Abstract

First-order imaging properties are often represented in the form of a derivative matrix. This representation is not always expedient, however, since the elements of the matrix are not all independent; some elements can be written as functions of the others. Ideally, the first-order imaging properties should be represented without any redundant (and, therefore, possibly inconsistent) information. Further, it is convenient to characterize these properties in terms of entities with direct geometric interpretations. Hamilton’s methods are used here to determine a minimal set of geometric entities that is sufficient to characterize the first-order imaging properties of asymmetric systems. Although certain aspects of this problem have been discussed elsewhere, a particular facet has been consistently misinterpreted. This issue is resolved here by establishing that there is no unique first-order image plane for any optical system—regardless of symmetry.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (75)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription