Abstract

We derived the cone fundamentals for X-chromosome-linked anomalous trichromats for the wavelength range of 400–700 nm. Pigment templates were constructed from the cone fundamentals of normal trichromats after correction for ocular media absorption. The resultant retinal-level sensitivities had small irregularities in the short-wavelength region that were smoothed. The pigment templates, expressed as quantal sensitivities, were then shifted on a frequency abscissa to solve for the λmax of the pigments of anomalous trichromats needed to predict average anomaloscope matching data. We found that the protanomalous M- and L′-cone pigments are separated by 10 nm and the deuteranomalous M′- and L-cone pigments are separated by 6 nm (rounded to the nearest nanometer), where M and L indicate middle- and long-wavelength sensitive, respectively. The triads of peak wavelengths for the corneal energy-based sensitivities were as follows: normal: 440, 543, and 566 nm; protanomalous: 440, 543, and 553 nm; and deuteranomalous: 440, 560, and 566 nm.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  2. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,”J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef] [PubMed]
  3. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. 357, 241–265 (1984).
    [PubMed]
  4. J. v. Kries, “Ueber Farbensysteme,” Z. Psychol. Physiol. Sinnesorg. 13, 241–324 (1897).
  5. L. M. Hurvich, “Color vision deficiencies,” in Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich, eds. (Springer-Verlag, Berlin, 1972), Vol. 7.
    [CrossRef]
  6. J. Pokorny, V. C. Smith, G. Verriest, A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, New York, 1979).
  7. With larger fields, dichromats make matches similar to those of anomalous trichromats: A. L. Nagy, “Large-field substitution Rayleigh matches of dichromats,” J. Opt. Soc. Am. 70, 778–784 (1980); M. Breton, W. Cowan, “Deuteranomalous color matching in the deuteranopic eye,”J. Opt. Soc. Am. 71, 1220–1223 (1981).
    [CrossRef]
  8. J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green and red pigments,” Science 232, 193–202 (1986).
    [CrossRef] [PubMed]
  9. J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, D. S. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
    [CrossRef] [PubMed]
  10. J. Pokorny, V. C. Smith, “Evaluation of single pigment shift model of anomalous trichromacy,”J. Opt. Soc. Am. 67, 1196–1209 (1977).
    [CrossRef] [PubMed]
  11. J. Pokorny, V. C. Smith, I. Katz, “Derivation of the photopigment absorption spectra in anomalous trichromats,”J. Opt. Soc. Am. 63, 232–237 (1973).
    [CrossRef] [PubMed]
  12. J. Pokorny, J. D. Moreland, V. C. Smith, “Photopigments in anomalous trichromats,”J. Opt. Soc. Am. 65, 1522–1524 (1975).
    [CrossRef]
  13. J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
    [CrossRef] [PubMed]
  14. I. Schmidt, “Some problems related to testing color vision with the Nagel anomaloscope,”J. Opt. Soc. Am. 45, 514–522 (1955).
    [CrossRef] [PubMed]
  15. A. König, C. Dieterici, “Die Grundempfindungen und ihre Intensitats-Vertheilung im Spectrum,” Sitz. Akad. Wiss. (Berlin) (1886), pp. 805–829.
  16. A. König, C. Dieterici, “Die Grundempfindungen in normalen und anomalen Farben Systemen und ihre Intensitats-Verthielung im Spectrum,” Z. Psychol. Physiol. Sinnesorg. 4, 241–347 (1893).
  17. G. Wald, P. K. Brown, P. H. Smith, “Iodopsin,”J. Gen. Physiol. 38, 623–681 (1955).
    [CrossRef] [PubMed]
  18. D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cone of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
  19. J. L. Schnapf, T. W. Kraft, B. J. Nunn, D. A. Baylor, “Spectral sensitivity of primate photoreceptors,” Vis. Neurosci. 1, 255–261 (1988).
    [CrossRef] [PubMed]
  20. D. B. Judd, “Colorimetry and artificial daylight,” Technical Committee No. 7 Report of Secretariat, U.S. Commission, International Commission on Illumination, Twelfth Session (CIE, Paris, 1951).
  21. H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
    [CrossRef]
  22. J. Neitz, G. H. Jacobs, “Polymorphism in normal human color vision and its mechanism,” Vision Res. 30, 621–636 (1990).
    [CrossRef] [PubMed]
  23. D. T. Lindsey, J. Winderickx, E. Sanocki, D. Teller, A. G. Motulsky, “Individual differences in Rayleigh matches are related to differences in L cone pigment structure,” in Advances in Color Vision, Vol. 4 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992).
  24. J. Neitz, M. Neitz, “The molecular genetic basis of polymorphism in normal color vision,” in Advances in Color Vision, Vol. 4 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992).
  25. V. C. Smith, J. Pokorny, K. R. Diddie, “Color matching and Stiles–Crawford effect in central serous choroidopathy,” Mod. Probl. Ophthalmol. 19, 284–295 (1978).
  26. V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the human cone photopigments,” Vision Res. 12, 2059–2071 (1972).
    [CrossRef] [PubMed]
  27. T. G. Ebry, B. Honig, “New wavelength dependent visual pigment nomograms,” Vision Res. 17, 147–151 (1977).
    [CrossRef]
  28. H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vision Res. 22, 635–643 (1982).
    [CrossRef] [PubMed]
  29. R. J. W. Mansfield, “Primate photopigments and cone mechanisms,” in The Visual System, A. Fein, J. S. Levine, eds. (Liss, New York, 1985).
  30. J. J. Vos, “Colorimetric and photometric properties of a 20 fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
    [CrossRef]
  31. R. W. Rodieck, The Vertebrate Retina (Freeman, San Francisco, Calif.1973).
  32. J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
    [CrossRef] [PubMed]
  33. G. Wyszecki, W. S. Stiles, Color Science—Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).
  34. M. E. Breton, R. W. Massof, “Short-wave irregularities in cone fundamentals,” J. Opt. Soc. Am. A 2, P23 (1985).
  35. W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colours,” Trans. Opt. Soc. 30, 141–164 (1929).
    [CrossRef]
  36. J. Guild, “The colorimetric properties of the spectrum,” Philos. Trans. R. Soc. London Ser. A 230, 149–187 (1931).
  37. T. Smith, J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33, 73–134 (1932).
    [CrossRef]
  38. J. Pokorny, V. C. Smith, S. J. Starr, “Variability of color mixture data—II. The effect of viewing field size on the unit coordinates,” Vision Res. 16, 1095–1098 (1976).
    [CrossRef]
  39. J. L. Schnapf, T. W. Kraft, D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature (London) 325, 439–441 (1987).
    [CrossRef]
  40. G. H. Jacobs, “Variations in colour vision in non-human primates,” in Inherited and Acquired Colour Vision Deficiencies, D. H. Foster, ed. (CRC, Boca Raton, Fla., 1991).
  41. W. D. Wright, Researches on Normal and Defective Colour Vision (Kimpton, London, 1946).
  42. J. E. Thornton, E. N. J. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
    [CrossRef] [PubMed]
  43. L. M. Hurvich, D. Jameson, “Does anomalous color vision imply color weakness?” Psychon. Sci. 1, 11–12 (1964).
  44. The authors will provide Appendix A as a text file on floppy disk in either MS-DOS or Macintosh operating system format.

1990 (1)

J. Neitz, G. H. Jacobs, “Polymorphism in normal human color vision and its mechanism,” Vision Res. 30, 621–636 (1990).
[CrossRef] [PubMed]

1988 (1)

J. L. Schnapf, T. W. Kraft, B. J. Nunn, D. A. Baylor, “Spectral sensitivity of primate photoreceptors,” Vis. Neurosci. 1, 255–261 (1988).
[CrossRef] [PubMed]

1987 (3)

J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[CrossRef] [PubMed]

J. L. Schnapf, T. W. Kraft, D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature (London) 325, 439–441 (1987).
[CrossRef]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cone of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).

1986 (2)

J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green and red pigments,” Science 232, 193–202 (1986).
[CrossRef] [PubMed]

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, D. S. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[CrossRef] [PubMed]

1985 (1)

M. E. Breton, R. W. Massof, “Short-wave irregularities in cone fundamentals,” J. Opt. Soc. Am. A 2, P23 (1985).

1984 (1)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. 357, 241–265 (1984).
[PubMed]

1983 (2)

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[CrossRef]

J. E. Thornton, E. N. J. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

1982 (1)

H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vision Res. 22, 635–643 (1982).
[CrossRef] [PubMed]

1980 (1)

1979 (1)

1978 (2)

J. J. Vos, “Colorimetric and photometric properties of a 20 fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

V. C. Smith, J. Pokorny, K. R. Diddie, “Color matching and Stiles–Crawford effect in central serous choroidopathy,” Mod. Probl. Ophthalmol. 19, 284–295 (1978).

1977 (2)

T. G. Ebry, B. Honig, “New wavelength dependent visual pigment nomograms,” Vision Res. 17, 147–151 (1977).
[CrossRef]

J. Pokorny, V. C. Smith, “Evaluation of single pigment shift model of anomalous trichromacy,”J. Opt. Soc. Am. 67, 1196–1209 (1977).
[CrossRef] [PubMed]

1976 (1)

J. Pokorny, V. C. Smith, S. J. Starr, “Variability of color mixture data—II. The effect of viewing field size on the unit coordinates,” Vision Res. 16, 1095–1098 (1976).
[CrossRef]

1975 (2)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

J. Pokorny, J. D. Moreland, V. C. Smith, “Photopigments in anomalous trichromats,”J. Opt. Soc. Am. 65, 1522–1524 (1975).
[CrossRef]

1973 (1)

1972 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the human cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[CrossRef] [PubMed]

1971 (1)

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

1964 (1)

L. M. Hurvich, D. Jameson, “Does anomalous color vision imply color weakness?” Psychon. Sci. 1, 11–12 (1964).

1955 (2)

1932 (1)

T. Smith, J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33, 73–134 (1932).
[CrossRef]

1931 (1)

J. Guild, “The colorimetric properties of the spectrum,” Philos. Trans. R. Soc. London Ser. A 230, 149–187 (1931).

1929 (1)

W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colours,” Trans. Opt. Soc. 30, 141–164 (1929).
[CrossRef]

1897 (1)

J. v. Kries, “Ueber Farbensysteme,” Z. Psychol. Physiol. Sinnesorg. 13, 241–324 (1897).

1893 (1)

A. König, C. Dieterici, “Die Grundempfindungen in normalen und anomalen Farben Systemen und ihre Intensitats-Verthielung im Spectrum,” Z. Psychol. Physiol. Sinnesorg. 4, 241–347 (1893).

1886 (1)

A. König, C. Dieterici, “Die Grundempfindungen und ihre Intensitats-Vertheilung im Spectrum,” Sitz. Akad. Wiss. (Berlin) (1886), pp. 805–829.

Barlow, H. B.

H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vision Res. 22, 635–643 (1982).
[CrossRef] [PubMed]

Baylor, D. A.

J. L. Schnapf, T. W. Kraft, B. J. Nunn, D. A. Baylor, “Spectral sensitivity of primate photoreceptors,” Vis. Neurosci. 1, 255–261 (1988).
[CrossRef] [PubMed]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cone of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).

J. L. Schnapf, T. W. Kraft, D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature (London) 325, 439–441 (1987).
[CrossRef]

Bowmaker, J. K.

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[CrossRef]

Boynton, R. M.

Breton, M. E.

M. E. Breton, R. W. Massof, “Short-wave irregularities in cone fundamentals,” J. Opt. Soc. Am. A 2, P23 (1985).

Brown, P. K.

G. Wald, P. K. Brown, P. H. Smith, “Iodopsin,”J. Gen. Physiol. 38, 623–681 (1955).
[CrossRef] [PubMed]

Dartnall, H. J. A.

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[CrossRef]

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. 357, 241–265 (1984).
[PubMed]

Diddie, K. R.

V. C. Smith, J. Pokorny, K. R. Diddie, “Color matching and Stiles–Crawford effect in central serous choroidopathy,” Mod. Probl. Ophthalmol. 19, 284–295 (1978).

Dieterici, C.

A. König, C. Dieterici, “Die Grundempfindungen in normalen und anomalen Farben Systemen und ihre Intensitats-Verthielung im Spectrum,” Z. Psychol. Physiol. Sinnesorg. 4, 241–347 (1893).

A. König, C. Dieterici, “Die Grundempfindungen und ihre Intensitats-Vertheilung im Spectrum,” Sitz. Akad. Wiss. (Berlin) (1886), pp. 805–829.

Ebry, T. G.

T. G. Ebry, B. Honig, “New wavelength dependent visual pigment nomograms,” Vision Res. 17, 147–151 (1977).
[CrossRef]

Eddy, R. L.

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, D. S. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[CrossRef] [PubMed]

Guild, J.

T. Smith, J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33, 73–134 (1932).
[CrossRef]

J. Guild, “The colorimetric properties of the spectrum,” Philos. Trans. R. Soc. London Ser. A 230, 149–187 (1931).

Hogness, D. S.

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, D. S. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[CrossRef] [PubMed]

J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green and red pigments,” Science 232, 193–202 (1986).
[CrossRef] [PubMed]

Honig, B.

T. G. Ebry, B. Honig, “New wavelength dependent visual pigment nomograms,” Vision Res. 17, 147–151 (1977).
[CrossRef]

Hurvich, L. M.

L. M. Hurvich, D. Jameson, “Does anomalous color vision imply color weakness?” Psychon. Sci. 1, 11–12 (1964).

L. M. Hurvich, “Color vision deficiencies,” in Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich, eds. (Springer-Verlag, Berlin, 1972), Vol. 7.
[CrossRef]

Jacobs, G. H.

J. Neitz, G. H. Jacobs, “Polymorphism in normal human color vision and its mechanism,” Vision Res. 30, 621–636 (1990).
[CrossRef] [PubMed]

G. H. Jacobs, “Variations in colour vision in non-human primates,” in Inherited and Acquired Colour Vision Deficiencies, D. H. Foster, ed. (CRC, Boca Raton, Fla., 1991).

Jameson, D.

L. M. Hurvich, D. Jameson, “Does anomalous color vision imply color weakness?” Psychon. Sci. 1, 11–12 (1964).

Judd, D. B.

D. B. Judd, “Colorimetry and artificial daylight,” Technical Committee No. 7 Report of Secretariat, U.S. Commission, International Commission on Illumination, Twelfth Session (CIE, Paris, 1951).

Katz, I.

König, A.

A. König, C. Dieterici, “Die Grundempfindungen in normalen und anomalen Farben Systemen und ihre Intensitats-Verthielung im Spectrum,” Z. Psychol. Physiol. Sinnesorg. 4, 241–347 (1893).

A. König, C. Dieterici, “Die Grundempfindungen und ihre Intensitats-Vertheilung im Spectrum,” Sitz. Akad. Wiss. (Berlin) (1886), pp. 805–829.

Kraft, T. W.

J. L. Schnapf, T. W. Kraft, B. J. Nunn, D. A. Baylor, “Spectral sensitivity of primate photoreceptors,” Vis. Neurosci. 1, 255–261 (1988).
[CrossRef] [PubMed]

J. L. Schnapf, T. W. Kraft, D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature (London) 325, 439–441 (1987).
[CrossRef]

Krauskopf, J.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. 357, 241–265 (1984).
[PubMed]

Kries, J. v.

J. v. Kries, “Ueber Farbensysteme,” Z. Psychol. Physiol. Sinnesorg. 13, 241–324 (1897).

Lennie, P.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. 357, 241–265 (1984).
[PubMed]

Lindsey, D. T.

D. T. Lindsey, J. Winderickx, E. Sanocki, D. Teller, A. G. Motulsky, “Individual differences in Rayleigh matches are related to differences in L cone pigment structure,” in Advances in Color Vision, Vol. 4 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992).

Lutze, M.

MacLeod, D. I. A.

Mansfield, R. J. W.

R. J. W. Mansfield, “Primate photopigments and cone mechanisms,” in The Visual System, A. Fein, J. S. Levine, eds. (Liss, New York, 1985).

Massof, R. W.

M. E. Breton, R. W. Massof, “Short-wave irregularities in cone fundamentals,” J. Opt. Soc. Am. A 2, P23 (1985).

Mollon, J. D.

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[CrossRef]

Moreland, J. D.

Motulsky, A. G.

D. T. Lindsey, J. Winderickx, E. Sanocki, D. Teller, A. G. Motulsky, “Individual differences in Rayleigh matches are related to differences in L cone pigment structure,” in Advances in Color Vision, Vol. 4 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992).

Nagy, A. L.

Nathans, J.

J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green and red pigments,” Science 232, 193–202 (1986).
[CrossRef] [PubMed]

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, D. S. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[CrossRef] [PubMed]

Neitz, J.

J. Neitz, G. H. Jacobs, “Polymorphism in normal human color vision and its mechanism,” Vision Res. 30, 621–636 (1990).
[CrossRef] [PubMed]

J. Neitz, M. Neitz, “The molecular genetic basis of polymorphism in normal color vision,” in Advances in Color Vision, Vol. 4 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992).

Neitz, M.

J. Neitz, M. Neitz, “The molecular genetic basis of polymorphism in normal color vision,” in Advances in Color Vision, Vol. 4 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992).

Nunn, B. J.

J. L. Schnapf, T. W. Kraft, B. J. Nunn, D. A. Baylor, “Spectral sensitivity of primate photoreceptors,” Vis. Neurosci. 1, 255–261 (1988).
[CrossRef] [PubMed]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cone of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).

Piantanida, T. P.

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, D. S. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[CrossRef] [PubMed]

Pinckers, A. J. L. G.

J. Pokorny, V. C. Smith, G. Verriest, A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, New York, 1979).

Pokorny, J.

J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, K. R. Diddie, “Color matching and Stiles–Crawford effect in central serous choroidopathy,” Mod. Probl. Ophthalmol. 19, 284–295 (1978).

J. Pokorny, V. C. Smith, “Evaluation of single pigment shift model of anomalous trichromacy,”J. Opt. Soc. Am. 67, 1196–1209 (1977).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, S. J. Starr, “Variability of color mixture data—II. The effect of viewing field size on the unit coordinates,” Vision Res. 16, 1095–1098 (1976).
[CrossRef]

J. Pokorny, J. D. Moreland, V. C. Smith, “Photopigments in anomalous trichromats,”J. Opt. Soc. Am. 65, 1522–1524 (1975).
[CrossRef]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, I. Katz, “Derivation of the photopigment absorption spectra in anomalous trichromats,”J. Opt. Soc. Am. 63, 232–237 (1973).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the human cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, G. Verriest, A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, New York, 1979).

Pugh, E. N. J.

J. E. Thornton, E. N. J. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

Rodieck, R. W.

R. W. Rodieck, The Vertebrate Retina (Freeman, San Francisco, Calif.1973).

Sanocki, E.

D. T. Lindsey, J. Winderickx, E. Sanocki, D. Teller, A. G. Motulsky, “Individual differences in Rayleigh matches are related to differences in L cone pigment structure,” in Advances in Color Vision, Vol. 4 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992).

Schmidt, I.

Schnapf, J. L.

J. L. Schnapf, T. W. Kraft, B. J. Nunn, D. A. Baylor, “Spectral sensitivity of primate photoreceptors,” Vis. Neurosci. 1, 255–261 (1988).
[CrossRef] [PubMed]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cone of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).

J. L. Schnapf, T. W. Kraft, D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature (London) 325, 439–441 (1987).
[CrossRef]

Shows, T. B.

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, D. S. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[CrossRef] [PubMed]

Smith, P. H.

G. Wald, P. K. Brown, P. H. Smith, “Iodopsin,”J. Gen. Physiol. 38, 623–681 (1955).
[CrossRef] [PubMed]

Smith, T.

T. Smith, J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33, 73–134 (1932).
[CrossRef]

Smith, V. C.

J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, K. R. Diddie, “Color matching and Stiles–Crawford effect in central serous choroidopathy,” Mod. Probl. Ophthalmol. 19, 284–295 (1978).

J. Pokorny, V. C. Smith, “Evaluation of single pigment shift model of anomalous trichromacy,”J. Opt. Soc. Am. 67, 1196–1209 (1977).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, S. J. Starr, “Variability of color mixture data—II. The effect of viewing field size on the unit coordinates,” Vision Res. 16, 1095–1098 (1976).
[CrossRef]

J. Pokorny, J. D. Moreland, V. C. Smith, “Photopigments in anomalous trichromats,”J. Opt. Soc. Am. 65, 1522–1524 (1975).
[CrossRef]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, I. Katz, “Derivation of the photopigment absorption spectra in anomalous trichromats,”J. Opt. Soc. Am. 63, 232–237 (1973).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the human cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, G. Verriest, A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, New York, 1979).

Starr, S. J.

J. Pokorny, V. C. Smith, S. J. Starr, “Variability of color mixture data—II. The effect of viewing field size on the unit coordinates,” Vision Res. 16, 1095–1098 (1976).
[CrossRef]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science—Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Teller, D.

D. T. Lindsey, J. Winderickx, E. Sanocki, D. Teller, A. G. Motulsky, “Individual differences in Rayleigh matches are related to differences in L cone pigment structure,” in Advances in Color Vision, Vol. 4 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992).

Thomas, D.

J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green and red pigments,” Science 232, 193–202 (1986).
[CrossRef] [PubMed]

Thornton, J. E.

J. E. Thornton, E. N. J. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

Verriest, G.

J. Pokorny, V. C. Smith, G. Verriest, A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, New York, 1979).

Vos, J. J.

J. J. Vos, “Colorimetric and photometric properties of a 20 fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

Wald, G.

G. Wald, P. K. Brown, P. H. Smith, “Iodopsin,”J. Gen. Physiol. 38, 623–681 (1955).
[CrossRef] [PubMed]

Walraven, P. L.

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

Winderickx, J.

D. T. Lindsey, J. Winderickx, E. Sanocki, D. Teller, A. G. Motulsky, “Individual differences in Rayleigh matches are related to differences in L cone pigment structure,” in Advances in Color Vision, Vol. 4 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992).

Wright, W. D.

W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colours,” Trans. Opt. Soc. 30, 141–164 (1929).
[CrossRef]

W. D. Wright, Researches on Normal and Defective Colour Vision (Kimpton, London, 1946).

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science—Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Appl. Opt. (1)

Color Res. Appl. (1)

J. J. Vos, “Colorimetric and photometric properties of a 20 fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

J. Gen. Physiol. (1)

G. Wald, P. K. Brown, P. H. Smith, “Iodopsin,”J. Gen. Physiol. 38, 623–681 (1955).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. A (1)

M. E. Breton, R. W. Massof, “Short-wave irregularities in cone fundamentals,” J. Opt. Soc. Am. A 2, P23 (1985).

J. Physiol. (2)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. 357, 241–265 (1984).
[PubMed]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cone of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).

Mod. Probl. Ophthalmol. (1)

V. C. Smith, J. Pokorny, K. R. Diddie, “Color matching and Stiles–Crawford effect in central serous choroidopathy,” Mod. Probl. Ophthalmol. 19, 284–295 (1978).

Nature (London) (1)

J. L. Schnapf, T. W. Kraft, D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature (London) 325, 439–441 (1987).
[CrossRef]

Philos. Trans. R. Soc. London Ser. A (1)

J. Guild, “The colorimetric properties of the spectrum,” Philos. Trans. R. Soc. London Ser. A 230, 149–187 (1931).

Proc. R. Soc. London Ser. B (1)

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[CrossRef]

Psychon. Sci. (1)

L. M. Hurvich, D. Jameson, “Does anomalous color vision imply color weakness?” Psychon. Sci. 1, 11–12 (1964).

Science (3)

J. E. Thornton, E. N. J. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green and red pigments,” Science 232, 193–202 (1986).
[CrossRef] [PubMed]

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, D. S. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[CrossRef] [PubMed]

Sitz. Akad. Wiss. (Berlin) (1)

A. König, C. Dieterici, “Die Grundempfindungen und ihre Intensitats-Vertheilung im Spectrum,” Sitz. Akad. Wiss. (Berlin) (1886), pp. 805–829.

Trans. Opt. Soc. (2)

T. Smith, J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33, 73–134 (1932).
[CrossRef]

W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colours,” Trans. Opt. Soc. 30, 141–164 (1929).
[CrossRef]

Vis. Neurosci. (1)

J. L. Schnapf, T. W. Kraft, B. J. Nunn, D. A. Baylor, “Spectral sensitivity of primate photoreceptors,” Vis. Neurosci. 1, 255–261 (1988).
[CrossRef] [PubMed]

Vision Res. (7)

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, S. J. Starr, “Variability of color mixture data—II. The effect of viewing field size on the unit coordinates,” Vision Res. 16, 1095–1098 (1976).
[CrossRef]

J. Neitz, G. H. Jacobs, “Polymorphism in normal human color vision and its mechanism,” Vision Res. 30, 621–636 (1990).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the human cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[CrossRef] [PubMed]

T. G. Ebry, B. Honig, “New wavelength dependent visual pigment nomograms,” Vision Res. 17, 147–151 (1977).
[CrossRef]

H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vision Res. 22, 635–643 (1982).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Z. Psychol. Physiol. Sinnesorg. (2)

J. v. Kries, “Ueber Farbensysteme,” Z. Psychol. Physiol. Sinnesorg. 13, 241–324 (1897).

A. König, C. Dieterici, “Die Grundempfindungen in normalen und anomalen Farben Systemen und ihre Intensitats-Verthielung im Spectrum,” Z. Psychol. Physiol. Sinnesorg. 4, 241–347 (1893).

Other (11)

D. B. Judd, “Colorimetry and artificial daylight,” Technical Committee No. 7 Report of Secretariat, U.S. Commission, International Commission on Illumination, Twelfth Session (CIE, Paris, 1951).

L. M. Hurvich, “Color vision deficiencies,” in Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich, eds. (Springer-Verlag, Berlin, 1972), Vol. 7.
[CrossRef]

J. Pokorny, V. C. Smith, G. Verriest, A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, New York, 1979).

R. J. W. Mansfield, “Primate photopigments and cone mechanisms,” in The Visual System, A. Fein, J. S. Levine, eds. (Liss, New York, 1985).

D. T. Lindsey, J. Winderickx, E. Sanocki, D. Teller, A. G. Motulsky, “Individual differences in Rayleigh matches are related to differences in L cone pigment structure,” in Advances in Color Vision, Vol. 4 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992).

J. Neitz, M. Neitz, “The molecular genetic basis of polymorphism in normal color vision,” in Advances in Color Vision, Vol. 4 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992).

R. W. Rodieck, The Vertebrate Retina (Freeman, San Francisco, Calif.1973).

G. Wyszecki, W. S. Stiles, Color Science—Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

G. H. Jacobs, “Variations in colour vision in non-human primates,” in Inherited and Acquired Colour Vision Deficiencies, D. H. Foster, ed. (CRC, Boca Raton, Fla., 1991).

W. D. Wright, Researches on Normal and Defective Colour Vision (Kimpton, London, 1946).

The authors will provide Appendix A as a text file on floppy disk in either MS-DOS or Macintosh operating system format.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A, Smith–Pokorny1 M- and L-cone fundamentals plotted at 1-nm intervals, converted to a quantal-energy basis. B, Light absorption by the macular pigment and lens.32,33 C, Effects of subtracting absorption by ocular media from plot A. This gives preliminary estimates of the fractional absorption for M- and L-cone photopigments for a 2° foveal field. Note the irregularities that appear below 550 nm on both functions.

Fig. 2
Fig. 2

Top: M- and L-cone photopigments of Fig. 1C before (smooth curves) and after (dotted curves under humps) the addition of polynomials fitted through irregular areas at shorter wavelengths. Bottom: Log difference between the smoothed and the unsmoothed regions of the photopigment estimates.

Fig. 3
Fig. 3

Comparison of the smoothed human M- and L-cone photopigment estimates in absorptivity with the spectral sensitivity measurements from isolated M and L cones of the macaque retina.18 The macaque data are mean spectral sensitivities for approximately 20 M and 16 L cones. The human pigment templates required a shift in λmax to fit the monkey data and are plotted. The M-cone pigment template was shifted +2 nm, and the L-cone template was shifted +3 nm. The spectra were shifted on a frequency abscissa and then replotted on a wavelength abscissa for comparisons.

Fig. 4
Fig. 4

Comparison of the cone photopigment template proposed by Baylor et al.,18 gathered from recordings from single macaque L and M cones and rods, and the derived L′ and M′ photopigments in absorptivity. Note that all the pigment spectra are smooth functions in the middle- to short-wavelength regions of the spectrum.

Fig. 5
Fig. 5

Estimates of the cone fundamentals for deuteranomalous and protanomalous trichromats plotted at 1-nm intervals.

Fig. 6
Fig. 6

Theoretical color-matching functions for deuteranomalous and protanomalous trichromats. They were calculated from the cone fundamentals of Fig. 5, using the method of Wright41 for an equal-energy spectrum and primaries at 450, 530, and 650 nm.

Fig. 7
Fig. 7

Chromaticity diagrams constructed from the color-matching functions and primaries of Fig. 6, along with the diagram for normal trichromats, using the Smith–Pokorny1 fundamentals. The dotted lines define the major axes of the plots, which run through the points where the three color-matching primaries would lie. The filled circle near the center of each diagram is the point of equal-energy white. The line running through white connects the calculated achromatic point for each type of trichromat and the blue corner of the diagram.

Metrics