Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analytical phase optical transfer function for Gaussian illumination and the optimized illumination profiles

Abstract

The imaging performance of tomographic deconvolution phase microscopy can be described in terms of the phase optical transfer function (POTF) which, in turn, depends on the illumination profile. To facilitate the optimization of the illumination profile, an analytical calculation method based on polynomial fitting is developed to describe the POTF for general nonuniform axially symmetric illumination. This is then applied to Gaussian and related profiles. Compared to numerical integration methods that integrate over a series of annuli, the present analytical method is much faster and is equally accurate. Further, a “balanced distribution” criterion for the POTF and a least-squares minimization are presented to optimize the uniformity of the POTF. An optimum general profile is found analytically by relaxed optimal search, and an optimum Gaussian profile is found through a tree search. Numerical simulations confirm the performance of these optimum profiles and support the balanced distribution criterion introduced.

© 2021 Optical Society of America

Full Article  |  PDF Article

Supplementary Material (1)

NameDescription
Code 1       MATLAB codes of the algorithms used.

Data Availability

Data underlying the results presented in this paper are available in Code 1, Ref. [37].

37. J. Huang, Y. Bao, and T. K. Gaylord, “MATLAB codes of the algorithms used,” figshare (2021), https://doi.org/10.6084/m9.figshare.14173637.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved