Abstract

We report the results of matching experiments designed to study the color appearance of objects rendered under different simulated illuminants on a CRT monitor. Subjects set asymmetric color matches between a standard object and a test object that were rendered under illuminants with different spectral power distributions. For any illuminant change, we found that the mapping between the cone coordinates of matching standard and test objects was well approximated by a diagonal linear transformation. In this sense, our results are consistent with von Kries’s hypothesis { Handb. Physiol. Menschen 3, 109 ( 1905) [ in Sources of Color Vision, D. L. MacAdam, ed. ( MIT Press, Cambridge, Mass., 1970)]}that adaptation simply changes the relative sensitivity of the different cone classes. In addition, we examined the dependence of the diagonal transformation on the illuminant change. For the range of illuminants tested, we found that the change in the diagonal elements of the linear transformation was a linear function of the illuminant change.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Stiles, “Mechanism concepts in colour theory,” J. Colour Group 11, 106–123 (1967) [in Mechanisms of Colour Vision, W. S. Stiles, ed. (Academic, London, 1978)].
  2. D. Krantz, “A theory of context effects based on cross-context matching,”J. Math. Psychol. 5, 1–48 (1968).
    [Crossref]
  3. J. von Kries, “Influence of adaptation on the effects produced by luminous stimuli,” Handb. Physiol. Menschen 3, 109–282 (1905) [in Sources of Color Vision, D. L. MacAdam, ed. (MIT Press, Cambridge, Mass., 1970)].
  4. J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).
  5. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986).
    [Crossref] [PubMed]
  6. J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
    [Crossref]
  7. T. Jaaskelainen, J. Parkkinen, S. Toyooka, “A vector-subspace model for color representation,” J. Opt. Soc. Am. A 7, 725–730 (1990).
    [Crossref]
  8. D. B. Judd, D. L. MacAdam, G. W. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,”J. Opt. Soc. Am. 54, 1031–1040 (1964).
    [Crossref]
  9. G. Buchsbaum, “A spatial processor model for object color perception,”J. Franklin Inst. 310, 1–26 (1980).
    [Crossref]
  10. L. T. Maloney, B. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986).
    [Crossref] [PubMed]
  11. D. H. Brainard, B. A. Wandell, “A bilinear model of the illuminant’s effect on color appearance,” in Computational Models of Visual Processing, J. A. Movshon, M. S. Landy, eds. (MIT Press, Cambridge, Mass., 1991).
  12. L. Arend, A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
    [Crossref] [PubMed]
  13. R. W. G. Hunt, “The effects of daylight and tungsten light-adaptation on color perception,”J. Opt. Soc. Am. 40, 336–371 (1950).
    [Crossref]
  14. D. Jameson, L. M. Hurvich, F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
    [Crossref] [PubMed]
  15. S. J. Ahn, “Studies of adaptation in the luminance and chromatic channels,” Ph.D. dissertation (University of California, San Diego, La Jolla, Calif., 1990).
  16. M. D. Fairchild, “Chromatic adaptation and color appearance,” Ph.D. dissertation (University of Rochester, Rochester, N.Y, 1990).
  17. M. Hayhoe, P. Wenderoth, E. Lynch, D. H. Brainard, “Adaptation mechanisms in color appearance,” Invest. Ophthalmol. Vis. Sci. Suppl. 32, 1023 (1991).
  18. H. Helson, V. B. Jeffers, “Fundamental problems in color vision. II. Hue, lightness, and saturation of selective samples in chromatic illumination,”J. Exp. Psychol. 26, 1–27 (1940).
    [Crossref]
  19. H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).
  20. R. W. G. Hunt, “The perception of color in 1 degree fields for different states of adaptation,”J. Opt. Soc. Am. 43, 479–484 (1953).
    [Crossref] [PubMed]
  21. D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,”J. Opt. Soc. Am. 45, 546–552 (1955).
    [Crossref]
  22. D. L. MacAdam, “Chromatic adaptation,”J. Opt. Soc. Am. 46, 500–512 (1956).
    [Crossref] [PubMed]
  23. R. W. Burnham, R. M. Evans, S. M. Newhall, “Prediction of color appearance with different adaptation illuminations,”J. Opt. Soc. Am. 47, 35–42 (1957).
    [Crossref]
  24. J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the color Mondrian experiments,” Vision Res. 16, 445–448 (1976).
    [Crossref]
  25. A. Valberg, B. Lange-Malecki, “‘Color constancy’ in mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
    [Crossref]
  26. J. Walraven, T. Benzschawel, B. Rogowitz, “Chromatic induction: a misdirected attempt at color constancy?” in Optical Society of America 1988 Annual Meeting, Vol. 11 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 103.
  27. K. T. Blackwell, G. Buchsbaum, “Quantitative studies of color constancy,” J. Opt. Soc. Am. A 5, 1772–1780 (1988).
    [Crossref] [PubMed]
  28. A. C. Hurlbert, H. Lee, H. H. Bulthoff, “Cues to the color of the illuminant,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 221 (1989).
  29. D. H. Brainard, “Calibration of a computer controlled color monitor,” Color Res. Appl. 14, 23–34 (1989).
    [Crossref]
  30. G. W. Meyer, H. E. Rushmeier, M. F. Cohen, D. P. Greenberg, K. E. Torrance, “An experimental evaluation of computer graphics imagery,” Assoc. Comput. Mach. Graphics 5, 30–50 (1986).
  31. D. H. Brainard, B. A. Wandell, “Calibrated processing of image color,” Color Res. Appl. 15, 266–271 (1990).
    [Crossref]
  32. D. H. Brainard, B. A. Wandell, “The color analysis package,” (Stanford University, Stanford, Calif., 1989).
  33. K. L. Kelly, K. S. Gibson, D. Nickerson, “Tristimulus specification of the Munsell Book of Colorfrom spectrophotometric measurements,”J. Opt. Soc. Am. 33, 355–376 (1943).
    [Crossref]
  34. D. Nickerson, “Spectrophotometric data for a collection of Munsell samples” (U.S. Department of Agriculture, Washington, D.C., 1957; available from Munsell Color Company, Baltimore, Md.).
  35. D. H. Brainard, “Understanding the illuminant’s effect on color appearance,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1989).
  36. CIE, “Colorimetry,” Publ. 15 (Bureau Central, CIE, Paris, 1971).
  37. A. R. Robertson, “The CIE 1976 color-difference formulae,” Color Res. Appl. 2, 7–11 (1977).
  38. For this purpose, we used the CIE XYZ tristimulus coordinates of the monitor white point for the conversion to CIELUV values.
  39. S. Ishihara, Tests for Colour-Blindness (Kanehara Shuppen Company, Ltd., Tokyo, 1977).
  40. V. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [Crossref] [PubMed]
  41. To match the wavelength range and sampling of our phosphor calibration measurements, we obtained these estimates by using Boynton’s (Ref. 42, p. 404) formula to transform Judd’s43 modified CIE color-matching functions (Ref. 44, p. 330) at wavelengths between 370 and 730 nm. We then linearly interpolated the result to a sampling resolution of 1 nm. Note that Boynton’s published formula contains a typographical error: the contribution from color-matching function z¯ to the M cone responsivity should be positive. The luminance (in candelas per square meter but with respect to Judd’s43 modified luminous efficiency function) of a light can be recovered from our reported cone coordinates through Y = 6.83(0.64L + 0.39M). Since the Smith–Pokorny estimates are not an exact linear transformation of the 1931 CIE XYZ color-matching function, we incorporated our measured monitor phosphor spectral power distributions in our color coordinate conversion procedures.
  42. R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, New York, 1979).
  43. D. B. Judd, Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight, Vol. 1 of CIE Proceedings (Bureau Central, CIE, Paris, 1951), part 7.
  44. G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).
  45. D. L. MacAdam, “Visual sensitivities to color differences in daylight,”J. Opt. Soc. Am. 32, 247–274 (1942).
    [Crossref]
  46. W. R. J. Brown, D. L. MacAdam, “Visual sensitivities to combined chromaticity and luminance differences,”J. Opt. Soc. Am. 39, 808–834 (1949).
    [Crossref] [PubMed]
  47. G. Wyszecki, G. H. Fielder, “New color-matching ellipses,”J. Opt. Soc. Am. 61, 1135–1151 (1971).
    [Crossref] [PubMed]
  48. For this purpose, we used the CIE XYZ tristimulus coordinates of the simulated illuminant at the time a match was set to determine the white point for the conversion to CIELUV values.
  49. K. V. Mardia, J. T. Kent, J. M. Bibby, Multivariate Analysis (Academic, New York, 1979).
  50. The CIELUV representation was designed so that one unit of ΔEuv* corresponds to one standard deviation in individual match distribution in a simultaneous matching experiment, equivalent to a d-prime of one. Three ΔEuv* units are typically taken as a just-noticeable difference in industrial applications [L. D. Silverstein, UCD Sciences, Inc., Scottsdale, Ariz. (personal communication, 1991)].
  51. We performed two-tailed ttests on the differences in L*,u*, and v*mean match coordinates. For 48 mean matches from the 24 experimental conditions in which we had repeat measurements between subjects, we found the probability of the observed deviations between subjects’ mean matches to be greater than 0.10 for each of the three coordinates.
  52. D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
    [Crossref] [PubMed]
  53. D. Jameson, L. M. Hurvich, “Color adaptation: sensitivity contrast, and afterimages,” in Handbook of Sensory Physiology, L. M. Hurvich, D. Jameson, eds. (Springer-Verlag, Berlin, 1972).
    [Crossref]
  54. J. Walraven, “Discounting the background—the missing link in the explanation of chromatic induction,” Vision Res. 16, 289–295 (1976).
    [Crossref]
  55. S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
    [Crossref] [PubMed]
  56. C. Ware, W. B. Cowan, “Changes in perceived color due to chromatic interactions,” Vision Res. 22, 1353–1362 (1982).
    [Crossref] [PubMed]
  57. J. P. Chandler, “stepit” (Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University at Bloomington, Ind., 1965).
  58. B. J. Lindbloom, “Accurate color reproduction for computer graphics applications,” Comput. Graphics 23, 117–126 (1989).
    [Crossref]
  59. R. J. Motta, “Color encoding computer images—part two,” Inf. Disp. 7, 16–19 (1991).
  60. D. H. Brainard, B. A. Wandell, “Evaluation of CIE Luv and CIE Lab as perceptual image representations,” Soc. Inf. Disp. Int. Symp. Tech. Dig. 22, 799–801 (1991).
  61. R. W. G. Hunt, “A model of colour vision for predicting color appearance in various viewing conditions,” Color Res. Appl. 12, 297–314 (1987).
    [Crossref]
  62. Y. Nayatani, K. Hashimoto, K. Takahama, H. Sobagaki, “A non-linear color-appearance model using Estevez–Hunt–Pointer primaries,” Color Res. Appl. 12, 231–242 (1987).
    [Crossref]
  63. E. H. Land, J. J. McCann, “Lightness and retinex theory,”J. Opt. Soc. Am. 61, 1–11 (1971).
    [Crossref] [PubMed]
  64. E. H. Land, “Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983).
    [Crossref] [PubMed]
  65. D. H. Brainard, B. A. Wandell, “Analysis of the retinex theory of color vision,” J. Opt. Soc. Am. A 3, 1651–1661 (1986).
    [Crossref] [PubMed]
  66. J. D. Mollon, P. G. Polden, “An anomaly in the response of the eye to light of short wavelengths,” Philos. Trans. R. Soc. London Ser. B 278, 207–240 (1977).
    [Crossref]
  67. P. G. Polden, J. D. Mollon, “Reversed effect of adapting stimuli on visual sensitivity,” Proc. R. Soc. London Ser. B 210, 235–272 (1980).
    [Crossref]
  68. E. N. Pugh, “The nature of the srl mechanism of W. S. Stiles,”J. Physiol. 257, 713–747 (1976).
    [PubMed]
  69. E. N. Pugh, J. D. Mollon, “A theory of the π1and π3colour mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
    [Crossref]
  70. C. E. Sternheim, I. C. F. Stromeyer, L. Spillmann, “Increment thresholds: sensitization produced by hue differences,” in Visual Psychophysics and Physiology, J. Armington, J. Krauskopf, B. R. Wooten, eds. (Academic, New York, 1978).
    [Crossref]
  71. B. A. Wandell, E. N. Pugh, “A field-additive pathway detects brief-duration, long-wavelength incremental flashes,” Vision Res. 20, 613–624 (1980).
    [Crossref] [PubMed]
  72. B. A. Wandell, E. N. Pugh, “Detection of long-duration, long-wavelength incremental flashes by a chromatically coded pathway,” Vision Res. 20, 625–636 (1980).
    [Crossref] [PubMed]
  73. J. S. Werner, J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–944 (1982).
    [Crossref] [PubMed]
  74. S. K. Shevell, R. A. Humanski, “Color perception under chromatic adaptation: red/green equilibria with adapted short-wavelength-sensitive cones,” Vision Res. 28, 1345–1356 (1988).
    [Crossref] [PubMed]
  75. The stepit routine can simultaneously search for optimal values for 20 parameters. To fit the affine model, which has 24 parameters, we called the stepit routine repeatedly on subsets of the full parameter set. For all the stepit fits, we tried a number of different initial conditions.
  76. G. Wyszecki, “Color appearance,” in Handbook of Perception, K. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986).
  77. Strictly speaking, this argument also requires the assumption that all objects seen under illuminant ebhave a satisfactory asymmetric match under illuminant ea.
  78. D. H. Brainard, B. A. Wandell, “The effect of the illuminant on color appearance,” in Perceiving, Measuring, and Using Color, M. H. Brill, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1250, 119–130 (1990).
    [Crossref]

1991 (3)

M. Hayhoe, P. Wenderoth, E. Lynch, D. H. Brainard, “Adaptation mechanisms in color appearance,” Invest. Ophthalmol. Vis. Sci. Suppl. 32, 1023 (1991).

R. J. Motta, “Color encoding computer images—part two,” Inf. Disp. 7, 16–19 (1991).

D. H. Brainard, B. A. Wandell, “Evaluation of CIE Luv and CIE Lab as perceptual image representations,” Soc. Inf. Disp. Int. Symp. Tech. Dig. 22, 799–801 (1991).

1990 (3)

T. Jaaskelainen, J. Parkkinen, S. Toyooka, “A vector-subspace model for color representation,” J. Opt. Soc. Am. A 7, 725–730 (1990).
[Crossref]

A. Valberg, B. Lange-Malecki, “‘Color constancy’ in mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[Crossref]

D. H. Brainard, B. A. Wandell, “Calibrated processing of image color,” Color Res. Appl. 15, 266–271 (1990).
[Crossref]

1989 (4)

A. C. Hurlbert, H. Lee, H. H. Bulthoff, “Cues to the color of the illuminant,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 221 (1989).

D. H. Brainard, “Calibration of a computer controlled color monitor,” Color Res. Appl. 14, 23–34 (1989).
[Crossref]

J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
[Crossref]

B. J. Lindbloom, “Accurate color reproduction for computer graphics applications,” Comput. Graphics 23, 117–126 (1989).
[Crossref]

1988 (2)

S. K. Shevell, R. A. Humanski, “Color perception under chromatic adaptation: red/green equilibria with adapted short-wavelength-sensitive cones,” Vision Res. 28, 1345–1356 (1988).
[Crossref] [PubMed]

K. T. Blackwell, G. Buchsbaum, “Quantitative studies of color constancy,” J. Opt. Soc. Am. A 5, 1772–1780 (1988).
[Crossref] [PubMed]

1987 (2)

R. W. G. Hunt, “A model of colour vision for predicting color appearance in various viewing conditions,” Color Res. Appl. 12, 297–314 (1987).
[Crossref]

Y. Nayatani, K. Hashimoto, K. Takahama, H. Sobagaki, “A non-linear color-appearance model using Estevez–Hunt–Pointer primaries,” Color Res. Appl. 12, 231–242 (1987).
[Crossref]

1986 (5)

1983 (1)

E. H. Land, “Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983).
[Crossref] [PubMed]

1982 (2)

C. Ware, W. B. Cowan, “Changes in perceived color due to chromatic interactions,” Vision Res. 22, 1353–1362 (1982).
[Crossref] [PubMed]

J. S. Werner, J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–944 (1982).
[Crossref] [PubMed]

1980 (4)

B. A. Wandell, E. N. Pugh, “A field-additive pathway detects brief-duration, long-wavelength incremental flashes,” Vision Res. 20, 613–624 (1980).
[Crossref] [PubMed]

B. A. Wandell, E. N. Pugh, “Detection of long-duration, long-wavelength incremental flashes by a chromatically coded pathway,” Vision Res. 20, 625–636 (1980).
[Crossref] [PubMed]

P. G. Polden, J. D. Mollon, “Reversed effect of adapting stimuli on visual sensitivity,” Proc. R. Soc. London Ser. B 210, 235–272 (1980).
[Crossref]

G. Buchsbaum, “A spatial processor model for object color perception,”J. Franklin Inst. 310, 1–26 (1980).
[Crossref]

1979 (2)

D. Jameson, L. M. Hurvich, F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
[Crossref] [PubMed]

E. N. Pugh, J. D. Mollon, “A theory of the π1and π3colour mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[Crossref]

1978 (1)

S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
[Crossref] [PubMed]

1977 (2)

J. D. Mollon, P. G. Polden, “An anomaly in the response of the eye to light of short wavelengths,” Philos. Trans. R. Soc. London Ser. B 278, 207–240 (1977).
[Crossref]

A. R. Robertson, “The CIE 1976 color-difference formulae,” Color Res. Appl. 2, 7–11 (1977).

1976 (3)

J. Walraven, “Discounting the background—the missing link in the explanation of chromatic induction,” Vision Res. 16, 289–295 (1976).
[Crossref]

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the color Mondrian experiments,” Vision Res. 16, 445–448 (1976).
[Crossref]

E. N. Pugh, “The nature of the srl mechanism of W. S. Stiles,”J. Physiol. 257, 713–747 (1976).
[PubMed]

1975 (1)

V. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

1971 (2)

1968 (1)

D. Krantz, “A theory of context effects based on cross-context matching,”J. Math. Psychol. 5, 1–48 (1968).
[Crossref]

1967 (1)

W. S. Stiles, “Mechanism concepts in colour theory,” J. Colour Group 11, 106–123 (1967) [in Mechanisms of Colour Vision, W. S. Stiles, ed. (Academic, London, 1978)].

1964 (3)

J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).

D. B. Judd, D. L. MacAdam, G. W. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,”J. Opt. Soc. Am. 54, 1031–1040 (1964).
[Crossref]

D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
[Crossref] [PubMed]

1957 (1)

1956 (1)

1955 (1)

1953 (1)

1952 (1)

H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

1950 (1)

1949 (1)

1943 (1)

1942 (1)

1940 (1)

H. Helson, V. B. Jeffers, “Fundamental problems in color vision. II. Hue, lightness, and saturation of selective samples in chromatic illumination,”J. Exp. Psychol. 26, 1–27 (1940).
[Crossref]

1905 (1)

J. von Kries, “Influence of adaptation on the effects produced by luminous stimuli,” Handb. Physiol. Menschen 3, 109–282 (1905) [in Sources of Color Vision, D. L. MacAdam, ed. (MIT Press, Cambridge, Mass., 1970)].

Ahn, S. J.

S. J. Ahn, “Studies of adaptation in the luminance and chromatic channels,” Ph.D. dissertation (University of California, San Diego, La Jolla, Calif., 1990).

Arend, L.

Benzschawel, T.

J. Walraven, T. Benzschawel, B. Rogowitz, “Chromatic induction: a misdirected attempt at color constancy?” in Optical Society of America 1988 Annual Meeting, Vol. 11 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 103.

Bibby, J. M.

K. V. Mardia, J. T. Kent, J. M. Bibby, Multivariate Analysis (Academic, New York, 1979).

Blackwell, K. T.

Boynton, R. M.

R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, New York, 1979).

Brainard, D. H.

D. H. Brainard, B. A. Wandell, “Evaluation of CIE Luv and CIE Lab as perceptual image representations,” Soc. Inf. Disp. Int. Symp. Tech. Dig. 22, 799–801 (1991).

M. Hayhoe, P. Wenderoth, E. Lynch, D. H. Brainard, “Adaptation mechanisms in color appearance,” Invest. Ophthalmol. Vis. Sci. Suppl. 32, 1023 (1991).

D. H. Brainard, B. A. Wandell, “Calibrated processing of image color,” Color Res. Appl. 15, 266–271 (1990).
[Crossref]

D. H. Brainard, “Calibration of a computer controlled color monitor,” Color Res. Appl. 14, 23–34 (1989).
[Crossref]

D. H. Brainard, B. A. Wandell, “Analysis of the retinex theory of color vision,” J. Opt. Soc. Am. A 3, 1651–1661 (1986).
[Crossref] [PubMed]

D. H. Brainard, B. A. Wandell, “The effect of the illuminant on color appearance,” in Perceiving, Measuring, and Using Color, M. H. Brill, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1250, 119–130 (1990).
[Crossref]

D. H. Brainard, B. A. Wandell, “A bilinear model of the illuminant’s effect on color appearance,” in Computational Models of Visual Processing, J. A. Movshon, M. S. Landy, eds. (MIT Press, Cambridge, Mass., 1991).

D. H. Brainard, B. A. Wandell, “The color analysis package,” (Stanford University, Stanford, Calif., 1989).

D. H. Brainard, “Understanding the illuminant’s effect on color appearance,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1989).

Brown, W. R. J.

Buchsbaum, G.

K. T. Blackwell, G. Buchsbaum, “Quantitative studies of color constancy,” J. Opt. Soc. Am. A 5, 1772–1780 (1988).
[Crossref] [PubMed]

G. Buchsbaum, “A spatial processor model for object color perception,”J. Franklin Inst. 310, 1–26 (1980).
[Crossref]

Bulthoff, H. H.

A. C. Hurlbert, H. Lee, H. H. Bulthoff, “Cues to the color of the illuminant,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 221 (1989).

Burnham, R. W.

Chandler, J. P.

J. P. Chandler, “stepit” (Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University at Bloomington, Ind., 1965).

Cohen, J.

J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).

Cohen, M. F.

G. W. Meyer, H. E. Rushmeier, M. F. Cohen, D. P. Greenberg, K. E. Torrance, “An experimental evaluation of computer graphics imagery,” Assoc. Comput. Mach. Graphics 5, 30–50 (1986).

Cowan, W. B.

C. Ware, W. B. Cowan, “Changes in perceived color due to chromatic interactions,” Vision Res. 22, 1353–1362 (1982).
[Crossref] [PubMed]

Evans, R. M.

Fairchild, M. D.

M. D. Fairchild, “Chromatic adaptation and color appearance,” Ph.D. dissertation (University of Rochester, Rochester, N.Y, 1990).

Fielder, G. H.

Gibson, K. S.

Greenberg, D. P.

G. W. Meyer, H. E. Rushmeier, M. F. Cohen, D. P. Greenberg, K. E. Torrance, “An experimental evaluation of computer graphics imagery,” Assoc. Comput. Mach. Graphics 5, 30–50 (1986).

Hallikainen, J.

Hashimoto, K.

Y. Nayatani, K. Hashimoto, K. Takahama, H. Sobagaki, “A non-linear color-appearance model using Estevez–Hunt–Pointer primaries,” Color Res. Appl. 12, 231–242 (1987).
[Crossref]

Hayhoe, M.

M. Hayhoe, P. Wenderoth, E. Lynch, D. H. Brainard, “Adaptation mechanisms in color appearance,” Invest. Ophthalmol. Vis. Sci. Suppl. 32, 1023 (1991).

Helson, H.

H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

H. Helson, V. B. Jeffers, “Fundamental problems in color vision. II. Hue, lightness, and saturation of selective samples in chromatic illumination,”J. Exp. Psychol. 26, 1–27 (1940).
[Crossref]

Humanski, R. A.

S. K. Shevell, R. A. Humanski, “Color perception under chromatic adaptation: red/green equilibria with adapted short-wavelength-sensitive cones,” Vision Res. 28, 1345–1356 (1988).
[Crossref] [PubMed]

Hunt, R. W. G.

Hurlbert, A. C.

A. C. Hurlbert, H. Lee, H. H. Bulthoff, “Cues to the color of the illuminant,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 221 (1989).

Hurvich, L. M.

D. Jameson, L. M. Hurvich, F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
[Crossref] [PubMed]

D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
[Crossref] [PubMed]

D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,”J. Opt. Soc. Am. 45, 546–552 (1955).
[Crossref]

D. Jameson, L. M. Hurvich, “Color adaptation: sensitivity contrast, and afterimages,” in Handbook of Sensory Physiology, L. M. Hurvich, D. Jameson, eds. (Springer-Verlag, Berlin, 1972).
[Crossref]

Ishihara, S.

S. Ishihara, Tests for Colour-Blindness (Kanehara Shuppen Company, Ltd., Tokyo, 1977).

Jaaskelainen, T.

Jameson, D.

D. Jameson, L. M. Hurvich, F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
[Crossref] [PubMed]

D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
[Crossref] [PubMed]

D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,”J. Opt. Soc. Am. 45, 546–552 (1955).
[Crossref]

D. Jameson, L. M. Hurvich, “Color adaptation: sensitivity contrast, and afterimages,” in Handbook of Sensory Physiology, L. M. Hurvich, D. Jameson, eds. (Springer-Verlag, Berlin, 1972).
[Crossref]

Jeffers, V. B.

H. Helson, V. B. Jeffers, “Fundamental problems in color vision. II. Hue, lightness, and saturation of selective samples in chromatic illumination,”J. Exp. Psychol. 26, 1–27 (1940).
[Crossref]

Judd, D.

H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

Judd, D. B.

D. B. Judd, D. L. MacAdam, G. W. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,”J. Opt. Soc. Am. 54, 1031–1040 (1964).
[Crossref]

D. B. Judd, Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight, Vol. 1 of CIE Proceedings (Bureau Central, CIE, Paris, 1951), part 7.

Kelly, K. L.

Kent, J. T.

K. V. Mardia, J. T. Kent, J. M. Bibby, Multivariate Analysis (Academic, New York, 1979).

Krantz, D.

D. Krantz, “A theory of context effects based on cross-context matching,”J. Math. Psychol. 5, 1–48 (1968).
[Crossref]

Land, E. H.

E. H. Land, “Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983).
[Crossref] [PubMed]

E. H. Land, J. J. McCann, “Lightness and retinex theory,”J. Opt. Soc. Am. 61, 1–11 (1971).
[Crossref] [PubMed]

Lange-Malecki, B.

A. Valberg, B. Lange-Malecki, “‘Color constancy’ in mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[Crossref]

Lee, H.

A. C. Hurlbert, H. Lee, H. H. Bulthoff, “Cues to the color of the illuminant,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 221 (1989).

Lindbloom, B. J.

B. J. Lindbloom, “Accurate color reproduction for computer graphics applications,” Comput. Graphics 23, 117–126 (1989).
[Crossref]

Lynch, E.

M. Hayhoe, P. Wenderoth, E. Lynch, D. H. Brainard, “Adaptation mechanisms in color appearance,” Invest. Ophthalmol. Vis. Sci. Suppl. 32, 1023 (1991).

MacAdam, D. L.

Maloney, L. T.

Mardia, K. V.

K. V. Mardia, J. T. Kent, J. M. Bibby, Multivariate Analysis (Academic, New York, 1979).

McCann, J. J.

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the color Mondrian experiments,” Vision Res. 16, 445–448 (1976).
[Crossref]

E. H. Land, J. J. McCann, “Lightness and retinex theory,”J. Opt. Soc. Am. 61, 1–11 (1971).
[Crossref] [PubMed]

McKee, S. P.

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the color Mondrian experiments,” Vision Res. 16, 445–448 (1976).
[Crossref]

Meyer, G. W.

G. W. Meyer, H. E. Rushmeier, M. F. Cohen, D. P. Greenberg, K. E. Torrance, “An experimental evaluation of computer graphics imagery,” Assoc. Comput. Mach. Graphics 5, 30–50 (1986).

Mollon, J. D.

P. G. Polden, J. D. Mollon, “Reversed effect of adapting stimuli on visual sensitivity,” Proc. R. Soc. London Ser. B 210, 235–272 (1980).
[Crossref]

E. N. Pugh, J. D. Mollon, “A theory of the π1and π3colour mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[Crossref]

J. D. Mollon, P. G. Polden, “An anomaly in the response of the eye to light of short wavelengths,” Philos. Trans. R. Soc. London Ser. B 278, 207–240 (1977).
[Crossref]

Motta, R. J.

R. J. Motta, “Color encoding computer images—part two,” Inf. Disp. 7, 16–19 (1991).

Nayatani, Y.

Y. Nayatani, K. Hashimoto, K. Takahama, H. Sobagaki, “A non-linear color-appearance model using Estevez–Hunt–Pointer primaries,” Color Res. Appl. 12, 231–242 (1987).
[Crossref]

Newhall, S. M.

Nickerson, D.

K. L. Kelly, K. S. Gibson, D. Nickerson, “Tristimulus specification of the Munsell Book of Colorfrom spectrophotometric measurements,”J. Opt. Soc. Am. 33, 355–376 (1943).
[Crossref]

D. Nickerson, “Spectrophotometric data for a collection of Munsell samples” (U.S. Department of Agriculture, Washington, D.C., 1957; available from Munsell Color Company, Baltimore, Md.).

Parkkinen, J.

Parkkinen, J. P. S.

Pokorny, J.

V. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

Polden, P. G.

P. G. Polden, J. D. Mollon, “Reversed effect of adapting stimuli on visual sensitivity,” Proc. R. Soc. London Ser. B 210, 235–272 (1980).
[Crossref]

J. D. Mollon, P. G. Polden, “An anomaly in the response of the eye to light of short wavelengths,” Philos. Trans. R. Soc. London Ser. B 278, 207–240 (1977).
[Crossref]

Pugh, E. N.

B. A. Wandell, E. N. Pugh, “A field-additive pathway detects brief-duration, long-wavelength incremental flashes,” Vision Res. 20, 613–624 (1980).
[Crossref] [PubMed]

B. A. Wandell, E. N. Pugh, “Detection of long-duration, long-wavelength incremental flashes by a chromatically coded pathway,” Vision Res. 20, 625–636 (1980).
[Crossref] [PubMed]

E. N. Pugh, J. D. Mollon, “A theory of the π1and π3colour mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[Crossref]

E. N. Pugh, “The nature of the srl mechanism of W. S. Stiles,”J. Physiol. 257, 713–747 (1976).
[PubMed]

Reeves, A.

Robertson, A. R.

A. R. Robertson, “The CIE 1976 color-difference formulae,” Color Res. Appl. 2, 7–11 (1977).

Rogowitz, B.

J. Walraven, T. Benzschawel, B. Rogowitz, “Chromatic induction: a misdirected attempt at color constancy?” in Optical Society of America 1988 Annual Meeting, Vol. 11 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 103.

Rushmeier, H. E.

G. W. Meyer, H. E. Rushmeier, M. F. Cohen, D. P. Greenberg, K. E. Torrance, “An experimental evaluation of computer graphics imagery,” Assoc. Comput. Mach. Graphics 5, 30–50 (1986).

Shevell, S. K.

S. K. Shevell, R. A. Humanski, “Color perception under chromatic adaptation: red/green equilibria with adapted short-wavelength-sensitive cones,” Vision Res. 28, 1345–1356 (1988).
[Crossref] [PubMed]

S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
[Crossref] [PubMed]

Smith, V.

V. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

Sobagaki, H.

Y. Nayatani, K. Hashimoto, K. Takahama, H. Sobagaki, “A non-linear color-appearance model using Estevez–Hunt–Pointer primaries,” Color Res. Appl. 12, 231–242 (1987).
[Crossref]

Spillmann, L.

C. E. Sternheim, I. C. F. Stromeyer, L. Spillmann, “Increment thresholds: sensitization produced by hue differences,” in Visual Psychophysics and Physiology, J. Armington, J. Krauskopf, B. R. Wooten, eds. (Academic, New York, 1978).
[Crossref]

Sternheim, C. E.

C. E. Sternheim, I. C. F. Stromeyer, L. Spillmann, “Increment thresholds: sensitization produced by hue differences,” in Visual Psychophysics and Physiology, J. Armington, J. Krauskopf, B. R. Wooten, eds. (Academic, New York, 1978).
[Crossref]

Stiles, W. S.

W. S. Stiles, “Mechanism concepts in colour theory,” J. Colour Group 11, 106–123 (1967) [in Mechanisms of Colour Vision, W. S. Stiles, ed. (Academic, London, 1978)].

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

Stromeyer, I. C. F.

C. E. Sternheim, I. C. F. Stromeyer, L. Spillmann, “Increment thresholds: sensitization produced by hue differences,” in Visual Psychophysics and Physiology, J. Armington, J. Krauskopf, B. R. Wooten, eds. (Academic, New York, 1978).
[Crossref]

Takahama, K.

Y. Nayatani, K. Hashimoto, K. Takahama, H. Sobagaki, “A non-linear color-appearance model using Estevez–Hunt–Pointer primaries,” Color Res. Appl. 12, 231–242 (1987).
[Crossref]

Taylor, T. H.

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the color Mondrian experiments,” Vision Res. 16, 445–448 (1976).
[Crossref]

Torrance, K. E.

G. W. Meyer, H. E. Rushmeier, M. F. Cohen, D. P. Greenberg, K. E. Torrance, “An experimental evaluation of computer graphics imagery,” Assoc. Comput. Mach. Graphics 5, 30–50 (1986).

Toyooka, S.

Valberg, A.

A. Valberg, B. Lange-Malecki, “‘Color constancy’ in mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[Crossref]

Varner, F. D.

D. Jameson, L. M. Hurvich, F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
[Crossref] [PubMed]

von Kries, J.

J. von Kries, “Influence of adaptation on the effects produced by luminous stimuli,” Handb. Physiol. Menschen 3, 109–282 (1905) [in Sources of Color Vision, D. L. MacAdam, ed. (MIT Press, Cambridge, Mass., 1970)].

Walraven, J.

J. S. Werner, J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–944 (1982).
[Crossref] [PubMed]

J. Walraven, “Discounting the background—the missing link in the explanation of chromatic induction,” Vision Res. 16, 289–295 (1976).
[Crossref]

J. Walraven, T. Benzschawel, B. Rogowitz, “Chromatic induction: a misdirected attempt at color constancy?” in Optical Society of America 1988 Annual Meeting, Vol. 11 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 103.

Wandell, B.

Wandell, B. A.

D. H. Brainard, B. A. Wandell, “Evaluation of CIE Luv and CIE Lab as perceptual image representations,” Soc. Inf. Disp. Int. Symp. Tech. Dig. 22, 799–801 (1991).

D. H. Brainard, B. A. Wandell, “Calibrated processing of image color,” Color Res. Appl. 15, 266–271 (1990).
[Crossref]

D. H. Brainard, B. A. Wandell, “Analysis of the retinex theory of color vision,” J. Opt. Soc. Am. A 3, 1651–1661 (1986).
[Crossref] [PubMed]

B. A. Wandell, E. N. Pugh, “A field-additive pathway detects brief-duration, long-wavelength incremental flashes,” Vision Res. 20, 613–624 (1980).
[Crossref] [PubMed]

B. A. Wandell, E. N. Pugh, “Detection of long-duration, long-wavelength incremental flashes by a chromatically coded pathway,” Vision Res. 20, 625–636 (1980).
[Crossref] [PubMed]

D. H. Brainard, B. A. Wandell, “The effect of the illuminant on color appearance,” in Perceiving, Measuring, and Using Color, M. H. Brill, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1250, 119–130 (1990).
[Crossref]

D. H. Brainard, B. A. Wandell, “A bilinear model of the illuminant’s effect on color appearance,” in Computational Models of Visual Processing, J. A. Movshon, M. S. Landy, eds. (MIT Press, Cambridge, Mass., 1991).

D. H. Brainard, B. A. Wandell, “The color analysis package,” (Stanford University, Stanford, Calif., 1989).

Ware, C.

C. Ware, W. B. Cowan, “Changes in perceived color due to chromatic interactions,” Vision Res. 22, 1353–1362 (1982).
[Crossref] [PubMed]

Warren, M.

H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

Wenderoth, P.

M. Hayhoe, P. Wenderoth, E. Lynch, D. H. Brainard, “Adaptation mechanisms in color appearance,” Invest. Ophthalmol. Vis. Sci. Suppl. 32, 1023 (1991).

Werner, J. S.

J. S. Werner, J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–944 (1982).
[Crossref] [PubMed]

Wyszecki, G.

G. Wyszecki, G. H. Fielder, “New color-matching ellipses,”J. Opt. Soc. Am. 61, 1135–1151 (1971).
[Crossref] [PubMed]

G. Wyszecki, “Color appearance,” in Handbook of Perception, K. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986).

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

Wyszecki, G. W.

Assoc. Comput. Mach. Graphics (1)

G. W. Meyer, H. E. Rushmeier, M. F. Cohen, D. P. Greenberg, K. E. Torrance, “An experimental evaluation of computer graphics imagery,” Assoc. Comput. Mach. Graphics 5, 30–50 (1986).

Color Res. Appl. (5)

D. H. Brainard, B. A. Wandell, “Calibrated processing of image color,” Color Res. Appl. 15, 266–271 (1990).
[Crossref]

R. W. G. Hunt, “A model of colour vision for predicting color appearance in various viewing conditions,” Color Res. Appl. 12, 297–314 (1987).
[Crossref]

Y. Nayatani, K. Hashimoto, K. Takahama, H. Sobagaki, “A non-linear color-appearance model using Estevez–Hunt–Pointer primaries,” Color Res. Appl. 12, 231–242 (1987).
[Crossref]

D. H. Brainard, “Calibration of a computer controlled color monitor,” Color Res. Appl. 14, 23–34 (1989).
[Crossref]

A. R. Robertson, “The CIE 1976 color-difference formulae,” Color Res. Appl. 2, 7–11 (1977).

Comput. Graphics (1)

B. J. Lindbloom, “Accurate color reproduction for computer graphics applications,” Comput. Graphics 23, 117–126 (1989).
[Crossref]

Handb. Physiol. Menschen (1)

J. von Kries, “Influence of adaptation on the effects produced by luminous stimuli,” Handb. Physiol. Menschen 3, 109–282 (1905) [in Sources of Color Vision, D. L. MacAdam, ed. (MIT Press, Cambridge, Mass., 1970)].

Illum. Eng. (1)

H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

Inf. Disp. (1)

R. J. Motta, “Color encoding computer images—part two,” Inf. Disp. 7, 16–19 (1991).

Invest. Ophthalmol. Vis. Sci. Suppl. (2)

M. Hayhoe, P. Wenderoth, E. Lynch, D. H. Brainard, “Adaptation mechanisms in color appearance,” Invest. Ophthalmol. Vis. Sci. Suppl. 32, 1023 (1991).

A. C. Hurlbert, H. Lee, H. H. Bulthoff, “Cues to the color of the illuminant,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 221 (1989).

J. Colour Group (1)

W. S. Stiles, “Mechanism concepts in colour theory,” J. Colour Group 11, 106–123 (1967) [in Mechanisms of Colour Vision, W. S. Stiles, ed. (Academic, London, 1978)].

J. Exp. Psychol. (1)

H. Helson, V. B. Jeffers, “Fundamental problems in color vision. II. Hue, lightness, and saturation of selective samples in chromatic illumination,”J. Exp. Psychol. 26, 1–27 (1940).
[Crossref]

J. Franklin Inst. (1)

G. Buchsbaum, “A spatial processor model for object color perception,”J. Franklin Inst. 310, 1–26 (1980).
[Crossref]

J. Math. Psychol. (1)

D. Krantz, “A theory of context effects based on cross-context matching,”J. Math. Psychol. 5, 1–48 (1968).
[Crossref]

J. Opt. Soc. Am. (11)

D. L. MacAdam, “Visual sensitivities to color differences in daylight,”J. Opt. Soc. Am. 32, 247–274 (1942).
[Crossref]

R. W. G. Hunt, “The perception of color in 1 degree fields for different states of adaptation,”J. Opt. Soc. Am. 43, 479–484 (1953).
[Crossref] [PubMed]

D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,”J. Opt. Soc. Am. 45, 546–552 (1955).
[Crossref]

