Abstract

We measured detection thresholds for a vertically oriented 1.2-cycle-per-degree sine-wave grating embedded in spatiotemporal broadband noise. Noise and signal were modulated in different directions in color space around an equal-energy white point. When signal and noise were modulated in the same direction, we observed a linear relationship between noise spectral density and signal energy at threshold. The slope of this function was the same whether the modulation was along a luminance axis or a red–green axis. If the signal was on one axis and the noise was on the other, no masking was observed. These results support the notion of two independent and equally efficient mechanisms tuned to these directions. We then measured threshold elevations for masks with both chromatic and luminance components. When signal and noise were modulated along the same line (for example, bright red and dark green), thresholds were elevated. When we inverted the phase of the chromatic component of the noise relative to the luminance component (bright green and dark red), the masking effect disappeared, even though the amount of noise in the putative luminance and chromatic mechanisms was exactly the same as before. This implies that detection performance is limited by mechanisms sensitive to both luminance and chromatic contrast signals. We characterized these mechanisms by their spectral tuning curves.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hering, Zur Lehre vom Lichtsinne (Carl Gerold’s Sohn, Vienna, Austria, 1878).
  2. A. G. Leventhal, R. W. Rodieck, B. Dreher, “Retinal ganglion cell classes in the old-world monkey: morphology and central projections,” Science 213, 1139–1142 (1981).
    [Crossref] [PubMed]
  3. V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey,” Neuroscience 12, 1101–1123 (1984).
    [Crossref] [PubMed]
  4. E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
    [Crossref] [PubMed]
  5. M. S. Livingstone, D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309–356 (1984).
    [PubMed]
  6. M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,”J. Neurosci. 7, 3416–3468 (1987).
    [PubMed]
  7. D. H. Hubel, M. S. Livingstone, “Segregation of form, color, and stereopsis in primate area 18,”J. Neurosci. 7, 3378–3415 (1987).
    [PubMed]
  8. J. H. R. Maunsell, W. T. Newsome, “Visual processing in monkey extrastriate cortex,” Annu. Rev. Neurosci. 10, 363–401 (1987).
    [Crossref] [PubMed]
  9. R. Shapley, “Visual sensitivity and parallel retinocortical channels,” Annu. Rev. Psychol. 41, 635–658 (1990).
    [Crossref] [PubMed]
  10. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).
  11. P. Gouras, “Identification of cone mechanisms in monkey retinal ganglion cells,”J. Physiol. (London) 199, 533–547 (1968).
  12. P. H. Schiller, J. G. Malpeli, “Properties and tectal projections of monkey ganglion cells,”J. Neurophysiol. 40, 428–445 (1977).
    [PubMed]
  13. P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,”J. Neurosci. 10, 649–669 (1990).
    [PubMed]
  14. E. Switkes, A. Bradley, K. DeValois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 11–18 (1988).
    [Crossref]
  15. G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
    [Crossref] [PubMed]
  16. M. J. Morgan, T. S. Aiba, “Positional acuity with chromatic stimuli,” Vision Res. 25, 689–695 (1985).
    [Crossref] [PubMed]
  17. J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
    [Crossref] [PubMed]
  18. M. A. Webster, K. K. De Valois, E. Switkes, “Orientation and spatial-frequency discrimination for luminance and chromatic gratings,” J. Opt. Soc. Am. A 7, 1034–1049 (1990).
    [Crossref] [PubMed]
  19. W. McIlhagga, T. Hine, G. R. Cole, A. W. Snyder, “Texture segregation with luminance and chromatic contrast,” Vision Res. 30, 489–495 (1990).
    [Crossref] [PubMed]
  20. P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
    [Crossref] [PubMed]
  21. D. H. Kelly, D. van Norren, “Two-band model of heterochromatic flicker,”J. Opt. Soc. Am. 67, 1081–1091 (1977).
    [Crossref] [PubMed]
  22. K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,”J. Physiol. (London) 359, 381–400 (1985).
  23. J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
    [Crossref] [PubMed]
  24. J. Krauskopf, D. R. Williams, M. B. Mandler, A. Brown, “Higher order-color mechanisms,” Vision Res. 26, 23–32 (1986).
    [Crossref]
  25. D. Pelli, “The effects of visual noise,” Ph.D. dissertation (Cambridge University, Cambridge, 1981).
  26. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [Crossref] [PubMed]
  27. G. E. Legge, D. Kersten, A. E. Burgess, “Contrast discrimination in noise,” J. Opt. Soc. Am. A 4, 391–404 (1987).
    [Crossref] [PubMed]
  28. D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).
  29. As was pointed out by one of the reviewers, the 90° phase shift leads to a different phase relationship between the chromatic and luminance components of the composite grating when signal and mask are on different diagonals. This might serve as a cue to facilitate performance. However, data obtained with a 0° phase shift showed the same pattern of results, suggesting that this cue is not used by the subjects.
  30. M. D’Zmura, “Surface color psychophysics,” Ph.D. dissertation (University of Rochester, Rochester, N.Y, 1990).
  31. R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
    [Crossref] [PubMed]
  32. It could be argued that the stimulus contains an edge separating the signal (small square) from the mask (larger square), which would stimulate cortical neurons as well. In that case a performance difference between the same/other diagonal conditions would be predicted.

1991 (2)

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[Crossref] [PubMed]

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[Crossref] [PubMed]

1990 (5)

M. A. Webster, K. K. De Valois, E. Switkes, “Orientation and spatial-frequency discrimination for luminance and chromatic gratings,” J. Opt. Soc. Am. A 7, 1034–1049 (1990).
[Crossref] [PubMed]

W. McIlhagga, T. Hine, G. R. Cole, A. W. Snyder, “Texture segregation with luminance and chromatic contrast,” Vision Res. 30, 489–495 (1990).
[Crossref] [PubMed]

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,”J. Neurosci. 10, 649–669 (1990).
[PubMed]

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
[Crossref] [PubMed]

R. Shapley, “Visual sensitivity and parallel retinocortical channels,” Annu. Rev. Psychol. 41, 635–658 (1990).
[Crossref] [PubMed]

1988 (1)

E. Switkes, A. Bradley, K. DeValois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 11–18 (1988).
[Crossref]

1987 (4)

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,”J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

D. H. Hubel, M. S. Livingstone, “Segregation of form, color, and stereopsis in primate area 18,”J. Neurosci. 7, 3378–3415 (1987).
[PubMed]

J. H. R. Maunsell, W. T. Newsome, “Visual processing in monkey extrastriate cortex,” Annu. Rev. Neurosci. 10, 363–401 (1987).
[Crossref] [PubMed]

G. E. Legge, D. Kersten, A. E. Burgess, “Contrast discrimination in noise,” J. Opt. Soc. Am. A 4, 391–404 (1987).
[Crossref] [PubMed]

1986 (2)

J. Krauskopf, D. R. Williams, M. B. Mandler, A. Brown, “Higher order-color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref]

E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
[Crossref] [PubMed]

1985 (2)

M. J. Morgan, T. S. Aiba, “Positional acuity with chromatic stimuli,” Vision Res. 25, 689–695 (1985).
[Crossref] [PubMed]

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,”J. Physiol. (London) 359, 381–400 (1985).

1984 (3)

M. S. Livingstone, D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309–356 (1984).
[PubMed]

V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey,” Neuroscience 12, 1101–1123 (1984).
[Crossref] [PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

1982 (2)

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[Crossref] [PubMed]

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[Crossref] [PubMed]

1981 (1)

A. G. Leventhal, R. W. Rodieck, B. Dreher, “Retinal ganglion cell classes in the old-world monkey: morphology and central projections,” Science 213, 1139–1142 (1981).
[Crossref] [PubMed]

1977 (2)

D. H. Kelly, D. van Norren, “Two-band model of heterochromatic flicker,”J. Opt. Soc. Am. 67, 1081–1091 (1977).
[Crossref] [PubMed]

P. H. Schiller, J. G. Malpeli, “Properties and tectal projections of monkey ganglion cells,”J. Neurophysiol. 40, 428–445 (1977).
[PubMed]

1975 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

1968 (1)

P. Gouras, “Identification of cone mechanisms in monkey retinal ganglion cells,”J. Physiol. (London) 199, 533–547 (1968).

Aiba, T. S.

M. J. Morgan, T. S. Aiba, “Positional acuity with chromatic stimuli,” Vision Res. 25, 689–695 (1985).
[Crossref] [PubMed]

Albrecht, D. G.

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[Crossref] [PubMed]

Anstis, S.

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[Crossref] [PubMed]

Bradley, A.

E. Switkes, A. Bradley, K. DeValois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 11–18 (1988).
[Crossref]

Brown, A.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. Brown, “Higher order-color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref]

Burgess, A. E.

Cavanagh, P.

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[Crossref] [PubMed]

Cole, G. R.

W. McIlhagga, T. Hine, G. R. Cole, A. W. Snyder, “Texture segregation with luminance and chromatic contrast,” Vision Res. 30, 489–495 (1990).
[Crossref] [PubMed]

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
[Crossref] [PubMed]

Cowey, A.

V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey,” Neuroscience 12, 1101–1123 (1984).
[Crossref] [PubMed]

D’Zmura, M.

M. D’Zmura, “Surface color psychophysics,” Ph.D. dissertation (University of Rochester, Rochester, N.Y, 1990).

De Valois, K. K.

De Valois, R. L.

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[Crossref] [PubMed]

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

DeValois, K.

E. Switkes, A. Bradley, K. DeValois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 11–18 (1988).
[Crossref]

Dreher, B.

A. G. Leventhal, R. W. Rodieck, B. Dreher, “Retinal ganglion cell classes in the old-world monkey: morphology and central projections,” Science 213, 1139–1142 (1981).
[Crossref] [PubMed]

Farell, B.

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[Crossref] [PubMed]

Gouras, P.

P. Gouras, “Identification of cone mechanisms in monkey retinal ganglion cells,”J. Physiol. (London) 199, 533–547 (1968).

Green, D. M.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

Heeley, D. W.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[Crossref] [PubMed]

Hering, E.

E. Hering, Zur Lehre vom Lichtsinne (Carl Gerold’s Sohn, Vienna, Austria, 1878).

Hine, T.

W. McIlhagga, T. Hine, G. R. Cole, A. W. Snyder, “Texture segregation with luminance and chromatic contrast,” Vision Res. 30, 489–495 (1990).
[Crossref] [PubMed]

Hubel, D. H.

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,”J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

D. H. Hubel, M. S. Livingstone, “Segregation of form, color, and stereopsis in primate area 18,”J. Neurosci. 7, 3378–3415 (1987).
[PubMed]

M. S. Livingstone, D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309–356 (1984).
[PubMed]

Kaplan, E.

E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
[Crossref] [PubMed]

Kelly, D. H.

Kersten, D.

Krauskopf, J.

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[Crossref] [PubMed]

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,”J. Neurosci. 10, 649–669 (1990).
[PubMed]

J. Krauskopf, D. R. Williams, M. B. Mandler, A. Brown, “Higher order-color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[Crossref] [PubMed]

Kronauer, R. E.

Legge, G. E.

Lennie, P.

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,”J. Neurosci. 10, 649–669 (1990).
[PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

Leventhal, A. G.

A. G. Leventhal, R. W. Rodieck, B. Dreher, “Retinal ganglion cell classes in the old-world monkey: morphology and central projections,” Science 213, 1139–1142 (1981).
[Crossref] [PubMed]

Livingstone, M. S.

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,”J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

D. H. Hubel, M. S. Livingstone, “Segregation of form, color, and stereopsis in primate area 18,”J. Neurosci. 7, 3378–3415 (1987).
[PubMed]

M. S. Livingstone, D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309–356 (1984).
[PubMed]

Malpeli, J. G.

P. H. Schiller, J. G. Malpeli, “Properties and tectal projections of monkey ganglion cells,”J. Neurophysiol. 40, 428–445 (1977).
[PubMed]

Mandler, M. B.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. Brown, “Higher order-color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref]

Maunsell, J. H. R.

J. H. R. Maunsell, W. T. Newsome, “Visual processing in monkey extrastriate cortex,” Annu. Rev. Neurosci. 10, 363–401 (1987).
[Crossref] [PubMed]

McIlhagga, W.

W. McIlhagga, T. Hine, G. R. Cole, A. W. Snyder, “Texture segregation with luminance and chromatic contrast,” Vision Res. 30, 489–495 (1990).
[Crossref] [PubMed]

Morgan, M. J.

M. J. Morgan, T. S. Aiba, “Positional acuity with chromatic stimuli,” Vision Res. 25, 689–695 (1985).
[Crossref] [PubMed]

Mullen, K. T.

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,”J. Physiol. (London) 359, 381–400 (1985).

Newsome, W. T.

J. H. R. Maunsell, W. T. Newsome, “Visual processing in monkey extrastriate cortex,” Annu. Rev. Neurosci. 10, 363–401 (1987).
[Crossref] [PubMed]

Oehler, R.

V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey,” Neuroscience 12, 1101–1123 (1984).
[Crossref] [PubMed]

Pelli, D.

D. Pelli, “The effects of visual noise,” Ph.D. dissertation (Cambridge University, Cambridge, 1981).

Perry, V. H.

V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey,” Neuroscience 12, 1101–1123 (1984).
[Crossref] [PubMed]

Pokorny, J.

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

Rodieck, R. W.

A. G. Leventhal, R. W. Rodieck, B. Dreher, “Retinal ganglion cell classes in the old-world monkey: morphology and central projections,” Science 213, 1139–1142 (1981).
[Crossref] [PubMed]

Schiller, P. H.

P. H. Schiller, J. G. Malpeli, “Properties and tectal projections of monkey ganglion cells,”J. Neurophysiol. 40, 428–445 (1977).
[PubMed]

Sclar, G.

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,”J. Neurosci. 10, 649–669 (1990).
[PubMed]

Shapley, R.

R. Shapley, “Visual sensitivity and parallel retinocortical channels,” Annu. Rev. Psychol. 41, 635–658 (1990).
[Crossref] [PubMed]

Shapley, R. M.

E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
[Crossref] [PubMed]

Smith, V. C.

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

Snyder, A. W.

W. McIlhagga, T. Hine, G. R. Cole, A. W. Snyder, “Texture segregation with luminance and chromatic contrast,” Vision Res. 30, 489–495 (1990).
[Crossref] [PubMed]

Stromeyer, C. F.

Swets, J. A.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

Switkes, E.

M. A. Webster, K. K. De Valois, E. Switkes, “Orientation and spatial-frequency discrimination for luminance and chromatic gratings,” J. Opt. Soc. Am. A 7, 1034–1049 (1990).
[Crossref] [PubMed]

E. Switkes, A. Bradley, K. DeValois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 11–18 (1988).
[Crossref]

Thorell, L. G.

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[Crossref] [PubMed]

van Norren, D.

Webster, M. A.

Williams, D. R.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. Brown, “Higher order-color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[Crossref] [PubMed]

Annu. Rev. Neurosci. (1)

J. H. R. Maunsell, W. T. Newsome, “Visual processing in monkey extrastriate cortex,” Annu. Rev. Neurosci. 10, 363–401 (1987).
[Crossref] [PubMed]

Annu. Rev. Psychol. (1)

R. Shapley, “Visual sensitivity and parallel retinocortical channels,” Annu. Rev. Psychol. 41, 635–658 (1990).
[Crossref] [PubMed]

J. Neurophysiol. (1)

P. H. Schiller, J. G. Malpeli, “Properties and tectal projections of monkey ganglion cells,”J. Neurophysiol. 40, 428–445 (1977).
[PubMed]

J. Neurosci. (4)

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,”J. Neurosci. 10, 649–669 (1990).
[PubMed]

M. S. Livingstone, D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309–356 (1984).
[PubMed]

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,”J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

D. H. Hubel, M. S. Livingstone, “Segregation of form, color, and stereopsis in primate area 18,”J. Neurosci. 7, 3378–3415 (1987).
[PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

J. Physiol. (London) (3)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

P. Gouras, “Identification of cone mechanisms in monkey retinal ganglion cells,”J. Physiol. (London) 199, 533–547 (1968).

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,”J. Physiol. (London) 359, 381–400 (1985).

Neuroscience (1)

V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey,” Neuroscience 12, 1101–1123 (1984).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
[Crossref] [PubMed]

Science (1)

A. G. Leventhal, R. W. Rodieck, B. Dreher, “Retinal ganglion cell classes in the old-world monkey: morphology and central projections,” Science 213, 1139–1142 (1981).
[Crossref] [PubMed]

Vision Res. (8)

M. J. Morgan, T. S. Aiba, “Positional acuity with chromatic stimuli,” Vision Res. 25, 689–695 (1985).
[Crossref] [PubMed]

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[Crossref] [PubMed]

W. McIlhagga, T. Hine, G. R. Cole, A. W. Snyder, “Texture segregation with luminance and chromatic contrast,” Vision Res. 30, 489–495 (1990).
[Crossref] [PubMed]

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[Crossref] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[Crossref] [PubMed]

J. Krauskopf, D. R. Williams, M. B. Mandler, A. Brown, “Higher order-color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref]

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

Other (6)

It could be argued that the stimulus contains an edge separating the signal (small square) from the mask (larger square), which would stimulate cortical neurons as well. In that case a performance difference between the same/other diagonal conditions would be predicted.

D. Pelli, “The effects of visual noise,” Ph.D. dissertation (Cambridge University, Cambridge, 1981).

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

As was pointed out by one of the reviewers, the 90° phase shift leads to a different phase relationship between the chromatic and luminance components of the composite grating when signal and mask are on different diagonals. This might serve as a cue to facilitate performance. However, data obtained with a 0° phase shift showed the same pattern of results, suggesting that this cue is not used by the subjects.

M. D’Zmura, “Surface color psychophysics,” Ph.D. dissertation (University of Rochester, Rochester, N.Y, 1990).

E. Hering, Zur Lehre vom Lichtsinne (Carl Gerold’s Sohn, Vienna, Austria, 1878).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Spectral and spatial properties of our stimuli. We specify the color of the stimuli by using the color space in the upper right-hand corner. At its origin is an equal-energy white. The luminance axis stretches from black (B) to white (W). The chromatic axis has red (R) and green (G) at its end points. The signal was a sine wave modulated symmetrically around the white point. It was also multiplied by a Gaussian function of space and time. The noise pixels were chosen from a uniform distribution of colors along a line symmetric around the white point.

Fig. 2
Fig. 2

Signal contrast at threshold plotted as a function of noise contrast on log axes. Signal and noise vary on the same line in color space. The circles are for chromatic signal and noise, and the squares are for luminance signal and noise. The solid curves show the best-fitting curve [Eq. (4)] for luminance signal and noise, and the dashed curves show the same for chromatic signal and noise. The parameters are given in Table 1.

Fig. 3
Fig. 3

(a) Thresholds for detecting a luminance signal in chromatic noise (circles) or luminance noise (squares). (b) Thresholds for detecting a chromatic signal in chromatic noise (circles) or luminance noise (squares).

Fig. 4
Fig. 4

Thresholds for detecting a signal consisting of bright red and dark green components. The mask had either bright red and dark green components (squares) or bright green and dark red components (circles).

Fig. 5
Fig. 5

(a) Signal and noise vary along the same line in color space. The noise in the assumed luminance and chromatic mechanisms is also identical. (b) Signal and noise are on different diagonals. The amount of noise in the assumed luminance and chromatic mechanisms is still the same.

Fig. 6
Fig. 6

Tuning curves for different directions in color space. The signal is indicated by the thick, straight lines. The distance of each dot from the origin represents the threshold for detecting the signal, where we use a noise along a line in the direction of the dot. The small circles in the middle indicate the unmasked threshold. The thin curves give the predictions of the cosine rule. (a) Signal in the luminance direction. (b) Signal with bright red and dark green components. (c) Signal in the isoluminant plane.

Fig. 7
Fig. 7

Results for sinusoidal stimuli. (a) Thresholds for detecting a chromatic sine wave masked by a luminance sine wave of varying contrast. (b) Reversed case of detecting a luminance grating masked by a chromatic grating.

Tables (3)

Tables Icon

Table 1 Best-Fitting Parameters from Eq. (3)a

Tables Icon

Table 2 Thresholds for Detecting a Sine-Wave Signal in the Presence of a Sine-Wave Pedestala

Tables Icon

Table 3 Thresholds for the Detection of a Uniform 2° Field in the Presence of a 4° Flickering Noise fielda

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S ( x , y , t ) = G ( x σ x ) G ( y σ y ) G ( t σ t ) C S sin ( ω x x ) D + ,
G ( z ) = ( 2 π ) - 1 / 2 exp ( - z 2 / 2 )
E t = E intr + k N ,
log ( E t ) = log ( E intr + k N ) .
log ( E t ) = log ( k ) + log ( N ) .
d = ( E t / N ) 1 / 2 ,
J = d 2 / k .

Metrics