easteal, P. B. Macedo, and C. T. Moynihan, “Analysis of structural relaxation in glass using rate heating data,” J. Am. Ceram. Soc. 59, 16–21 (1976).
[CrossRef]

G. W. Scherer, “Use of the Adam–Gibbs equation in the analysis of structural relaxation,” J. Am. Ceram. Soc. 67, 504–511 (1984).
[CrossRef]

A. Q. Tool, “Relation between inelastic deformability and thermal expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29, 240–253 (1946).
[CrossRef]

O. S. Narayanaswamy, “A model of structural relaxation in glass,” J. Am. Ceram. Soc. 54, 491–498 (1971).
[CrossRef]

J. Appl. Phys. (4)

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, and S. G. Grubb, “Second harmonic-generation in corona poled, doped polymer-films as a function of corona processing,” J. Appl. Phys. 67, 1037–1041 (1990).
[CrossRef]

J. R. Macdonald, “Transient and temperature response of a distributed, thermally activated system,” J. Appl. Phys. 34, 538–552 (1963).
[CrossRef]

F. Ghebremichael and M. G. Kuzyk, “Optical second-harmonic generation as a probe of the temperature dependence of the distribution of sites in a poly(methyl methacrylate) polymer doped with Disperse Red 1 azo dye,” J. Appl. Phys. 77, 2896–2901 (1995).
[CrossRef]

K. D. Singer and L. A. King, “Relaxation phenomena in polymer nonlinear optical-materials,” J. Appl. Phys. 70, 3251–3255 (1991).
[CrossRef]

J. Chem. Phys. (5)

A. Dhinojwala, G. K. Wong, and J. M. Torkleson, “Rotational reorientation dynamics of Disperse Red-1 in polystyrene—alpha-relaxation dynamics probed by second-harmonic generation and dielectric-relaxation,” J. Chem. Phys. 100, 6046–6054 (1994).
[CrossRef]

J. R. Macdonald, “Restrictions on the form of relaxation time distribution functions for a thermally activated process,” J. Chem. Phys. 36, 345–349 (1962).
[CrossRef]

C. H. Wang, S. H. Gu, and H. W. Guan, “Polar order and relaxation of second-order nonlinear-optical susceptibility in an electric-field polarized amorphous polymer,” J. Chem. Phys. 99, 5597–5604 (1993).
[CrossRef]

J. H. Gibbs and E. A. DiMarzio, “Nature of the glass transition and the glassy state,” J. Chem. Phys. 28, 373–383 (1958).
[CrossRef]

G. Adam and J. H. Gibbs, “On the temperature dependence of cooperative relaxation properties in glass-forming liquids,” J. Chem. Phys. 43, 139–146 (1965).
[CrossRef]

J. Opt. Soc. Am. B (6)

J. Phys. Condens. Matter (1)

K. Weron, “A probabilistic mechanism hidden behind the universal power law for dielectric-relaxation—general relaxation equation,” J. Phys. Condens. Matter 3, 9151–9162 (1991).
[CrossRef]

Macromolecules (9)

P. Kaatz, P. Pretre, U. Meier, C. Bosshard, P. Gunter, B. Zysset, M. Stahelin, M. Ahlheim, and F. Lehr, “Relaxation in nonlinear optical polyimide side-chain polymers,” Macromolecules 29, 1666–1678 (1996).
[CrossRef]

L. Liu, D. Ramkrishna, and H. S. Lackritz, “Rotational Brownian-motion of chromophores and electric-field effects in polymer-films for second-order nonlinear optics,” Macromolecules 27, 5987–5999 (1994).
[CrossRef]

A. Dhinojwala, G. K. Wong, and J. M. Torkleson, “Rotational reorientation dynamics of nonlinear-optical chromophores in rubbery and glassy-polymers—alpha-relaxation dynamics probed by second-harmonic generation and dielectric-relaxation,” Macromolecules 26, 5943–5953 (1993).
[CrossRef]

T. Goodson, and C. H. Wang, “Dipolar orientational relaxation in guest host amorphous polymer probed by second-harmonic generation,” Macromolecules 26, 1837–1840 (1993).
[CrossRef]

H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Dopant orientation dynamics in doped second-order nonlinear optical amorphous polymers. 1. Effects of temperature above and below Tg in corona-poled films,” Macromolecules 23, 3640–3647 (1990).
[CrossRef]

G. Meredith, J. VanDusen, and D. Williams, “Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers,” Macromolecules 15, 1385–1389 (1982).
[CrossRef]

C. Ye, T. J. Marks, J. Yang, and G. K. Wong, “Synthesis of molecular arrays with nonlinear optical-properties—second-harmonic generation by covalently functionalized glassy-polymers,” Macromolecules 20, 2322–2324 (1987).
[CrossRef]

H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Orientation and second harmonic-generation in doped polystyrene and poly(methyl methacrylate) films,” Macromolecules 21, 526–528 (1988).
[CrossRef]

I. M. Hodge and A. R. Berens, “Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling,” Macromolecules 15, 762–770 (1982).
[CrossRef]

Nature (1)

L. A. Dissado and R. M. Hill, “Non-exponential decay in dielectrics and dynamics of correlated systems,” Nature 279, 685–689 (1979).
[CrossRef]

Phys. Rev. B (1)

K. L. Ngai and C. T. White, “Frequency dependence of dielectric loss in condensed matter,” Phys. Rev. B 20, 2475–2486 (1979).
[CrossRef]

Physica (Utrecht) (1)

J. R. Macdonald, “Some statistical aspects of relaxation time distributions,” Physica (Utrecht) 28, 485–492 (1962).
[CrossRef]

Polymer Commun. (1)

H. L. Hampsch, J. M. Torkelson, J. Yang, and G. K. Wong, “Second harmonic-generation in doped glassy polymer-films as a function of physical aging and dopant size,” Polymer Commun. 30, 40–43 (1989).

Proc. Natl. Acad. Sci. (USA) (1)

J. Klafter and M. F. Shlesinger, “On the relationship among three theories of relaxation in disordered systems,” Proc. Natl. Acad. Sci. (USA) 83, 848–851 (1986).
[CrossRef]

Trans. Faraday Soc. (2)

G. Williams and D. C. Watts, “Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Trans. Faraday Soc. 66, 80–85 (1970).
[CrossRef]

C. G. Garton, “The distribution of relaxation times in dielectrics,” Trans. Faraday Soc. XLIIA, 56–60 (1946).
[CrossRef]

Other (18)

H. Fröhlich, Theory of Dielectric: Dielectric Constant and Dielectric Loss (Clarendon, Oxford, 1949).

C. J. Böttcher and P. Bordewijk, Theory of Electronic Polarisation (Elsevier, Amsterdam, 1978), Vol. 2.

P. Debye, Polar Molecules (Lancaster, Lancaster, Pa., 1929).

D. J. Williams, “Nonlinear optical properties of guest–host polymer structures,” in Nonlinear Optical Properties of Organic Molecules and Crystals 1, D. S. Chemla and J. Zyss, eds. (Academic, New York, 1987).

G. A. Lindsay and K. D. Singer, Polymers for Second-Order Nonlinear Optics, ACS Symp. Ser. 601 (1995).

R. Lytel, G. F. Lipscomb, J. T. Kenney, and E. S. Binkley, “Large-scale integration of electro-optic polymer waveguides,” in Polymers for Lightwave and Integrated Optics, L. A. Hornack, ed. (Dekker, New York, 1992), pp. 433–472.

C. P. J. M. van der Vorst and R. A. P. van Gassel, “Thermal relaxation of poled non-linear optical sidechain polymers: a new, semi-empirical model,” Macromol. Symp. 90, 47–64 (1994).

M. F. Shlesinger and J. Klafter, “The nature of temporal hierarchies underlying relaxation in disordered systems,” in Fractal in Physics, L. P. Pietronero and E. Tosatti, eds. (North-Holland, Amsterdam, 1986), p. 393–398.

L. J. Slater, Generalized Hypergeometric Functions (Cambridge U. Press, Cambridge, 1966).

L. J. Slater, Confluent Hypergeometric Functions (Cambridge U. Press, Cambridge, 1960).

A. J. Kovacs, J. M. Hutchinson, and J. J. Aklonis, “Isobaric volume and enthalpy recovery in glasses. I. A critical survey of recent phenomenological approaches,” in The Structure of Non-Crystalline Materials, P. H. Gaskell, ed. (Taylor & Francis, London, 1977), pp. 167–174.

A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1983).

J. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1961).

M. I. Klinger, Glassy Disordered System: Topology, Atomic Dynamics, and Localized Electron States (Elsevier/North-Holland, Amsterdam, 1989).

J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).

Purchased from IBM Almaden Research Center, San Jose, Calif.

J. A. Cline and W. N. Herman, “Chi-electric relaxation frequency domain chromophore dynamics in nonlinear optical polymers,” in Organic Thin Films, Vol. 21 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997) pp. MD39/1–MD39/4.

N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Relaxation in Polymeric Solids (Wiley, London, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Potential energy diagram of the D-H many-body two-level system. The two preferred orientation states are represented by the potential energy wells. The shaded regions represent energy states of width 2ξ resulting from particle interactions, whereas the splitting of the two well bottoms is due to the applied electric field. Large thermal transitions without and with tunneling assistance over the energy barrier of height Δ are represented by arrows a and a, respectively. Arrow b represents the flip configurational tunneling transitions, and arrow c represents the flip-flop tunneling transitions.

Fig. 2
Fig. 2

Comparison of the KWW and D-H models for the decay of the polarization P as a function of time. At short times the two models are nearly identical; however, at long times the two models diverge.

Fig. 3
Fig. 3

Temperature dependence of the specific heat of a glass-forming liquid, where αL and αG represent the slopes of the liquid and glassy equilibrium lines, respectively, which intersect at temperature T2. When the sample is cooled at a finite cooling rate q, one can graphically determine the fictive temperature Tf by drawing a line parallel to the glassy equilibrium line from the particular rate cooling curve to the liquid equilibrium line. The temperature at which the two lines intersect is defined as the fictive temperature.

Fig. 4
Fig. 4

Molecular structures of the dyes and polymers used in this study and their glass-transition temperatures as calculated by differential scanning calorimetry.

Fig. 5
Fig. 5

Experimental setup for time-domain measurements.

Fig. 6
Fig. 6

Experimental setup for frequency-domain measurements.

Fig. 7
Fig. 7

Log–log plot of isothermal SH decay in DR1–PMMA at 50 °C.

Fig. 8
Fig. 8

Log–log plot of isothermal transient current decay exhibiting low-frequency dispersion in DR1–PMMA at 50 °C.

Fig. 9
Fig. 9

Dielectric in-phase and out-of-phase spectra. (a) In-phase dielectric components plotted (top to bottom) as a function of frequency for DCM–PMMA, DR1–PMMA, and DR1–MMA. (b) Out-of-phase or loss components plotted in the same order for DCM–PMMA, DR1–PMMA, and DR1–MMA. In the loss spectra the α peaks are visible at lower frequencies and the β peaks are visible at higher frequencies.  

Fig. 10
Fig. 10

Chielectric in-phase and out-of-phase spectra. (a) In-phase chielectric components plotted (top to bottom) as a function of frequency for DCM–PMMA, DR1–PMMA, and DR1–MMA. (b) Out-of-phase or loss components plotted in the same order for DCM–PMMA, DR1–PMMA, and DR1–MMA.

Fig. 11
Fig. 11

Electric-field dependence of chielectric spectra for DCM–PMMA at fixed temperature. (a), (b) In-phase and out-of-phase components, respectively, of χ(2) plotted as a function of frequency for various poling field amplitudes. (c), (d) In-phase and out-of-phase components scaled to the applied poling field, showing that the χ(2) response is linear in the applied field.  

Fig. 12
Fig. 12

Reduced temperature dependence plot for τ with experimental data from transient current, SH, dielectric, and chielectric measurements of DR1–PMMA.

Fig. 13
Fig. 13

Temperature dependence of the heat capacity for DR1–MMA after rate cooling at 5 °C/min. The thin line represents the extrapolated heat capacity of the glassy region, Cpg; the thick line represents the extrapolated heat capacity of the equilibrium region, Cpe.

Fig. 14
Fig. 14

Reduced temperature dependence plot for τ scaled to τg for the three polymer systems. Solid curve, the Adam–Gibbs model based on enthalpy measurements from DR1–MMA. Dashed curve, an Arrhenius fit based on data points below the glass transition. Dotted curve, Fulcher–Tammann–Hesse or equivalently WLF behavior above the glass transition.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

r33(-ω; ω, 0)=Ncos3 θf0fωfωβzzz(-ω; ω, 0),
P(t)=P0 exp(-t/τ),
P(t)=i=0Pi exp(-t/τi),
P(t)=0ρ(τ)exp(-t/τ)dτ.
P(t)=P1 exp(-t/τ1)+P2 exp(-t/τ2).
P(t)=P0 exp[-(t/τ)β],
exp(-t/τ)β=0 exp(-t/τ)ρ(τ)dτ,
P(t)=P0 exp[-t/τ(t)],τ(t)=τ0+AtB,
χzzz(2)Nfz(ω)fz(2ω)βzzz×0θ0cos3 θp(θ, t; a, b, θ0, D)sin θdθ,
P(t)=1π - exp(-u2)exp[-x exp(-βGu)]du,
χ(ω)=χ(0)(1+iω/ωp)n-1×2F1[1-n; 2-m; 2-n; (1+iω/ωp)-1],
χ(ω)ωn-1,ωωp,
χ(ω)Im(1+iω/ωp)-1,ωωp,
χ(ω)ωm,ωωp.
i(t)=-dP(t)dtP(0)exp(-ωpt)t-n×1F1(1-m; 2-n; ωpt) Γ(1+m-n)Γ(2-n)Γ(1+m),
i(t)t-n,t1/ωp,
i(t)exp(-ωpt),t1/ωp,
i(t)t-m-1,t1/ωp,
τ=τ0 expBT0-T,
τ=τ0 exp-AkT,
τ=A expBT(1-T2/Tf)
τ=τg expB1T(1-T2/Tf)-1Tg-T2,
τ/τg=expB1T-T2-1Tg-T2,
τ/τg=expBTg-T2 Tg-TT,
χ(2)=A sin(ωt+ϕ),
I2ω[A sin(ωt+ϕ)]2=A22 {1-2 cos[2(ωt+ϕ)]}.
dTfdT=Cp(T)-Cpg(T)Cpe(T)-Cpg(T),
I2ω|χ333(2)|2,
χ333(2)β333cos3 θ=β33325 P3(cos θ)+35 P1(cos θ)β333cos θ,

Metrics