D. L. MacAdam, “Chromatic adaptation,”J. Opt. Soc. Am. 46, 500–512 (1956).
[Crossref] [PubMed]

R. W. Burnham, R. M. Evans, S. M. Newhall, “Prediction of color appearance with different adaptation illuminations,”J. Opt. Soc. Am. 47, 35–42 (1957).
[Crossref]

D. B. Judd, D. L. MacAdam, G. W. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,”J. Opt. Soc. Am. 54, 1031–1040 (1964).
[Crossref]

E. H. Land, J. J. McCann, “Lightness and retinex theory,”J. Opt. Soc. Am. 61, 1–11 (1971).
[Crossref] [PubMed]

G. Wyszecki, G. H. Fielder, “New color-matching ellipses,”J. Opt. Soc. Am. 61, 1135–1151 (1971).
[Crossref] [PubMed]

W. R. J. Brown, D. L. MacAdam, “Visual sensitivities to combined chromaticity and luminance differences,”J. Opt. Soc. Am. 39, 808–834 (1949).
[Crossref] [PubMed]

K. L. Kelly, K. S. Gibson, D. Nickerson, “Tristimulus specification of the Munsell Book of Colorfrom spectrophotometric measurements,”J. Opt. Soc. Am. 33, 355–376 (1943).
[Crossref]

R. W. G. Hunt, “The effects of daylight and tungsten light-adaptation on color perception,”J. Opt. Soc. Am. 40, 336–371 (1950).
[Crossref]

J. Opt. Soc. Am. A (7)

J. Physiol. (1)

E. N. Pugh, “The nature of the srl mechanism of W. S. Stiles,”J. Physiol. 257, 713–747 (1976).
[PubMed]

Philos. Trans. R. Soc. London Ser. B (1)

J. D. Mollon, P. G. Polden, “An anomaly in the response of the eye to light of short wavelengths,” Philos. Trans. R. Soc. London Ser. B 278, 207–240 (1977).
[Crossref]

Proc. Natl. Acad. Sci. USA (2)

E. H. Land, “Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983).
[Crossref] [PubMed]

D. Jameson, L. M. Hurvich, F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
[Crossref] [PubMed]

Proc. R. Soc. London Ser. B (1)

P. G. Polden, J. D. Mollon, “Reversed effect of adapting stimuli on visual sensitivity,” Proc. R. Soc. London Ser. B 210, 235–272 (1980).
[Crossref]

Psychon. Sci. (1)

J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).

Soc. Inf. Disp. Int. Symp. Tech. Dig. (1)

D. H. Brainard, B. A. Wandell, “Evaluation of CIE Luv and CIE Lab as perceptual image representations,” Soc. Inf. Disp. Int. Symp. Tech. Dig. 22, 799–801 (1991).

Vision Res. (12)

D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
[Crossref] [PubMed]

J. Walraven, “Discounting the background—the missing link in the explanation of chromatic induction,” Vision Res. 16, 289–295 (1976).
[Crossref]

S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
[Crossref] [PubMed]

C. Ware, W. B. Cowan, “Changes in perceived color due to chromatic interactions,” Vision Res. 22, 1353–1362 (1982).
[Crossref] [PubMed]

V. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the color Mondrian experiments,” Vision Res. 16, 445–448 (1976).
[Crossref]

A. Valberg, B. Lange-Malecki, “‘Color constancy’ in mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[Crossref]

E. N. Pugh, J. D. Mollon, “A theory of the π1and π3colour mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[Crossref]

B. A. Wandell, E. N. Pugh, “A field-additive pathway detects brief-duration, long-wavelength incremental flashes,” Vision Res. 20, 613–624 (1980).
[Crossref] [PubMed]

B. A. Wandell, E. N. Pugh, “Detection of long-duration, long-wavelength incremental flashes by a chromatically coded pathway,” Vision Res. 20, 625–636 (1980).
[Crossref] [PubMed]

J. S. Werner, J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–944 (1982).
[Crossref] [PubMed]

S. K. Shevell, R. A. Humanski, “Color perception under chromatic adaptation: red/green equilibria with adapted short-wavelength-sensitive cones,” Vision Res. 28, 1345–1356 (1988).
[Crossref] [PubMed]

Other (25)

The stepit routine can simultaneously search for optimal values for 20 parameters. To fit the affine model, which has 24 parameters, we called the stepit routine repeatedly on subsets of the full parameter set. For all the stepit fits, we tried a number of different initial conditions.

G. Wyszecki, “Color appearance,” in Handbook of Perception, K. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986).

Strictly speaking, this argument also requires the assumption that all objects seen under illuminant ebhave a satisfactory asymmetric match under illuminant ea.

D. H. Brainard, B. A. Wandell, “The effect of the illuminant on color appearance,” in Perceiving, Measuring, and Using Color, M. H. Brill, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1250, 119–130 (1990).
[Crossref]

C. E. Sternheim, I. C. F. Stromeyer, L. Spillmann, “Increment thresholds: sensitization produced by hue differences,” in Visual Psychophysics and Physiology, J. Armington, J. Krauskopf, B. R. Wooten, eds. (Academic, New York, 1978).
[Crossref]

D. H. Brainard, B. A. Wandell, “The color analysis package,” (Stanford University, Stanford, Calif., 1989).

J. Walraven, T. Benzschawel, B. Rogowitz, “Chromatic induction: a misdirected attempt at color constancy?” in Optical Society of America 1988 Annual Meeting, Vol. 11 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 103.

D. Nickerson, “Spectrophotometric data for a collection of Munsell samples” (U.S. Department of Agriculture, Washington, D.C., 1957; available from Munsell Color Company, Baltimore, Md.).

D. H. Brainard, “Understanding the illuminant’s effect on color appearance,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1989).

CIE, “Colorimetry,” Publ. 15 (Bureau Central, CIE, Paris, 1971).

D. H. Brainard, B. A. Wandell, “A bilinear model of the illuminant’s effect on color appearance,” in Computational Models of Visual Processing, J. A. Movshon, M. S. Landy, eds. (MIT Press, Cambridge, Mass., 1991).

For this purpose, we used the CIE XYZ tristimulus coordinates of the monitor white point for the conversion to CIELUV values.

S. Ishihara, Tests for Colour-Blindness (Kanehara Shuppen Company, Ltd., Tokyo, 1977).

S. J. Ahn, “Studies of adaptation in the luminance and chromatic channels,” Ph.D. dissertation (University of California, San Diego, La Jolla, Calif., 1990).

M. D. Fairchild, “Chromatic adaptation and color appearance,” Ph.D. dissertation (University of Rochester, Rochester, N.Y, 1990).

To match the wavelength range and sampling of our phosphor calibration measurements, we obtained these estimates by using Boynton’s (Ref. 42, p. 404) formula to transform Judd’s43 modified CIE color-matching functions (Ref. 44, p. 330) at wavelengths between 370 and 730 nm. We then linearly interpolated the result to a sampling resolution of 1 nm. Note that Boynton’s published formula contains a typographical error: the contribution from color-matching function z¯ to the M cone responsivity should be positive. The luminance (in candelas per square meter but with respect to Judd’s43 modified luminous efficiency function) of a light can be recovered from our reported cone coordinates through Y = 6.83(0.64L + 0.39M). Since the Smith–Pokorny estimates are not an exact linear transformation of the 1931 CIE XYZ color-matching function, we incorporated our measured monitor phosphor spectral power distributions in our color coordinate conversion procedures.

R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, New York, 1979).

D. B. Judd, Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight, Vol. 1 of CIE Proceedings (Bureau Central, CIE, Paris, 1951), part 7.

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

For this purpose, we used the CIE XYZ tristimulus coordinates of the simulated illuminant at the time a match was set to determine the white point for the conversion to CIELUV values.

K. V. Mardia, J. T. Kent, J. M. Bibby, Multivariate Analysis (Academic, New York, 1979).

The CIELUV representation was designed so that one unit of ΔEuv* corresponds to one standard deviation in individual match distribution in a simultaneous matching experiment, equivalent to a d-prime of one. Three ΔEuv* units are typically taken as a just-noticeable difference in industrial applications [L. D. Silverstein, UCD Sciences, Inc., Scottsdale, Ariz. (personal communication, 1991)].

We performed two-tailed ttests on the differences in L*,u*, and v*mean match coordinates. For 48 mean matches from the 24 experimental conditions in which we had repeat measurements between subjects, we found the probability of the observed deviations between subjects’ mean matches to be greater than 0.10 for each of the three coordinates.

J. P. Chandler, “stepit” (Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University at Bloomington, Ind., 1965).

D. Jameson, L. M. Hurvich, “Color adaptation: sensitivity contrast, and afterimages,” in Handbook of Sensory Physiology, L. M. Hurvich, D. Jameson, eds. (Springer-Verlag, Berlin, 1972).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Visual stimulus. The subjects saw CRT simulations of a collection of flat matte surfaces rendered under spatially uniform illumination. One of the surfaces in the array was the test object. A detailed description of the stimulus is given in the Methods section. The dimensions specified in the figure are degrees of visual angle.

Fig. 2
Fig. 2

Experimental illuminants. Each panel shows the spectraal power distribution of one experimental iluminant. The standard illuminant in all our conditions was illuminant S. Illuminants T1–T6 were used as test illuminants. The units of power are milliwatts per square centimeter nanometer steradian.

Fig. 3
Fig. 3

Transformation models. The match change is illustrated by the vector differences on the left-hand side of each panel. For a fixed illuminant change, each of the models uses a different functional form for the transformation between the standard object’s cone coordinates and the match change. Each panel illustrates this functional form for one of our models. The filled squares illustrate matrix and vector elements that can vary with the illuminant change.

Fig. 4
Fig. 4

Illuminant linearity. Illuminant linearity means that the transformation parameters are linear functions of the illuminant change. This property implies that the transformation for the sum of two illuminant changes is given by the sum of the transformations for each iluminant change alone. The figure illustrates illuminant linearity for the diagonal model. As noted in the text, the illuminant linearity property holds with respect to a fixed standard illuminant. In Appendix A we describe how our models may be generalized to handle the case in which the standard illuminant is permitted to vary.

Fig. 5
Fig. 5

Quality of model fit. The vertical axis shows the rms error in ΔEuv*values. The first bar (precision) shows the rms deviation of individual matches about the mean match. The variability of the symmetric and the asymmetric matching conditions was about the same, and the conditions are grouped to form this estimate. The second bar (veridicality) shows the rms deviation between the mean symmetric matches and the standard object. The next three bars (affine, linear, diagonal) show the rms ΔEuv* errors for the three models’ predictions of the asymmetric matches. The last bar (no model) shows the rms error of using the unmodified cone coordinates of the standard object under the standard illuminant to predict the cone coordinates of the asymmetric color match.

Fig. 6
Fig. 6

Scatterplot of predicted matches versus measured mean asymmetric matches. Each panel shows a scatterplot for one of the CIELUV L*, u* or v* coordinates.

Fig. 7
Fig. 7

CIELUV u* and v* chromaticity coordinates of the standard objects used for examining the functional form of the transformation. The coordinates were computed when the objects were rendered under the standard illuminant. Not apparent in the figure is the fact that the L* coordinates of the objects also varied. For comparison, the solid polygon surrounding the points shows the gamut of all the surfaces measured by Kelly et al.33,34 that could be simulated within our monitor gamut under all seven experimental illuminants. The gamut was computed by rendering the surfaces with our standard illuminant. The dashed polygon shows the gamut of the entire data set of Kelly et al. The triangle connects the CIELUV u* and v* coordinates of our three monitor phosphors.

Fig. 8
Fig. 8

Each pair of bars compares the rms error for model predictions to asymmetric matches for a data subset with the rms difference between the standard object and the symmetric match for the same data subset. The first two sets of bars evaluate the diagonal transformation when the illuminant change is held fixed. The middle sets of bars evaluate illuminant linearity when the standard object is held fixed. The last set of bars is replotted from the second and the fifth bars of Fig. 5 for comparison and evaluates the quality of the full diagonal model for the entire data set. The text above each bar identifies the data subset with reference to Appendix B.

Fig. 9
Fig. 9

Scatter of individual matches around the mean match. The top panels show the scatter in CIELUV coordinates; the bottom panels show the scatter in cone coordinates.

Fig. 10
Fig. 10

Scatter of individual matches as a function of the mean match. The top panels show the scatter in CIELUV coordinates; the bottom panels show the scatter in cone coordinates.

Fig. 11
Fig. 11

Control of the elements of the diagonal matrix (i.e., the receptoral gain mechanisms) may be derived in a variety of ways. The diagonal elements may be determined only by the photopigment absorptions within the corresponding cone class, as illustrated at the top of the figure. Alternatively, the gains may be determined by a signal pooled from several classes of cones. This idea is illustrated at the bottom of the figure. Our data do not distinguish between these two hypotheses. In both diagrams, the circled ×’s depict multiplicative regulation between the cone responses and higher-level appearance mechanisms. The vertical arrows indicate the source of the signals that set the multiplicative gain.

Tables (4)

Tables Icon

Table 1 Experimental Stimuli: Cone Coordinatesa

Tables Icon

Table 2 Experimental Stimuli: Illuminantsa

Tables Icon

Table 3 Experimental Dataa

Tables Icon

Table 4 Parameters of the Diagonal Model That Best Fits the Dataa

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ r = T Δ e r s + a Δ e ,
T Δ e = i = 1 m Δ e i T i ,
a Δ e = i = 1 m Δ e i a i ,
Δ r = Tx ,
T = [ T 1 T m a m ] .
W s - 1 r = W t - 1 ( r + Δ r ) ,
Δ r = ( W t W s - 1 - I ) r = ( W t - W s ) W s - 1 r = T Δ e r ,
Δ r = T b c r + a b c ,

Metrics