Abstract

I present a method by which direction- and speed-tuned cells, such as those commonly found in the middle temporal area of the primate brain, can be used to analyze the patterns of retinal image motion that are generated during observer movement through the environment. For pure translation, the retinal image motion is radial in nature and expands out from a point that corresponds to the direction of heading. This heading direction can be found by the use of translation detectors that act as templates for the radial image motion. Each translation detector sums the outputs of direction- and speed-tuned motion sensors arranged such that their preferred direction of motion lies along the radial direction out from the detector center. The most active detector signifies the heading direction. Rotation detectors can be constructed in a similar fashion to detect areas of uniform image speed and direction in the motion field produced by observer rotation. A model consisting of both detector types can determine the heading direction independently of any rotational motion of the observer. The model can achieve this from the outputs of the two-dimensional motion sensors directly and does not assume the existence of accurate estimates of image speed and direction. It is robust to the aperture problem and is biologically realistic. The basic elements of the model have been shown to exist in the primate visual cortex.

© 1992 Optical Society of America

Full Article  |  PDF Article
More Like This
Resolution of complex motion detectors in the central and peripheral visual field

Peter J. Bex and Helle K. Falkenberg
J. Opt. Soc. Am. A 23(7) 1598-1607 (2006)

Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly’s nervous system

Martin Egelhaaf, Alexander Borst, and Werner Reichardt
J. Opt. Soc. Am. A 6(7) 1070-1087 (1989)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics