Abstract

By incorporating a dielectric material into a semiconductor thin film, we have demonstrated an optically reconfigurable classical electromagnetically induced reflectance (Cl-EIR) effect in planar metamaterials (MMs) functioning at the far-infrared (far-IR) frequency regime. The proposed far-IR sensor is a microstructure composed of a semiconductor thin film and three dielectric antennas. Numerical analyses based on the far- and near-field interaction are investigated in detail. The coupling between the subradiant and supperradiant modes verify the existence of the Cl-EIR effect. The Cl-EIR frequency could be tuned by changing the surrounding medium, the temperature of the semiconductor layer, the semiconductor material, and the substrate material. Therefore, the proposed complementary MM microstructure, based on a semiconductor featuring tunable reflectance windows, may open up new avenues for designing tunable temperature sensors, optical and biomedical sensors, switches, and slow light devices.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Thermo-optical applications of a novel terahertz semiconductor metamaterial design

Afsaneh Keshavarz and Zohreh Vafapour
J. Opt. Soc. Am. B 36(1) 35-41 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
    [Crossref]
  2. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable fano resonance,” Nano Lett. 8, 3983–3988 (2008).
    [Crossref]
  3. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [Crossref]
  4. Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterial,” Appl. Phys. Lett. 97, 114101 (2010).
    [Crossref]
  5. V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
    [Crossref]
  6. Z. Vafapour, Y. Hajati, M. Hajati, and H. Ghahraloud, “Graphene-based mid-infrared biosensor,” J. Opt. Soc. Am. B 34, 2586–2592 (2017).
    [Crossref]
  7. V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18, 9015–9019 (2010).
    [Crossref]
  8. F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microwave Theory Tech. 60, 3013–3022 (2012).
    [Crossref]
  9. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34, 322–324 (2009).
    [Crossref]
  10. Z. D. Zhang, B. Wang, Z. Y. Zhang, J. Tang, W. D. Zhang, C. Y. Xue, and S. B. Yan, “Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12, 1007–1013 (2017).
    [Crossref]
  11. P. Zu, C. C. Chan, W. S. Lew, Y. Jin, Y. Zhang, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Magneto-optical fiber sensor based on magnetic fluid,” Opt. Lett. 37, 398–400 (2012).
    [Crossref]
  12. Z. Vafapour and M. R. Forouzeshfard, “Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials,” Plasmonics 12, 1331–1342 (2017).
    [Crossref]
  13. X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42, 2659–2662 (2017).
    [Crossref]
  14. Z. Wei, X. Li, N. Zhong, X. Tan, X. Zhang, H. Liu, H. Meng, and R. Liang, “Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device,” Plasmonics 12, 641–647 (2017).
    [Crossref]
  15. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
    [Crossref]
  16. J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99, 161113 (2011).
    [Crossref]
  17. L. Wang, W. Li, and X. Jiang, “Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide,” Opt. Lett. 40, 2325–2328 (2015).
    [Crossref]
  18. Z. Vafapour, “Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance,” J. Opt. Soc. Am. A 35, 417–422 (2018).
    [Crossref]
  19. M. Jafari and M. Rais-Zadeh, “Zero-static-power phase-change optical modulator,” Opt. Lett. 41, 1177–1180 (2016).
    [Crossref]
  20. Z. Vafapour, “Slow light modulator using semiconductor metamaterial,” Proc. SPIE 10535, 105352A (2018).
    [Crossref]
  21. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref]
  22. M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Terahertz metamaterial absorbers,” Terahertz Sci. Technol. 6, 40–58 (2013).
  23. W. Zhu, D. RukhlenkoI, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
    [Crossref]
  24. Z. Vafapour and H. Alaei, “Subwavelength micro-antenna for achieving slow light at microwave wavelengths via electromagnetically induced transparency in 2D metamaterials,” Plasmonics 12, 1343–1352 (2017).
    [Crossref]
  25. F. Bagci and B. Akaoglu, “Single and multi-band electromagnetic induced transparency-like metamaterials with coupled split ring resonators,” J. Appl. Phys. 122, 073103 (2017).
    [Crossref]
  26. K. Zhang, C. Wang, L. Qin, R.-W. Peng, D.-H. Xu, X. Xiong, and M. Wang, “Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial,” Opt. Lett. 39, 3539–3542 (2014).
    [Crossref]
  27. A. Nafari, C. C. Bowland, and H. A. Sodano, “Ultra-long vertically aligned lead titanate nanowire arrays for energy harvesting in extreme environments,” Nano Energy 31, 168–173 (2017).
    [Crossref]
  28. M. Nafari and J. M. Jornet, “Modeling and performance analysis of metallic plasmonic nano-antennas for wireless optical communication in nanonetworks,” IEEE Access 5, 6389–6398 (2017).
    [Crossref]
  29. M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6, 26452 (2016).
    [Crossref]
  30. P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
    [Crossref]
  31. X. He, Y. Yao, Y. Huang, Q. Zhang, L. Zhu, F. Wu, G. Ying, and J. Jiang, “Active manipulation of electromagnetically induced reflection in complementary terahertz graphene metamaterial,” Opt. Commun. 407, 386–391 (2018).
    [Crossref]
  32. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [Crossref]
  33. D. G. Stephen, “Metamaterials and negative refractive index,” Synth. Lect. Comput. Electromagn. 6, 1–250 (2011).
    [Crossref]
  34. O. Madelung, Semiconductors: Group IV Elements and IIIV Compounds (Springer, 1991).
  35. Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz Regime,” J. Appl. Phys. 107, 093104 (2010).
    [Crossref]
  36. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19, 8912–8919 (2011).
    [Crossref]
  37. Z. Vafapour, “Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications,” Appl. Opt. 57, 722–729 (2018).
    [Crossref]

2018 (4)

Z. Vafapour, “Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance,” J. Opt. Soc. Am. A 35, 417–422 (2018).
[Crossref]

Z. Vafapour, “Slow light modulator using semiconductor metamaterial,” Proc. SPIE 10535, 105352A (2018).
[Crossref]

X. He, Y. Yao, Y. Huang, Q. Zhang, L. Zhu, F. Wu, G. Ying, and J. Jiang, “Active manipulation of electromagnetically induced reflection in complementary terahertz graphene metamaterial,” Opt. Commun. 407, 386–391 (2018).
[Crossref]

Z. Vafapour, “Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications,” Appl. Opt. 57, 722–729 (2018).
[Crossref]

2017 (9)

A. Nafari, C. C. Bowland, and H. A. Sodano, “Ultra-long vertically aligned lead titanate nanowire arrays for energy harvesting in extreme environments,” Nano Energy 31, 168–173 (2017).
[Crossref]

M. Nafari and J. M. Jornet, “Modeling and performance analysis of metallic plasmonic nano-antennas for wireless optical communication in nanonetworks,” IEEE Access 5, 6389–6398 (2017).
[Crossref]

Z. Vafapour and H. Alaei, “Subwavelength micro-antenna for achieving slow light at microwave wavelengths via electromagnetically induced transparency in 2D metamaterials,” Plasmonics 12, 1343–1352 (2017).
[Crossref]

F. Bagci and B. Akaoglu, “Single and multi-band electromagnetic induced transparency-like metamaterials with coupled split ring resonators,” J. Appl. Phys. 122, 073103 (2017).
[Crossref]

Z. Vafapour, Y. Hajati, M. Hajati, and H. Ghahraloud, “Graphene-based mid-infrared biosensor,” J. Opt. Soc. Am. B 34, 2586–2592 (2017).
[Crossref]

Z. Vafapour and M. R. Forouzeshfard, “Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials,” Plasmonics 12, 1331–1342 (2017).
[Crossref]

X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42, 2659–2662 (2017).
[Crossref]

Z. Wei, X. Li, N. Zhong, X. Tan, X. Zhang, H. Liu, H. Meng, and R. Liang, “Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device,” Plasmonics 12, 641–647 (2017).
[Crossref]

Z. D. Zhang, B. Wang, Z. Y. Zhang, J. Tang, W. D. Zhang, C. Y. Xue, and S. B. Yan, “Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12, 1007–1013 (2017).
[Crossref]

2016 (2)

M. Jafari and M. Rais-Zadeh, “Zero-static-power phase-change optical modulator,” Opt. Lett. 41, 1177–1180 (2016).
[Crossref]

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6, 26452 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (3)

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Terahertz metamaterial absorbers,” Terahertz Sci. Technol. 6, 40–58 (2013).

W. Zhu, D. RukhlenkoI, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
[Crossref]

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[Crossref]

2012 (3)

P. Zu, C. C. Chan, W. S. Lew, Y. Jin, Y. Zhang, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Magneto-optical fiber sensor based on magnetic fluid,” Opt. Lett. 37, 398–400 (2012).
[Crossref]

F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microwave Theory Tech. 60, 3013–3022 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

2011 (4)

D. G. Stephen, “Metamaterials and negative refractive index,” Synth. Lect. Comput. Electromagn. 6, 1–250 (2011).
[Crossref]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99, 161113 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19, 8912–8919 (2011).
[Crossref]

2010 (5)

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18, 9015–9019 (2010).
[Crossref]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterial,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz Regime,” J. Appl. Phys. 107, 093104 (2010).
[Crossref]

2009 (1)

2008 (1)

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[Crossref]

2004 (2)

Acosta, V. M.

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[Crossref]

Akaoglu, B.

F. Bagci and B. Akaoglu, “Single and multi-band electromagnetic induced transparency-like metamaterials with coupled split ring resonators,” J. Appl. Phys. 122, 073103 (2017).
[Crossref]

Alaei, H.

Z. Vafapour and H. Alaei, “Subwavelength micro-antenna for achieving slow light at microwave wavelengths via electromagnetically induced transparency in 2D metamaterials,” Plasmonics 12, 1343–1352 (2017).
[Crossref]

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Bagci, F.

F. Bagci and B. Akaoglu, “Single and multi-band electromagnetic induced transparency-like metamaterials with coupled split ring resonators,” J. Appl. Phys. 122, 073103 (2017).
[Crossref]

Bai, Q.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz Regime,” J. Appl. Phys. 107, 093104 (2010).
[Crossref]

Beausoleil, R. G.

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[Crossref]

Bowland, C. C.

A. Nafari, C. C. Bowland, and H. A. Sodano, “Ultra-long vertically aligned lead titanate nanowire arrays for energy harvesting in extreme environments,” Nano Energy 31, 168–173 (2017).
[Crossref]

Buckingham, R.

Budker, D.

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[Crossref]

Cao, C.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99, 161113 (2011).
[Crossref]

Cao, J.-X.

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterial,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

Chan, C. C.

Chang, S.-W.

Chang-Hasnain, C. J.

Chen, H.-T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Chen, J.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99, 161113 (2011).
[Crossref]

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz Regime,” J. Appl. Phys. 107, 093104 (2010).
[Crossref]

Chen, L. H.

Chen, X.

Chen, Y.

Cheng, C.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz Regime,” J. Appl. Phys. 107, 093104 (2010).
[Crossref]

Chuang, S.-L.

de Groot, P.

Dong, X.

Dong, Z.-G.

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterial,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

Dorpe, P. V.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[Crossref]

Eggleton, B. J.

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Erni, D.

F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microwave Theory Tech. 60, 3013–3022 (2012).
[Crossref]

Fedotov, V. A.

Forouzeshfard, M. R.

Z. Vafapour and M. R. Forouzeshfard, “Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials,” Plasmonics 12, 1331–1342 (2017).
[Crossref]

Ghahraloud, H.

Giessen, H.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19, 8912–8919 (2011).
[Crossref]

Hajati, M.

Hajati, Y.

Halas, N. J.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[Crossref]

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19, 8912–8919 (2011).
[Crossref]

Hao, F.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[Crossref]

He, X.

X. He, Y. Yao, Y. Huang, Q. Zhang, L. Zhu, F. Wu, G. Ying, and J. Jiang, “Active manipulation of electromagnetically induced reflection in complementary terahertz graphene metamaterial,” Opt. Commun. 407, 386–391 (2018).
[Crossref]

Hentschel, M.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Hokmabadi, M. P.

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Terahertz metamaterial absorbers,” Terahertz Sci. Technol. 6, 40–58 (2013).

Huang, R.

Huang, Y.

X. He, Y. Yao, Y. Huang, Q. Zhang, L. Zhu, F. Wu, G. Ying, and J. Jiang, “Active manipulation of electromagnetically induced reflection in complementary terahertz graphene metamaterial,” Opt. Commun. 407, 386–391 (2018).
[Crossref]

Hwang, J. H.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6, 26452 (2016).
[Crossref]

Jafari, M.

Jang, J. H.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6, 26452 (2016).
[Crossref]

Jensen, K.

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[Crossref]

Jia, T.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99, 161113 (2011).
[Crossref]

Jiang, J.

X. He, Y. Yao, Y. Huang, Q. Zhang, L. Zhu, F. Wu, G. Ying, and J. Jiang, “Active manipulation of electromagnetically induced reflection in complementary terahertz graphene metamaterial,” Opt. Commun. 407, 386–391 (2018).
[Crossref]

Jiang, X.

Jin, B.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99, 161113 (2011).
[Crossref]

Jin, Y.

Jornet, J. M.

M. Nafari and J. M. Jornet, “Modeling and performance analysis of metallic plasmonic nano-antennas for wireless optical communication in nanonetworks,” IEEE Access 5, 6389–6398 (2017).
[Crossref]

Kang, L.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99, 161113 (2011).
[Crossref]

Kang, M.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz Regime,” J. Appl. Phys. 107, 093104 (2010).
[Crossref]

Kim, D.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6, 26452 (2016).
[Crossref]

Kim, H. W.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6, 26452 (2016).
[Crossref]

Kim, S. M.

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Terahertz metamaterial absorbers,” Terahertz Sci. Technol. 6, 40–58 (2013).

Ku, P.-C.

Kuhlmey, B. T.

Kung, P.

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Terahertz metamaterial absorbers,” Terahertz Sci. Technol. 6, 40–58 (2013).

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Lee, J.-C.

F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microwave Theory Tech. 60, 3013–3022 (2012).
[Crossref]

Lew, W. S.

Li, T.

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterial,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
[Crossref]

Li, W.

Li, X.

Z. Wei, X. Li, N. Zhong, X. Tan, X. Zhang, H. Liu, H. Meng, and R. Liang, “Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device,” Plasmonics 12, 641–647 (2017).
[Crossref]

Li, Z.

Liang, L.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99, 161113 (2011).
[Crossref]

Liang, R.

Z. Wei, X. Li, N. Zhong, X. Tan, X. Zhang, H. Liu, H. Meng, and R. Liang, “Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device,” Plasmonics 12, 641–647 (2017).
[Crossref]

Liew, H. F.

Liu, C.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz Regime,” J. Appl. Phys. 107, 093104 (2010).
[Crossref]

Liu, H.

Z. Wei, X. Li, N. Zhong, X. Tan, X. Zhang, H. Liu, H. Meng, and R. Liang, “Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device,” Plasmonics 12, 641–647 (2017).
[Crossref]

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterial,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

Liu, N.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Lu, W.

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19, 8912–8919 (2011).
[Crossref]

Madelung, O.

O. Madelung, Semiconductors: Group IV Elements and IIIV Compounds (Springer, 1991).

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[Crossref]

Meng, F.-Y.

F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microwave Theory Tech. 60, 3013–3022 (2012).
[Crossref]

Meng, H.

Z. Wei, X. Li, N. Zhong, X. Tan, X. Zhang, H. Liu, H. Meng, and R. Liang, “Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device,” Plasmonics 12, 641–647 (2017).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Nafari, A.

A. Nafari, C. C. Bowland, and H. A. Sodano, “Ultra-long vertically aligned lead titanate nanowire arrays for energy harvesting in extreme environments,” Nano Energy 31, 168–173 (2017).
[Crossref]

Nafari, M.

M. Nafari and J. M. Jornet, “Modeling and performance analysis of metallic plasmonic nano-antennas for wireless optical communication in nanonetworks,” IEEE Access 5, 6389–6398 (2017).
[Crossref]

Ni, X.

Nordlander, P.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[Crossref]

Nouman, M. T.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6, 26452 (2016).
[Crossref]

Palinginis, P.

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Peng, R.-W.

Premaratne, M.

W. Zhu, D. RukhlenkoI, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
[Crossref]

Qin, L.

Rais-Zadeh, M.

RukhlenkoI, D.

W. Zhu, D. RukhlenkoI, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
[Crossref]

Santori, C.

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[Crossref]

Sedgwick, F.

Shi, J. H.

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19, 8912–8919 (2011).
[Crossref]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Sodano, H. A.

A. Nafari, C. C. Bowland, and H. A. Sodano, “Ultra-long vertically aligned lead titanate nanowire arrays for energy harvesting in extreme environments,” Nano Energy 31, 168–173 (2017).
[Crossref]

Sonnefraud, Y.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[Crossref]

Sonnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Stephen, D. G.

D. G. Stephen, “Metamaterials and negative refractive index,” Synth. Lect. Comput. Electromagn. 6, 1–250 (2011).
[Crossref]

Tan, X.

Z. Wei, X. Li, N. Zhong, X. Tan, X. Zhang, H. Liu, H. Meng, and R. Liang, “Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device,” Plasmonics 12, 641–647 (2017).
[Crossref]

Tang, J.

Z. D. Zhang, B. Wang, Z. Y. Zhang, J. Tang, W. D. Zhang, C. Y. Xue, and S. B. Yan, “Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12, 1007–1013 (2017).
[Crossref]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19, 8912–8919 (2011).
[Crossref]

Tsiatmas, A.

Vafapour, Z.

Z. Vafapour, “Slow light modulator using semiconductor metamaterial,” Proc. SPIE 10535, 105352A (2018).
[Crossref]

Z. Vafapour, “Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance,” J. Opt. Soc. Am. A 35, 417–422 (2018).
[Crossref]

Z. Vafapour, “Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications,” Appl. Opt. 57, 722–729 (2018).
[Crossref]

Z. Vafapour and M. R. Forouzeshfard, “Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials,” Plasmonics 12, 1331–1342 (2017).
[Crossref]

Z. Vafapour and H. Alaei, “Subwavelength micro-antenna for achieving slow light at microwave wavelengths via electromagnetically induced transparency in 2D metamaterials,” Plasmonics 12, 1343–1352 (2017).
[Crossref]

Z. Vafapour, Y. Hajati, M. Hajati, and H. Ghahraloud, “Graphene-based mid-infrared biosensor,” J. Opt. Soc. Am. B 34, 2586–2592 (2017).
[Crossref]

Wan, J.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99, 161113 (2011).
[Crossref]

Wang, B.

Z. D. Zhang, B. Wang, Z. Y. Zhang, J. Tang, W. D. Zhang, C. Y. Xue, and S. B. Yan, “Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12, 1007–1013 (2017).
[Crossref]

Wang, C.

Wang, H.

Wang, H. T.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz Regime,” J. Appl. Phys. 107, 093104 (2010).
[Crossref]

Wang, L.

Wang, M.

Wang, S.

Wang, S.-M.

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterial,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

Wei, Z.

Z. Wei, X. Li, N. Zhong, X. Tan, X. Zhang, H. Liu, H. Meng, and R. Liang, “Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device,” Plasmonics 12, 641–647 (2017).
[Crossref]

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Wilbert, D. S.

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Terahertz metamaterial absorbers,” Terahertz Sci. Technol. 6, 40–58 (2013).

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Wong, W. C.

Woo, J. M.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6, 26452 (2016).
[Crossref]

Wu, D. K. C.

Wu, F.

X. He, Y. Yao, Y. Huang, Q. Zhang, L. Zhu, F. Wu, G. Ying, and J. Jiang, “Active manipulation of electromagnetically induced reflection in complementary terahertz graphene metamaterial,” Opt. Commun. 407, 386–391 (2018).
[Crossref]

Wu, J.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99, 161113 (2011).
[Crossref]

Wu, K.

F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microwave Theory Tech. 60, 3013–3022 (2012).
[Crossref]

Wu, P.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99, 161113 (2011).
[Crossref]

Wu, Q.

F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microwave Theory Tech. 60, 3013–3022 (2012).
[Crossref]

Xiong, X.

Xu, D.-H.

Xu, W.

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99, 161113 (2011).
[Crossref]

Xue, C. Y.

Z. D. Zhang, B. Wang, Z. Y. Zhang, J. Tang, W. D. Zhang, C. Y. Xue, and S. B. Yan, “Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12, 1007–1013 (2017).
[Crossref]

Yan, S. B.

Z. D. Zhang, B. Wang, Z. Y. Zhang, J. Tang, W. D. Zhang, C. Y. Xue, and S. B. Yan, “Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12, 1007–1013 (2017).
[Crossref]

Yao, Y.

X. He, Y. Yao, Y. Huang, Q. Zhang, L. Zhu, F. Wu, G. Ying, and J. Jiang, “Active manipulation of electromagnetically induced reflection in complementary terahertz graphene metamaterial,” Opt. Commun. 407, 386–391 (2018).
[Crossref]

Ying, G.

X. He, Y. Yao, Y. Huang, Q. Zhang, L. Zhu, F. Wu, G. Ying, and J. Jiang, “Active manipulation of electromagnetically induced reflection in complementary terahertz graphene metamaterial,” Opt. Commun. 407, 386–391 (2018).
[Crossref]

Zhang, K.

Zhang, Q.

X. He, Y. Yao, Y. Huang, Q. Zhang, L. Zhu, F. Wu, G. Ying, and J. Jiang, “Active manipulation of electromagnetically induced reflection in complementary terahertz graphene metamaterial,” Opt. Commun. 407, 386–391 (2018).
[Crossref]

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Zhang, W.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19, 8912–8919 (2011).
[Crossref]

Zhang, W. D.

Z. D. Zhang, B. Wang, Z. Y. Zhang, J. Tang, W. D. Zhang, C. Y. Xue, and S. B. Yan, “Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12, 1007–1013 (2017).
[Crossref]

Zhang, X.

Z. Wei, X. Li, N. Zhong, X. Tan, X. Zhang, H. Liu, H. Meng, and R. Liang, “Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device,” Plasmonics 12, 641–647 (2017).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterial,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

Zhang, Y.

P. Zu, C. C. Chan, W. S. Lew, Y. Jin, Y. Zhang, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Magneto-optical fiber sensor based on magnetic fluid,” Opt. Lett. 37, 398–400 (2012).
[Crossref]

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99, 161113 (2011).
[Crossref]

Zhang, Z. D.

Z. D. Zhang, B. Wang, Z. Y. Zhang, J. Tang, W. D. Zhang, C. Y. Xue, and S. B. Yan, “Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12, 1007–1013 (2017).
[Crossref]

Zhang, Z. Y.

Z. D. Zhang, B. Wang, Z. Y. Zhang, J. Tang, W. D. Zhang, C. Y. Xue, and S. B. Yan, “Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12, 1007–1013 (2017).
[Crossref]

Zheludev, N. I.

Zhong, N.

Z. Wei, X. Li, N. Zhong, X. Tan, X. Zhang, H. Liu, H. Meng, and R. Liang, “Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device,” Plasmonics 12, 641–647 (2017).
[Crossref]

Zhu, J.

Zhu, L.

X. He, Y. Yao, Y. Huang, Q. Zhang, L. Zhu, F. Wu, G. Ying, and J. Jiang, “Active manipulation of electromagnetically induced reflection in complementary terahertz graphene metamaterial,” Opt. Commun. 407, 386–391 (2018).
[Crossref]

Zhu, S.-N.

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterial,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

Zhu, W.

W. Zhu, D. RukhlenkoI, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
[Crossref]

Zu, P.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterial,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Superconducting terahertz metamaterials mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 99, 161113 (2011).
[Crossref]

W. Zhu, D. RukhlenkoI, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
[Crossref]

IEEE Access (1)

M. Nafari and J. M. Jornet, “Modeling and performance analysis of metallic plasmonic nano-antennas for wireless optical communication in nanonetworks,” IEEE Access 5, 6389–6398 (2017).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microwave Theory Tech. 60, 3013–3022 (2012).
[Crossref]

J. Appl. Phys. (2)

F. Bagci and B. Akaoglu, “Single and multi-band electromagnetic induced transparency-like metamaterials with coupled split ring resonators,” J. Appl. Phys. 122, 073103 (2017).
[Crossref]

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz Regime,” J. Appl. Phys. 107, 093104 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Energy (1)

A. Nafari, C. C. Bowland, and H. A. Sodano, “Ultra-long vertically aligned lead titanate nanowire arrays for energy harvesting in extreme environments,” Nano Energy 31, 168–173 (2017).
[Crossref]

Nano Lett. (3)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Opt. Commun. (1)

X. He, Y. Yao, Y. Huang, Q. Zhang, L. Zhu, F. Wu, G. Ying, and J. Jiang, “Active manipulation of electromagnetically induced reflection in complementary terahertz graphene metamaterial,” Opt. Commun. 407, 386–391 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (7)

Phys. Rev. Lett. (1)

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[Crossref]

Plasmonics (4)

Z. D. Zhang, B. Wang, Z. Y. Zhang, J. Tang, W. D. Zhang, C. Y. Xue, and S. B. Yan, “Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12, 1007–1013 (2017).
[Crossref]

Z. Wei, X. Li, N. Zhong, X. Tan, X. Zhang, H. Liu, H. Meng, and R. Liang, “Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device,” Plasmonics 12, 641–647 (2017).
[Crossref]

Z. Vafapour and M. R. Forouzeshfard, “Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials,” Plasmonics 12, 1331–1342 (2017).
[Crossref]

Z. Vafapour and H. Alaei, “Subwavelength micro-antenna for achieving slow light at microwave wavelengths via electromagnetically induced transparency in 2D metamaterials,” Plasmonics 12, 1343–1352 (2017).
[Crossref]

Proc. SPIE (1)

Z. Vafapour, “Slow light modulator using semiconductor metamaterial,” Proc. SPIE 10535, 105352A (2018).
[Crossref]

Sci. Rep. (1)

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6, 26452 (2016).
[Crossref]

Science (2)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

Synth. Lect. Comput. Electromagn. (1)

D. G. Stephen, “Metamaterials and negative refractive index,” Synth. Lect. Comput. Electromagn. 6, 1–250 (2011).
[Crossref]

Terahertz Sci. Technol. (1)

M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Terahertz metamaterial absorbers,” Terahertz Sci. Technol. 6, 40–58 (2013).

Other (1)

O. Madelung, Semiconductors: Group IV Elements and IIIV Compounds (Springer, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) 2D and (b),(c) 3D of the schematic illustration of the proposed biosensor.
Fig. 2.
Fig. 2. Simulated reflection amplitude (S11 parameter) spectra versus frequency.
Fig. 3.
Fig. 3. Far-IR amplitude of the reflectance spectra of the proposed microstructure versus frequency for various amounts of asymmetric geometrical parameters (5g2<20μm) to show far-field interactions.
Fig. 4.
Fig. 4. Far-IR amplitude of the reflectance spectra of the proposed microstructure versus frequency for various amount of asymmetric geometrical parameter (0g2<5μm) to show near-field interactions.
Fig. 5.
Fig. 5. Surface current flow and electric field distributions (Ex) of the microstructure (a),(b) in the symmetric case g2=g3=20μm from the xz-plane view; and in the asymmetric case of g2=0μm, (c),(d) at the valley resonance frequency of 0.43 THz and (e),(f) at the peak resonance frequency of the Cl-EIR effect ωCl-EIR=0.51THz from the xz-plane view.
Fig. 6.
Fig. 6. (a) Reflectance spectra of the far-IR biosensor at T=300K using InSb as the semiconductor and quartz as the substrate material with different surrounding materials (dielectric material of the antennas) in the asymmetric case of g2=1μm to verify the biosensing application. (b) The increasing trend of the frequency shift when the surrounding medium of the microstructure is changed.
Fig. 7.
Fig. 7. (a) Simulated results of reflectance spectra using InSb as the semiconductor material in the asymmetric case of g2=2μm at different temperatures. (b) The increasing trend of the percentage of the reflection and frequency shift caused by increasing the temperature of the semiconductor thin-film layer.
Fig. 8.
Fig. 8. (a) Reflection spectra of the microstructure at T=300K using three different semiconductors as presented in the plot in the asymmetric case of g2=2μm. (b) The changing trend of the Cl-EIR frequency and the amplitude of the reflection using different semiconductor materials.
Fig. 9.
Fig. 9. (a) Reflectance spectrum of the proposed far-IR biosensor at T=300K using InSb as the semiconductor and PMMA as the dielectric antenna’s material with different substrates in the asymmetric case of g2=2μm. (b) The decreasing trend of the percentage of the reflection caused by changing the substrate material.

Tables (1)

Tables Icon

Table 1. Refractive Index (RI) and the Electric Permittivity (ε) of the Materials Used as Antennas

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε=εωp2ω2+iγ0ω.
ωp=Ne2ε0m*,
N=5.76×1014T32exp(0.13KBT),

Metrics