Abstract

We present broadband group velocity dispersion (GVD) measurements of commercially available ultra-high numerical aperture fibers (UHNA1, UHNA3, UHNA4, UHNA7, and PM2000D from Coherent-Nufern). Although these fibers are attractive for dispersion management in ultra-fast fiber laser systems in the 2 μm wavelength region, experimental dispersion data in the literature is scarce and inconsistent. Here we demonstrate the measurements using the spectral interferometry technique covering the typically used erbium, thulium, and holmium emission bands. The results are characterized in terms of the standard-deviation uncertainty and compared with previous literature reports. Fitting parameters are provided for each fiber allowing for the straightforward replication of the measured dispersion profiles. This work is intended to facilitate the design of ultra-fast fiber laser sources and the investigations of nonlinear optical phenomena.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Stretched-pulse and solitonic operation of an all-fiber thulium/holmium-doped fiber laser

Rajesh Kadel and Brian R. Washburn
Appl. Opt. 54(4) 746-750 (2015)

Hybrid mode locking of an all-fiber holmium laser

Serafima A. Filatova, Vladimir A. Kamynin, Natalia R. Arutyunyan, Anatoly S. Pozharov, Anton I. Trikshev, Irina V. Zhluktova, Igor O. Zolotovskii, Elena D. Obraztsova, and Vladimir B. Tsvetkov
J. Opt. Soc. Am. B 35(12) 3122-3125 (2018)

References

  • View by:

  1. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
    [Crossref]
  2. R. Kadel and B. R. Washburn, “All-fiber passively mode-locked thulium/holmium laser with two center wavelengths,” Appl. Opt. 51, 6465–6470 (2012).
    [Crossref]
  3. Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103, 011103 (2013).
    [Crossref]
  4. F. Haxsen, A. Ruehl, M. Engelbrecht, D. Wandt, U. Morgner, and D. Kracht, “Stretched-pulse operation of a thulium-doped fiber laser,” Opt. Express 16, 20471–20476 (2008).
    [Crossref]
  5. A. Wienke, F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management,” Opt. Lett. 37, 2466–2468 (2012).
    [Crossref]
  6. R. Kadel and B. R. Washburn, “Stretched-pulse and solitonic operation of an all-fiber thulium/holmium-doped fiber laser,” Appl. Opt. 54, 746–750 (2015).
    [Crossref]
  7. H. Li, J. Liu, Z. Cheng, J. Xu, F. Tan, and P. Wang, “Pulse-shaping mechanisms in passively mode-locked thulium-doped fiber lasers,” Opt. Express 23, 6292–6303 (2015).
    [Crossref]
  8. Y. Tang, A. Chong, and F. W. Wise, “Generation of 8  nJ pulses from a normal-dispersion thulium fiber laser,” Opt. Lett. 40, 2361–2364 (2015).
    [Crossref]
  9. H. Liu, “Tm fiber laser mode-locked at large normal dispersion,” in Laser Applications to Photonic Applications, OSA Technical Digest (OSA, 2011), paper CMK1.
  10. F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser,” Opt. Lett. 37, 1014–1016 (2012).
    [Crossref]
  11. G. Sobon, J. Sotor, T. Martynkien, and K. M. Abramski, “Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser,” Opt. Express 24, 6156–6161 (2016).
    [Crossref]
  12. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27, 2010–2012 (2002).
    [Crossref]
  13. N. Nishizawa, Y. Chen, P. Hsiung, V. Sharma, T. H. Ko, and J. G. Fujimoto, “All fiber high resolution OCT system using an ultrashort pulse high power fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (OSA, 2004), paper CTuBB3.
  14. S. R. Domingue and R. A. Bartels, “Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation,” Opt. Express 21, 13305–13321 (2013).
    [Crossref]
  15. C.-L. Pan, A. Zaytsev, Y.-J. You, and C.-H. Li, “Fiber-laser-generated noise-like pulses and their applications,” in Fiber Laser, M. C. Paul, ed. (InTech, 2016), pp. 211–243.
  16. A. M. Heidt, A. Hartung, and H. Bartelt, “Generation of ultrashort and coherent supercontinuum light pulses in all-normal dispersion fibers,” in The Supercontinuum Laser Source: The Ultimate White Light, R. R. Alfano, ed. (Springer, 2016), pp. 247–280.
  17. B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1515 (1982).
    [Crossref]
  18. P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
    [Crossref]
  19. F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1  μm to 1.7  μm,” Opt. Commun. 175, 209–213 (2000).
    [Crossref]
  20. J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14, 11608–11615 (2006).
    [Crossref]
  21. P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien, and W. Urbanczyk, “Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry,” Opt. Express 15, 11073–11081 (2007).
    [Crossref]
  22. P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
    [Crossref]
  23. T. M. Kardaś and C. Radzewicz, “Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry,” Opt. Commun. 282, 4361–4365 (2009).
    [Crossref]
  24. N. K. Berger, B. Levit, and B. Fischer, “Measurement of fiber chromatic dispersion using spectral interferometry with modulation of dispersed laser pulses,” Opt. Commun. 283, 3953–3956 (2010).
    [Crossref]
  25. P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc. 7, 12017 (2012).
    [Crossref]
  26. G. M. Ponzo, M. N. Petrovich, X. Feng, P. Horak, F. Poletti, P. Petropoulos, and D. J. Richardson, “Fast and broadband fiber dispersion measurement with dense wavelength sampling,” Opt. Express 22, 943–953 (2014).
    [Crossref]
  27. Corning Incorporated, “Corning SMF-28 ultra optical fiber product information,” https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf .
  28. J. Luo, B. Sun, J. Liu, Z. Yan, N. Li, E. L. Tan, Q. Wang, and X. Yu, “Mid-IR supercontinuum pumped by femtosecond pulses from thulium doped all-fiber amplifier,” Opt. Express 24, 13939–13945 (2016).
    [Crossref]

2016 (2)

2015 (3)

2014 (1)

2013 (2)

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103, 011103 (2013).
[Crossref]

S. R. Domingue and R. A. Bartels, “Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation,” Opt. Express 21, 13305–13321 (2013).
[Crossref]

2012 (4)

2010 (1)

N. K. Berger, B. Levit, and B. Fischer, “Measurement of fiber chromatic dispersion using spectral interferometry with modulation of dispersed laser pulses,” Opt. Commun. 283, 3953–3956 (2010).
[Crossref]

2009 (2)

T. M. Kardaś and C. Radzewicz, “Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry,” Opt. Commun. 282, 4361–4365 (2009).
[Crossref]

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[Crossref]

2008 (2)

F. Haxsen, A. Ruehl, M. Engelbrecht, D. Wandt, U. Morgner, and D. Kracht, “Stretched-pulse operation of a thulium-doped fiber laser,” Opt. Express 16, 20471–20476 (2008).
[Crossref]

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
[Crossref]

2007 (1)

2006 (1)

2002 (1)

2000 (1)

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1  μm to 1.7  μm,” Opt. Commun. 175, 209–213 (2000).
[Crossref]

1989 (1)

P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[Crossref]

1982 (1)

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1515 (1982).
[Crossref]

Abramski, K. M.

Bartels, R. A.

Bartelt, H.

A. M. Heidt, A. Hartung, and H. Bartelt, “Generation of ultrashort and coherent supercontinuum light pulses in all-normal dispersion fibers,” in The Supercontinuum Laser Source: The Ultimate White Light, R. R. Alfano, ed. (Springer, 2016), pp. 247–280.

Berger, N. K.

N. K. Berger, B. Levit, and B. Fischer, “Measurement of fiber chromatic dispersion using spectral interferometry with modulation of dispersed laser pulses,” Opt. Commun. 283, 3953–3956 (2010).
[Crossref]

Boppart, S. A.

Chen, K. P.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103, 011103 (2013).
[Crossref]

Chen, T.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103, 011103 (2013).
[Crossref]

Chen, Y.

N. Nishizawa, Y. Chen, P. Hsiung, V. Sharma, T. H. Ko, and J. G. Fujimoto, “All fiber high resolution OCT system using an ultrashort pulse high power fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (OSA, 2004), paper CTuBB3.

Cheng, Z.

Chernikov, S. V.

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1  μm to 1.7  μm,” Opt. Commun. 175, 209–213 (2000).
[Crossref]

Chlebus, R.

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
[Crossref]

Chong, A.

Ciprian, D.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc. 7, 12017 (2012).
[Crossref]

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
[Crossref]

P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien, and W. Urbanczyk, “Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry,” Opt. Express 15, 11073–11081 (2007).
[Crossref]

Costa, B.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1515 (1982).
[Crossref]

Domingue, S. R.

Engelbrecht, M.

Feng, X.

Fischer, B.

N. K. Berger, B. Levit, and B. Fischer, “Measurement of fiber chromatic dispersion using spectral interferometry with modulation of dispersed laser pulses,” Opt. Commun. 283, 3953–3956 (2010).
[Crossref]

Fujimoto, J. G.

N. Nishizawa, Y. Chen, P. Hsiung, V. Sharma, T. H. Ko, and J. G. Fujimoto, “All fiber high resolution OCT system using an ultrashort pulse high power fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (OSA, 2004), paper CTuBB3.

Hartung, A.

A. M. Heidt, A. Hartung, and H. Bartelt, “Generation of ultrashort and coherent supercontinuum light pulses in all-normal dispersion fibers,” in The Supercontinuum Laser Source: The Ultimate White Light, R. R. Alfano, ed. (Springer, 2016), pp. 247–280.

Haxsen, F.

Heidt, A. M.

A. M. Heidt, A. Hartung, and H. Bartelt, “Generation of ultrashort and coherent supercontinuum light pulses in all-normal dispersion fibers,” in The Supercontinuum Laser Source: The Ultimate White Light, R. R. Alfano, ed. (Springer, 2016), pp. 247–280.

Hlubina, P.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc. 7, 12017 (2012).
[Crossref]

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
[Crossref]

P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien, and W. Urbanczyk, “Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry,” Opt. Express 15, 11073–11081 (2007).
[Crossref]

Horak, P.

Hsiung, P.

N. Nishizawa, Y. Chen, P. Hsiung, V. Sharma, T. H. Ko, and J. G. Fujimoto, “All fiber high resolution OCT system using an ultrashort pulse high power fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (OSA, 2004), paper CTuBB3.

Jackson, D. A.

P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[Crossref]

Kadel, R.

Kadulová, M.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc. 7, 12017 (2012).
[Crossref]

Kardas, T. M.

T. M. Kardaś and C. Radzewicz, “Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry,” Opt. Commun. 282, 4361–4365 (2009).
[Crossref]

Kieu, K.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[Crossref]

Kim, D. Y.

Ko, T. H.

N. Nishizawa, Y. Chen, P. Hsiung, V. Sharma, T. H. Ko, and J. G. Fujimoto, “All fiber high resolution OCT system using an ultrashort pulse high power fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (OSA, 2004), paper CTuBB3.

Koch, F.

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1  μm to 1.7  μm,” Opt. Commun. 175, 209–213 (2000).
[Crossref]

Kracht, D.

Lee, J. Y.

Levit, B.

N. K. Berger, B. Levit, and B. Fischer, “Measurement of fiber chromatic dispersion using spectral interferometry with modulation of dispersed laser pulses,” Opt. Commun. 283, 3953–3956 (2010).
[Crossref]

Li, C.-H.

C.-L. Pan, A. Zaytsev, Y.-J. You, and C.-H. Li, “Fiber-laser-generated noise-like pulses and their applications,” in Fiber Laser, M. C. Paul, ed. (InTech, 2016), pp. 211–243.

Li, H.

Li, M.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103, 011103 (2013).
[Crossref]

Li, N.

Liu, H.

H. Liu, “Tm fiber laser mode-locked at large normal dispersion,” in Laser Applications to Photonic Applications, OSA Technical Digest (OSA, 2011), paper CMK1.

Liu, J.

Lu, Y.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103, 011103 (2013).
[Crossref]

Lunácek, J.

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
[Crossref]

Luo, J.

Marks, D. L.

Martynkien, T.

Mazzoni, D.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1515 (1982).
[Crossref]

Merritt, P. A.

P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[Crossref]

Morgner, U.

Neumann, J.

Nishizawa, N.

N. Nishizawa, Y. Chen, P. Hsiung, V. Sharma, T. H. Ko, and J. G. Fujimoto, “All fiber high resolution OCT system using an ultrashort pulse high power fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (OSA, 2004), paper CTuBB3.

Oldenburg, A. L.

Pan, C.-L.

C.-L. Pan, A. Zaytsev, Y.-J. You, and C.-H. Li, “Fiber-laser-generated noise-like pulses and their applications,” in Fiber Laser, M. C. Paul, ed. (InTech, 2016), pp. 211–243.

Petropoulos, P.

Petrovich, M. N.

Poletti, F.

Ponzo, G. M.

Puleo, M.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1515 (1982).
[Crossref]

Radzewicz, C.

T. M. Kardaś and C. Radzewicz, “Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry,” Opt. Commun. 282, 4361–4365 (2009).
[Crossref]

Reynolds, J. J.

Richardson, D. J.

Ruehl, A.

Sharma, V.

N. Nishizawa, Y. Chen, P. Hsiung, V. Sharma, T. H. Ko, and J. G. Fujimoto, “All fiber high resolution OCT system using an ultrashort pulse high power fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (OSA, 2004), paper CTuBB3.

Sobon, G.

Sotor, J.

Sun, B.

Szpulak, M.

Tan, E. L.

Tan, F.

Tang, Y.

Tatam, R. P.

P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[Crossref]

Taylor, J. R.

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1  μm to 1.7  μm,” Opt. Commun. 175, 209–213 (2000).
[Crossref]

Urbanczyk, W.

Vezzoni, E.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1515 (1982).
[Crossref]

Wandt, D.

Wang, P.

Wang, Q.

J. Luo, B. Sun, J. Liu, Z. Yan, N. Li, E. L. Tan, Q. Wang, and X. Yu, “Mid-IR supercontinuum pumped by femtosecond pulses from thulium doped all-fiber amplifier,” Opt. Express 24, 13939–13945 (2016).
[Crossref]

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103, 011103 (2013).
[Crossref]

Washburn, B. R.

Wienke, A.

Wise, F. W.

Y. Tang, A. Chong, and F. W. Wise, “Generation of 8  nJ pulses from a normal-dispersion thulium fiber laser,” Opt. Lett. 40, 2361–2364 (2015).
[Crossref]

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[Crossref]

Xu, J.

Yan, Z.

You, Y.-J.

C.-L. Pan, A. Zaytsev, Y.-J. You, and C.-H. Li, “Fiber-laser-generated noise-like pulses and their applications,” in Fiber Laser, M. C. Paul, ed. (InTech, 2016), pp. 211–243.

Yu, X.

Zaytsev, A.

C.-L. Pan, A. Zaytsev, Y.-J. You, and C.-H. Li, “Fiber-laser-generated noise-like pulses and their applications,” in Fiber Laser, M. C. Paul, ed. (InTech, 2016), pp. 211–243.

Zhang, B.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103, 011103 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103, 011103 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1515 (1982).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[Crossref]

J. Eur. Opt. Soc. (1)

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc. 7, 12017 (2012).
[Crossref]

J. Lightwave Technol. (1)

P. A. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[Crossref]

Opt. Commun. (4)

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1  μm to 1.7  μm,” Opt. Commun. 175, 209–213 (2000).
[Crossref]

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
[Crossref]

T. M. Kardaś and C. Radzewicz, “Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry,” Opt. Commun. 282, 4361–4365 (2009).
[Crossref]

N. K. Berger, B. Levit, and B. Fischer, “Measurement of fiber chromatic dispersion using spectral interferometry with modulation of dispersed laser pulses,” Opt. Commun. 283, 3953–3956 (2010).
[Crossref]

Opt. Express (8)

S. R. Domingue and R. A. Bartels, “Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation,” Opt. Express 21, 13305–13321 (2013).
[Crossref]

G. M. Ponzo, M. N. Petrovich, X. Feng, P. Horak, F. Poletti, P. Petropoulos, and D. J. Richardson, “Fast and broadband fiber dispersion measurement with dense wavelength sampling,” Opt. Express 22, 943–953 (2014).
[Crossref]

J. Luo, B. Sun, J. Liu, Z. Yan, N. Li, E. L. Tan, Q. Wang, and X. Yu, “Mid-IR supercontinuum pumped by femtosecond pulses from thulium doped all-fiber amplifier,” Opt. Express 24, 13939–13945 (2016).
[Crossref]

J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14, 11608–11615 (2006).
[Crossref]

P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien, and W. Urbanczyk, “Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry,” Opt. Express 15, 11073–11081 (2007).
[Crossref]

G. Sobon, J. Sotor, T. Martynkien, and K. M. Abramski, “Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser,” Opt. Express 24, 6156–6161 (2016).
[Crossref]

F. Haxsen, A. Ruehl, M. Engelbrecht, D. Wandt, U. Morgner, and D. Kracht, “Stretched-pulse operation of a thulium-doped fiber laser,” Opt. Express 16, 20471–20476 (2008).
[Crossref]

H. Li, J. Liu, Z. Cheng, J. Xu, F. Tan, and P. Wang, “Pulse-shaping mechanisms in passively mode-locked thulium-doped fiber lasers,” Opt. Express 23, 6292–6303 (2015).
[Crossref]

Opt. Lett. (4)

Other (5)

N. Nishizawa, Y. Chen, P. Hsiung, V. Sharma, T. H. Ko, and J. G. Fujimoto, “All fiber high resolution OCT system using an ultrashort pulse high power fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (OSA, 2004), paper CTuBB3.

H. Liu, “Tm fiber laser mode-locked at large normal dispersion,” in Laser Applications to Photonic Applications, OSA Technical Digest (OSA, 2011), paper CMK1.

Corning Incorporated, “Corning SMF-28 ultra optical fiber product information,” https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf .

C.-L. Pan, A. Zaytsev, Y.-J. You, and C.-H. Li, “Fiber-laser-generated noise-like pulses and their applications,” in Fiber Laser, M. C. Paul, ed. (InTech, 2016), pp. 211–243.

A. M. Heidt, A. Hartung, and H. Bartelt, “Generation of ultrashort and coherent supercontinuum light pulses in all-normal dispersion fibers,” in The Supercontinuum Laser Source: The Ultimate White Light, R. R. Alfano, ed. (Springer, 2016), pp. 247–280.

Supplementary Material (5)

NameDescription
Data File 1       Dataset containing group velocity dispersion parameter D (ps/nm/km) for UHNA1 Ultra-High Numerical Aperture Fiber (Coherent-Nufern) in the range 1200-2400 nm.
Data File 2       Dataset containing group velocity dispersion parameter D (ps/nm/km) for UHNA3 Ultra-High Numerical Aperture Fiber (Coherent-Nufern) in the range 1410-2200 nm.
Data File 3       Dataset containing group velocity dispersion parameter D (ps/nm/km) for UHNA4 Ultra-High Numerical Aperture Fiber (Coherent-Nufern) in the range 1200-2400 nm.
Data File 4       Dataset containing group velocity dispersion parameter D (ps/nm/km) for UHNA7 Ultra-High Numerical Aperture Fiber (Coherent-Nufern) in the range 1420-2325 nm.
Data File 5       Dataset containing group velocity dispersion parameter D (ps/nm/km) for PM2000D Ultra-High Numerical Aperture Fiber (Coherent-Nufern) in the range 1420-2400 nm.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental setup and workflow for obtaining dispersion by assigning the interference order i to the positions of peaks and valleys of the spectral interferogram. SC, supercontinuum source; M, silver mirror; P, polarizer; BS, beam splitter; G, gradient neutral-density filter; L, lenses; A, polarization analyzer; SMF, single-mode fiber; OSA, optical spectrum analyzer; PC, personal computer.
Fig. 2.
Fig. 2. Measured dispersion D of a standard single-mode fiber SMF-28 Ultra compared with the manufacturer’s specification available in the 1200–1625 nm region [27].
Fig. 3.
Fig. 3. Dispersion of the UHNA1 fiber (black line) presented in terms of the dispersion parameter D (top) and group velocity dispersion β2 (bottom). Dashed lines denote the standard-deviation uncertainty ranges. Literature values (squares) are provided for comparison.
Fig. 4.
Fig. 4. Dispersion of the UHNA3 fiber (black line) presented in terms of the dispersion parameter D (top) and group velocity dispersion β2 (bottom) with dashed lines designating the standard-deviation uncertainty ranges. Squares denote the literature values provided for orientation purposes.
Fig. 5.
Fig. 5. Dispersion of the UHNA4 fiber (black line) presented in terms of the dispersion parameter D (top) and group delay dispersion β2 (bottom). Dashed lines denote the standard-deviation uncertainty ranges. Literature values (squares) are included for comparison purposes.
Fig. 6.
Fig. 6. Dispersion of the UHNA7 fiber (black line) presented in terms of the dispersion parameter D (top), group delay dispersion β2 (bottom), and third-order dispersion β3 (bottom inset). Dashed lines denote the standard-deviation uncertainty regions. Literature values (squares) are provided for comparison.
Fig. 7.
Fig. 7. Dispersion of the PM2000D fiber (black line—fast axis, red line—slow axis) given as the dispersion parameter D (top) and group velocity dispersion β2 (bottom). Dashed lines denote the standard-deviation uncertainty ranges, and squares designate the manufacturer-specified values.

Tables (1)

Tables Icon

Table 1. Fitting Parameters for Reproducing the Measured Dispersion Parameter D Using Eq. (5)a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Lln(λ)z=mλ,
[Lln(λ)z]/λ=m+i.
n(λ)=A1λ4+A2λ2+A3+A4λ2+A5λ4.
i=a1λ5+a2λ3+a3λ1+a4λ+a5λ3m,
D(λ)=1cdN(λ)dλ=1c(20A1λ56A2λ32A4λ12A5λ3),
N(λ)=n(λ)λdn(λ)dλ.

Metrics