Abstract

A theoretical model for calculating the images obtained in scanning-tunneling optical microscopy is proposed. We calculate the intensity detected by a small spherical tip above a regular glass lattice illuminated in total internal reflection. The model is based on a macroscopic approach. We show that the resolution is limited neither by the wavelength nor by the decay length of the evanescent wave but that it is determined by the tip–sample distance and by the signal-to-noise ratio. We also discuss the quality of the images. In general, the intensity profile does not reproduce the sample profile. We analyzed two kinds of filtering that can deform the true profile. We also show that for a small sample period a strong signal is obtained only in TM polarization.

© 1992 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Probes for scanning tunneling optical microscopy: a theoretical comparison

D. Van Labeke and D. Barchiesi
J. Opt. Soc. Am. A 10(10) 2193-2201 (1993)

Optical characterization of nanosources used in scanning near-field optical microscopy

D. Van Labeke, D. Barchiesi, and F. Baida
J. Opt. Soc. Am. A 12(4) 695-703 (1995)

Photon scanning-tunneling microscopy of unstained mammalian cells and chromosomes

F. Meriaudeau, J. P. Goudonnet, E. Carver, J. E. Parks, K. B. Jacobson, R. J. Warmack, and Thomas L. Ferrell
Appl. Opt. 37(31) 7276-7288 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription