Abstract

Conventional holographic imagery can become severely degraded when the laser operates with extremely short pulses, e.g., in the femtosecond region. We describe the problems and indicate how to correct the defects producing the degradation. By the use of anamorphic optics and an interchannel coupling filter, the area of the point-spread function can be reduced by orders of magnitude. Experimental results are given.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Cutrona, E. N. Leith, L. J. Procello, W. E. Vivian, “On the application of coherent optical processing techniques to synthetic aperture radar,” Proc. IEEE 54, 1026–1032 (1966).
    [CrossRef]
  2. E. N. Leith, A. L. Ingalls, “Synthetic antenna data processing by wavefront reconstruction,” Appl. Opt. 7, 539–544 (1968).
    [CrossRef] [PubMed]
  3. A. Kozma, E. N. Leith, N. G. Massey, “Tilted plane optical processor,” Appl. Opt. 11, 1766–1777 (1972).
    [CrossRef] [PubMed]
  4. E. N. Leith, C. J. Palermo, “Some filtering operations using coherent optics,” in the Proceedings of the Conference on Generalized Networks, New York, 1966 (Polytechnic, Brooklyn, N.Y., 1966), pp. 743–751.
  5. E. N. Leith, “Optical processing techniques for simultaneous pulse compression and beam sharpening,”IEEE Trans. Aerosp. Electron. Syst. AES-4, 798–885 (1968).
    [CrossRef]
  6. E. N. Leith, “Range-azimuth coupling aberrations in pulse scanned imaging systems,”J. Opt. Soc. Am. 63, 119–126 (1973).
    [CrossRef]
  7. G. Martin, K. von Bieren, Goodyear Aircraft Corporation, Litchfield Park, Ariz. (personal communication).

1973 (1)

1972 (1)

1968 (2)

E. N. Leith, “Optical processing techniques for simultaneous pulse compression and beam sharpening,”IEEE Trans. Aerosp. Electron. Syst. AES-4, 798–885 (1968).
[CrossRef]

E. N. Leith, A. L. Ingalls, “Synthetic antenna data processing by wavefront reconstruction,” Appl. Opt. 7, 539–544 (1968).
[CrossRef] [PubMed]

1966 (1)

L. J. Cutrona, E. N. Leith, L. J. Procello, W. E. Vivian, “On the application of coherent optical processing techniques to synthetic aperture radar,” Proc. IEEE 54, 1026–1032 (1966).
[CrossRef]

Cutrona, L. J.

L. J. Cutrona, E. N. Leith, L. J. Procello, W. E. Vivian, “On the application of coherent optical processing techniques to synthetic aperture radar,” Proc. IEEE 54, 1026–1032 (1966).
[CrossRef]

Ingalls, A. L.

Kozma, A.

Leith, E. N.

E. N. Leith, “Range-azimuth coupling aberrations in pulse scanned imaging systems,”J. Opt. Soc. Am. 63, 119–126 (1973).
[CrossRef]

A. Kozma, E. N. Leith, N. G. Massey, “Tilted plane optical processor,” Appl. Opt. 11, 1766–1777 (1972).
[CrossRef] [PubMed]

E. N. Leith, A. L. Ingalls, “Synthetic antenna data processing by wavefront reconstruction,” Appl. Opt. 7, 539–544 (1968).
[CrossRef] [PubMed]

E. N. Leith, “Optical processing techniques for simultaneous pulse compression and beam sharpening,”IEEE Trans. Aerosp. Electron. Syst. AES-4, 798–885 (1968).
[CrossRef]

L. J. Cutrona, E. N. Leith, L. J. Procello, W. E. Vivian, “On the application of coherent optical processing techniques to synthetic aperture radar,” Proc. IEEE 54, 1026–1032 (1966).
[CrossRef]

E. N. Leith, C. J. Palermo, “Some filtering operations using coherent optics,” in the Proceedings of the Conference on Generalized Networks, New York, 1966 (Polytechnic, Brooklyn, N.Y., 1966), pp. 743–751.

Martin, G.

G. Martin, K. von Bieren, Goodyear Aircraft Corporation, Litchfield Park, Ariz. (personal communication).

Massey, N. G.

Palermo, C. J.

E. N. Leith, C. J. Palermo, “Some filtering operations using coherent optics,” in the Proceedings of the Conference on Generalized Networks, New York, 1966 (Polytechnic, Brooklyn, N.Y., 1966), pp. 743–751.

Procello, L. J.

L. J. Cutrona, E. N. Leith, L. J. Procello, W. E. Vivian, “On the application of coherent optical processing techniques to synthetic aperture radar,” Proc. IEEE 54, 1026–1032 (1966).
[CrossRef]

Vivian, W. E.

L. J. Cutrona, E. N. Leith, L. J. Procello, W. E. Vivian, “On the application of coherent optical processing techniques to synthetic aperture radar,” Proc. IEEE 54, 1026–1032 (1966).
[CrossRef]

von Bieren, K.

G. Martin, K. von Bieren, Goodyear Aircraft Corporation, Litchfield Park, Ariz. (personal communication).

Appl. Opt. (2)

IEEE Trans. Aerosp. Electron. Syst. (1)

E. N. Leith, “Optical processing techniques for simultaneous pulse compression and beam sharpening,”IEEE Trans. Aerosp. Electron. Syst. AES-4, 798–885 (1968).
[CrossRef]

J. Opt. Soc. Am. (1)

Proc. IEEE (1)

L. J. Cutrona, E. N. Leith, L. J. Procello, W. E. Vivian, “On the application of coherent optical processing techniques to synthetic aperture radar,” Proc. IEEE 54, 1026–1032 (1966).
[CrossRef]

Other (2)

G. Martin, K. von Bieren, Goodyear Aircraft Corporation, Litchfield Park, Ariz. (personal communication).

E. N. Leith, C. J. Palermo, “Some filtering operations using coherent optics,” in the Proceedings of the Conference on Generalized Networks, New York, 1966 (Polytechnic, Brooklyn, N.Y., 1966), pp. 743–751.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Basic system for making a hologram. The object is the pinhole P, and B.S. is a beam splitter.

Fig. 2
Fig. 2

Coordinate system of hologram: A, thin-shell region of interference pattern; B, recording plate.

Fig. 3
Fig. 3

Anamorphic imaging system for the imaging reconstructed image in x and the imaging hologram in y, both to the same image plane: H, hologram; L1, L2, L3, lenses; P, pinhole.

Fig. 4
Fig. 4

Contour of hologram of a point.

Fig. 5
Fig. 5

Three types of recorded hologram. The full circle indicates the region occupied by a hologram zone plate made with a cw laser; the rectangular region applies to a hologram made with a pulsed laser but with a fairly long pulse and (or) a small aperture; and finally, when the pulse is short and (or) the hologram aperture is rather large, the hologram zone plate occupies the region bounded by the arc.

Fig. 6
Fig. 6

Complete optical system for range-curvature correction. Lenses L1 and L2 together image in x, but in y only L2 has power, resulting in a Fourier transform in y. Lens L3 forms a sharp image at its focal plane: MF, matched filter; H, hologram.

Fig. 7
Fig. 7

Hologram of a point, viewed in first diffracted order.

Fig. 8
Fig. 8

Image of a point, formed from a hologram: (a) the image when the hologram aperture is reduced, (b) the image when the hologram aperture is reduced and when an anamorphic imaging system is used, (c) the conventional image with a full aperture, (d) the image with a full aperture and when an anamorphic imaging system is used, (e) the image with a full aperture when an interchannel coupling filter is used.

Tables (1)

Tables Icon

Table 1 Comparison of Resolutions

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

s = e j ϕ δ ( y - y 1 - β x 2 ) ,
G ( x , f y ) = exp j { ( π / λ z ) [ ( x - x 1 ) 2 + β x 2 ] } exp [ j 2 π f y ( y 1 + β x 2 ) ] .

Metrics