Abstract

A multizone color model is described. It has nonlinear receptor gain control, two postreceptor opponent-colors processing stages, and neural compression late in the visual pathway. It is assumed that gain control can be activated by receptor responses from a test light itself (self-adaptation) and (or) by receptor responses from other adapting fields. Apparent brightnesses and visual discriminations are mediated by the first processing stage, and apparent hues and saturations are mediated by the second stage. The model accounts for a wide range of data, including nonlinear hue shifts in the color solid, various apparent brightness effects, visual discriminations for achromatic and chromatic lights under various adaptation conditions, and effects of chromatic adaptation on color appearances.

© 1991 Optical Society of America

Full Article  |  PDF Article

Corrections

S. Lee Guth, "Model for color vision and light adaptation: erratum," J. Opt. Soc. Am. A 9, 344-344 (1992)
https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-9-2-344

References

  • View by:
  • |
  • |
  • |

  1. H. von Helmholtz, Handbook der Physiologischen Optik, 2nd ed. (Voss, Hamburg, 1896).
  2. J. von Kries, “Chromatic adaptation,” in Festschrift der Albrecht-Ludwigs Universitat(1902). [English translation, D. L. MacAdam, in Sources of ColorScience (MIT Press, Cambridge, Mass., 1970)], pp. 109–119.
  3. D. B. Judd, “Response functions for types of vision according to the Müller theory,”J. Res. Natl. Bur. Stand. 42, 1–16 (1949).
    [Crossref]
  4. E. Hering, Outlines of a Theory of the Light Sense [English translation, L. M. Hurvich and D. Jameson (Harvard U. Press, Cambridge, Mass., 1964)].
  5. L. M. Hurvich, D. Jameson, “Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation, and hue in normal and dichromatic vision,” J. Opt. Soc. Am. 45, 602–616 (1955).
    [Crossref] [PubMed]
  6. G. T. Fechner, Elemente der Psychophysik (Breitkopf and Harterl, Leipzig, 1860) [English translation of Vol. 1, H. E. Adler; D. H. Howes, E. G. Boring, eds. (Holt, Rinehart & Winston, New York, 1966)].
  7. S. L. Guth, “Unified model for human color perception and visual adaptatin,” in Human Vision, Visual Processing, and Digital Display, B. E. Rogowitz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1077, 370–390 (1989). (This is a rough draft of a prototype model, and it contains many errors.)
    [Crossref]
  8. S. L. Guth, “Model for color vision and adaptation,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 219 (1989).
  9. Y. Nayatani, K. Takahama, H. Sobagaki, “Prediction of color appearance under various adapting conditions,” Color Res. Appl. 11, 62–71 (1986).
    [Crossref]
  10. R. W. G. Hunt, “A model of colour vision for predicting colour appearance,” Color Res. Appl. 7, 95–112 (1982).
    [Crossref]
  11. T. Seim, A. Valberg, “Towards a uniform color space: a better formula to describe the Munsell and OSA color scales,” Color Res. Appl. 11, 11–24 (1986).
    [Crossref]
  12. S. L. Guth, R. W. Massof, T. Benzschawel, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980).
    [Crossref] [PubMed]
  13. T. Benzschawel, S. L. Guth, “ATDN: toward a uniform color space,” Color Res. Appl. 9, 133–141 (1984).
    [Crossref]
  14. J. K. Hovis, S. L. Guth, “Changes in luminance affect dichoptic unique yellow,” J. Opt. Soc. Am. A 6, 1297–1301 (1989).
    [Crossref]
  15. Q. Zaidi, D. Hood, A. Shapiro, “The time course of sensitivity change in s-cone color mechanisms,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 221 (1989).
  16. W. S. Geisler, “Visual adaptation and inhibition,” Ph.D. dissertation, University Microfilm No. 76-2816, Vol. 137 (Indiana University, Bloomington, Ind., 1975).
  17. W. S. Geisler, “Adaptation, afterimages and cone saturation,” Vision Res. 18, 279–289 (1978).
    [Crossref] [PubMed]
  18. W. S. Geisler, “Effects of bleaching and backgrounds on the flash response of the cone system,” J. Physiol. (London) 312, 413–434 (1981).
  19. D. C. Hood, “Psychophysical and physiological tests of proposed mechanisms of light adaptation,” in Visual Psychophysics: Its Physiological Basis, J. Armington, J. Krauskopf, B. Wooten, eds. (Academic, New York, 1978), pp. 141–155.
    [Crossref]
  20. D. C. Hood, M. A. Finkelstein, E. Buckingham, “Psychophysical tests of models of the response function,” Vision Res. 19, 401–406 (1979).
    [Crossref] [PubMed]
  21. M. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time-course of multiplicative and subtractive adaptation process,” Vision Res. 27, 1981–1996 (1987).
    [Crossref] [PubMed]
  22. V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972); “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [Crossref] [PubMed]
  23. D. B. Judd, “Colorimetry and artificial daylight,” in Proceedings of the Commission International de l’Éclairage I (Commission International de l’Éclairage, Paris, 1951), Part 7, p. 11.
  24. G. Wyszecki, W. S. Stiles, Color Science, 2nd ed. (Wiley, New York, 1982).
  25. J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
    [Crossref]
  26. K. I. Naka, W. A. H. Rushton, “S-potentials from luminosity units in the retina of fish (cyprinidae),” J. Physiol. (London) 185, 587–599 (1966).
  27. W. D. Wright, comments in Color Metrics, J. J. Vos, L. F. C. Friele, P. L. Walraven, eds. (AIC/Holland, Soesterberg, The Netherlands, 1972), p. 158.
  28. D. B. Judd, comments in Color Metrics, J. J. Vos, L. F. C. Friele, P. L. Walraven, eds. (AIC/Holland, Soesterberg, The Netherlands, 1972), p. 158.
  29. T. Indow, “Multidimensional studies of Munsell color solid,” Psychol. Rev. 95, 456–470 (1988).
    [Crossref] [PubMed]
  30. F. L. Dimmick, M. R. Hubbard, “The spectral locations of psychologically unique yellow, green and blue,” Am. J. Psychol. 52, 242–254 (1939).
    [Crossref]
  31. S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
    [Crossref] [PubMed]
  32. W. deW. Abney, Researches in Colour Vision (Longmans, Green, London, 1913).
  33. S. M. Newhall, D. Nickerson, D. B. Judd, “Final report of the O.S.A. subcommittee on the spacing of the Munsell colors,” J. Opt. Soc. Am. 33, 385–412 (1943).
    [Crossref]
  34. S. M. Newhall, “Preliminary report of the O.S.A. subcommittee on the spacing of the Munsell colors,” J. Opt. Soc. Am. 30, 617–645 (1940).
    [Crossref]
  35. D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
    [Crossref]
  36. J. D. Cohen, “Temporal independence of the Bezold–Brücke hue shift,” Vision Res. 15, 341–351 (1975).
    [Crossref] [PubMed]
  37. S. L. Guth, “White-chromatic interactions,” Invest. Ophthalmol. Vis. Sci. Suppl. 24, 205 (1983).
  38. S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
    [Crossref] [PubMed]
  39. S. L. Guth, H. R. Lodge, “Heterochromatic additivity, foveal spectral sensitivity, and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
    [Crossref] [PubMed]
  40. S. L. Guth, “Photometric and calorimetric additivity at various intensities,” in AIC Proceedings Color 69, Stockholm, 1969 (Muster-Schmidt, Göttingen, 1970), pp. 172–180.
  41. P. K. Kaiser, G. Wyszecki, “Additivity failures in heterochromatic brightness matching,” Color Res. Appl. 3, 177–182 (1978).
    [Crossref]
  42. D. L. MacAdam, “Visual sensitivities to color differences in daylight,” J. Opt. Soc. Am. 32, 247–274 (1942).
    [Crossref]
  43. W. S. Stiles, Mechanisms of Colour Vision (Academic, New York, 1978).
  44. Stiles’s conversion of his data into trolands, which he explains in a footnote on p. 100 of Ref. 43, produces increment threshold functions that are somewhat contrary to expectations. For example, a threshold-versus-intensity function for 580-nm increments flashed on 600-nm backgrounds might be expected to be similar to (or even flatter than) a white-on-white function, but the Stiles conversion has the effect of showing too much threshold elevation of the increments when the background is at, say, only 0 log Td.
  45. Throughout much of Ref. 43, Stiles emphasizes individual differences, and an example of them is shown in Ref. 24, p. 538.
  46. P. Padmos, D. V. Norren, “Increment spectral sensitivity and colour discrimination in the primate, studied by means of graded potentials from the striate cortex,” Vision Res. 15, 1103–1113 (1975).
    [Crossref] [PubMed]
  47. R. S. Harwerth, D. M. Levi, “Increment threshold spectral sensitivity in anisometropic amblyopia,” Vision Res. 17, 585–590 (1977).
    [Crossref] [PubMed]
  48. D. L. MacAdam, “Chromatic adaptation,” J. Opt. Soc. Am. 46, 500–513 (1956).
    [Crossref] [PubMed]
  49. Since observations were made with the natural pupil and since the luminances of adapting and (especially) test lights varied greatly, it was difficult to apply the model because of assumptions that must be made about the pupilary responses of the subjects when transforming the data into troland units. A rough approximation was made by noting that the mean luminances of all lights used in the experiment was ~60 ft-L, or ~1000 Td for an average subject. That same conversion factor (1000/60 = 16.67) was then applied to all the data to convert them into trolands. Also, the XYZvalues were used without transforming them into X′Y′Z′’s.
  50. J. S. Werner, J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–943 (1982).
    [Crossref] [PubMed]
  51. For predictions of the Werner and Walraven50 data, which used only a single stage, the initial S receptor weighting was changed to 0.90. Also, the first-stage [Eqs. (2)–(4)] mechanisms were changed so that the L and M receptor inputs to T1were 0.2948 and −0.2816, respectively, and the S receptor input to D1was 0.063.
  52. J. Walraven, “Discounting the background—the missing link in the explanation of chromatic induction,” Vision Res. 16, 289–295 (1976).
    [Crossref]
  53. J. Walraven, “No additive effect of backgrounds in chromatic induction,” Vision Res. 19, 1061–1063 (1979).
    [Crossref] [PubMed]
  54. S. K. Shevell, “Unambiguous evidence for the additive effect in chromatic adaptation,” Vision Res. 20, 637–639 (1980).
    [Crossref] [PubMed]

1989 (3)

S. L. Guth, “Model for color vision and adaptation,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 219 (1989).

J. K. Hovis, S. L. Guth, “Changes in luminance affect dichoptic unique yellow,” J. Opt. Soc. Am. A 6, 1297–1301 (1989).
[Crossref]

Q. Zaidi, D. Hood, A. Shapiro, “The time course of sensitivity change in s-cone color mechanisms,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 221 (1989).

1988 (1)

T. Indow, “Multidimensional studies of Munsell color solid,” Psychol. Rev. 95, 456–470 (1988).
[Crossref] [PubMed]

1987 (1)

M. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time-course of multiplicative and subtractive adaptation process,” Vision Res. 27, 1981–1996 (1987).
[Crossref] [PubMed]

1986 (2)

T. Seim, A. Valberg, “Towards a uniform color space: a better formula to describe the Munsell and OSA color scales,” Color Res. Appl. 11, 11–24 (1986).
[Crossref]

Y. Nayatani, K. Takahama, H. Sobagaki, “Prediction of color appearance under various adapting conditions,” Color Res. Appl. 11, 62–71 (1986).
[Crossref]

1984 (2)

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

T. Benzschawel, S. L. Guth, “ATDN: toward a uniform color space,” Color Res. Appl. 9, 133–141 (1984).
[Crossref]

1983 (1)

S. L. Guth, “White-chromatic interactions,” Invest. Ophthalmol. Vis. Sci. Suppl. 24, 205 (1983).

1982 (2)

J. S. Werner, J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–943 (1982).
[Crossref] [PubMed]

R. W. G. Hunt, “A model of colour vision for predicting colour appearance,” Color Res. Appl. 7, 95–112 (1982).
[Crossref]

1981 (1)

W. S. Geisler, “Effects of bleaching and backgrounds on the flash response of the cone system,” J. Physiol. (London) 312, 413–434 (1981).

1980 (2)

S. L. Guth, R. W. Massof, T. Benzschawel, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980).
[Crossref] [PubMed]

S. K. Shevell, “Unambiguous evidence for the additive effect in chromatic adaptation,” Vision Res. 20, 637–639 (1980).
[Crossref] [PubMed]

1979 (2)

J. Walraven, “No additive effect of backgrounds in chromatic induction,” Vision Res. 19, 1061–1063 (1979).
[Crossref] [PubMed]

D. C. Hood, M. A. Finkelstein, E. Buckingham, “Psychophysical tests of models of the response function,” Vision Res. 19, 401–406 (1979).
[Crossref] [PubMed]

1978 (3)

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[Crossref]

W. S. Geisler, “Adaptation, afterimages and cone saturation,” Vision Res. 18, 279–289 (1978).
[Crossref] [PubMed]

P. K. Kaiser, G. Wyszecki, “Additivity failures in heterochromatic brightness matching,” Color Res. Appl. 3, 177–182 (1978).
[Crossref]

1977 (1)

R. S. Harwerth, D. M. Levi, “Increment threshold spectral sensitivity in anisometropic amblyopia,” Vision Res. 17, 585–590 (1977).
[Crossref] [PubMed]

1976 (1)

J. Walraven, “Discounting the background—the missing link in the explanation of chromatic induction,” Vision Res. 16, 289–295 (1976).
[Crossref]

1975 (2)

P. Padmos, D. V. Norren, “Increment spectral sensitivity and colour discrimination in the primate, studied by means of graded potentials from the striate cortex,” Vision Res. 15, 1103–1113 (1975).
[Crossref] [PubMed]

J. D. Cohen, “Temporal independence of the Bezold–Brücke hue shift,” Vision Res. 15, 341–351 (1975).
[Crossref] [PubMed]

1973 (1)

1972 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972); “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

1969 (1)

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[Crossref] [PubMed]

1966 (1)

K. I. Naka, W. A. H. Rushton, “S-potentials from luminosity units in the retina of fish (cyprinidae),” J. Physiol. (London) 185, 587–599 (1966).

1956 (1)

1955 (1)

1949 (1)

D. B. Judd, “Response functions for types of vision according to the Müller theory,”J. Res. Natl. Bur. Stand. 42, 1–16 (1949).
[Crossref]

1943 (1)

1942 (1)

1940 (1)

1939 (1)

F. L. Dimmick, M. R. Hubbard, “The spectral locations of psychologically unique yellow, green and blue,” Am. J. Psychol. 52, 242–254 (1939).
[Crossref]

1931 (1)

D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
[Crossref]

Abney, W. deW.

W. deW. Abney, Researches in Colour Vision (Longmans, Green, London, 1913).

Adler, H. E.

G. T. Fechner, Elemente der Psychophysik (Breitkopf and Harterl, Leipzig, 1860) [English translation of Vol. 1, H. E. Adler; D. H. Howes, E. G. Boring, eds. (Holt, Rinehart & Winston, New York, 1966)].

Benimoff, N. I.

M. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time-course of multiplicative and subtractive adaptation process,” Vision Res. 27, 1981–1996 (1987).
[Crossref] [PubMed]

Benzschawel, T.

Buckingham, E.

D. C. Hood, M. A. Finkelstein, E. Buckingham, “Psychophysical tests of models of the response function,” Vision Res. 19, 401–406 (1979).
[Crossref] [PubMed]

Burns, S. A.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

Cohen, J. D.

J. D. Cohen, “Temporal independence of the Bezold–Brücke hue shift,” Vision Res. 15, 341–351 (1975).
[Crossref] [PubMed]

Dimmick, F. L.

F. L. Dimmick, M. R. Hubbard, “The spectral locations of psychologically unique yellow, green and blue,” Am. J. Psychol. 52, 242–254 (1939).
[Crossref]

Donley, N. J.

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[Crossref] [PubMed]

Elsner, A. E.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

Fechner, G. T.

G. T. Fechner, Elemente der Psychophysik (Breitkopf and Harterl, Leipzig, 1860) [English translation of Vol. 1, H. E. Adler; D. H. Howes, E. G. Boring, eds. (Holt, Rinehart & Winston, New York, 1966)].

Finkelstein, M. A.

D. C. Hood, M. A. Finkelstein, E. Buckingham, “Psychophysical tests of models of the response function,” Vision Res. 19, 401–406 (1979).
[Crossref] [PubMed]

Geisler, W. S.

W. S. Geisler, “Effects of bleaching and backgrounds on the flash response of the cone system,” J. Physiol. (London) 312, 413–434 (1981).

W. S. Geisler, “Adaptation, afterimages and cone saturation,” Vision Res. 18, 279–289 (1978).
[Crossref] [PubMed]

W. S. Geisler, “Visual adaptation and inhibition,” Ph.D. dissertation, University Microfilm No. 76-2816, Vol. 137 (Indiana University, Bloomington, Ind., 1975).

Guth, S. L.

S. L. Guth, “Model for color vision and adaptation,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 219 (1989).

J. K. Hovis, S. L. Guth, “Changes in luminance affect dichoptic unique yellow,” J. Opt. Soc. Am. A 6, 1297–1301 (1989).
[Crossref]

T. Benzschawel, S. L. Guth, “ATDN: toward a uniform color space,” Color Res. Appl. 9, 133–141 (1984).
[Crossref]

S. L. Guth, “White-chromatic interactions,” Invest. Ophthalmol. Vis. Sci. Suppl. 24, 205 (1983).

S. L. Guth, R. W. Massof, T. Benzschawel, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980).
[Crossref] [PubMed]

S. L. Guth, H. R. Lodge, “Heterochromatic additivity, foveal spectral sensitivity, and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
[Crossref] [PubMed]

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[Crossref] [PubMed]

S. L. Guth, “Photometric and calorimetric additivity at various intensities,” in AIC Proceedings Color 69, Stockholm, 1969 (Muster-Schmidt, Göttingen, 1970), pp. 172–180.

S. L. Guth, “Unified model for human color perception and visual adaptatin,” in Human Vision, Visual Processing, and Digital Display, B. E. Rogowitz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1077, 370–390 (1989). (This is a rough draft of a prototype model, and it contains many errors.)
[Crossref]

Harwerth, R. S.

R. S. Harwerth, D. M. Levi, “Increment threshold spectral sensitivity in anisometropic amblyopia,” Vision Res. 17, 585–590 (1977).
[Crossref] [PubMed]

Hayhoe, M. M.

M. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time-course of multiplicative and subtractive adaptation process,” Vision Res. 27, 1981–1996 (1987).
[Crossref] [PubMed]

Hering, E.

E. Hering, Outlines of a Theory of the Light Sense [English translation, L. M. Hurvich and D. Jameson (Harvard U. Press, Cambridge, Mass., 1964)].

Hood, D.

Q. Zaidi, D. Hood, A. Shapiro, “The time course of sensitivity change in s-cone color mechanisms,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 221 (1989).

Hood, D. C.

M. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time-course of multiplicative and subtractive adaptation process,” Vision Res. 27, 1981–1996 (1987).
[Crossref] [PubMed]

D. C. Hood, M. A. Finkelstein, E. Buckingham, “Psychophysical tests of models of the response function,” Vision Res. 19, 401–406 (1979).
[Crossref] [PubMed]

D. C. Hood, “Psychophysical and physiological tests of proposed mechanisms of light adaptation,” in Visual Psychophysics: Its Physiological Basis, J. Armington, J. Krauskopf, B. Wooten, eds. (Academic, New York, 1978), pp. 141–155.
[Crossref]

Hovis, J. K.

Hubbard, M. R.

F. L. Dimmick, M. R. Hubbard, “The spectral locations of psychologically unique yellow, green and blue,” Am. J. Psychol. 52, 242–254 (1939).
[Crossref]

Hunt, R. W. G.

R. W. G. Hunt, “A model of colour vision for predicting colour appearance,” Color Res. Appl. 7, 95–112 (1982).
[Crossref]

Hurvich, L. M.

Indow, T.

T. Indow, “Multidimensional studies of Munsell color solid,” Psychol. Rev. 95, 456–470 (1988).
[Crossref] [PubMed]

Jameson, D.

Judd, D. B.

D. B. Judd, “Response functions for types of vision according to the Müller theory,”J. Res. Natl. Bur. Stand. 42, 1–16 (1949).
[Crossref]

S. M. Newhall, D. Nickerson, D. B. Judd, “Final report of the O.S.A. subcommittee on the spacing of the Munsell colors,” J. Opt. Soc. Am. 33, 385–412 (1943).
[Crossref]

D. B. Judd, comments in Color Metrics, J. J. Vos, L. F. C. Friele, P. L. Walraven, eds. (AIC/Holland, Soesterberg, The Netherlands, 1972), p. 158.

D. B. Judd, “Colorimetry and artificial daylight,” in Proceedings of the Commission International de l’Éclairage I (Commission International de l’Éclairage, Paris, 1951), Part 7, p. 11.

Kaiser, P. K.

P. K. Kaiser, G. Wyszecki, “Additivity failures in heterochromatic brightness matching,” Color Res. Appl. 3, 177–182 (1978).
[Crossref]

Levi, D. M.

R. S. Harwerth, D. M. Levi, “Increment threshold spectral sensitivity in anisometropic amblyopia,” Vision Res. 17, 585–590 (1977).
[Crossref] [PubMed]

Lodge, H. R.

MacAdam, D. L.

Marrocco, R. T.

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[Crossref] [PubMed]

Massof, R. W.

Naka, K. I.

K. I. Naka, W. A. H. Rushton, “S-potentials from luminosity units in the retina of fish (cyprinidae),” J. Physiol. (London) 185, 587–599 (1966).

Nayatani, Y.

Y. Nayatani, K. Takahama, H. Sobagaki, “Prediction of color appearance under various adapting conditions,” Color Res. Appl. 11, 62–71 (1986).
[Crossref]

Newhall, S. M.

Nickerson, D.

Norren, D. V.

P. Padmos, D. V. Norren, “Increment spectral sensitivity and colour discrimination in the primate, studied by means of graded potentials from the striate cortex,” Vision Res. 15, 1103–1113 (1975).
[Crossref] [PubMed]

Padmos, P.

P. Padmos, D. V. Norren, “Increment spectral sensitivity and colour discrimination in the primate, studied by means of graded potentials from the striate cortex,” Vision Res. 15, 1103–1113 (1975).
[Crossref] [PubMed]

Pokorny, J.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972); “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

Purdy, D. M.

D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
[Crossref]

Rushton, W. A. H.

K. I. Naka, W. A. H. Rushton, “S-potentials from luminosity units in the retina of fish (cyprinidae),” J. Physiol. (London) 185, 587–599 (1966).

Seim, T.

T. Seim, A. Valberg, “Towards a uniform color space: a better formula to describe the Munsell and OSA color scales,” Color Res. Appl. 11, 11–24 (1986).
[Crossref]

Shapiro, A.

Q. Zaidi, D. Hood, A. Shapiro, “The time course of sensitivity change in s-cone color mechanisms,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 221 (1989).

Shevell, S. K.

S. K. Shevell, “Unambiguous evidence for the additive effect in chromatic adaptation,” Vision Res. 20, 637–639 (1980).
[Crossref] [PubMed]

Smith, V. C.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972); “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

Sobagaki, H.

Y. Nayatani, K. Takahama, H. Sobagaki, “Prediction of color appearance under various adapting conditions,” Color Res. Appl. 11, 62–71 (1986).
[Crossref]

Stiles, W. S.

W. S. Stiles, Mechanisms of Colour Vision (Academic, New York, 1978).

G. Wyszecki, W. S. Stiles, Color Science, 2nd ed. (Wiley, New York, 1982).

Takahama, K.

Y. Nayatani, K. Takahama, H. Sobagaki, “Prediction of color appearance under various adapting conditions,” Color Res. Appl. 11, 62–71 (1986).
[Crossref]

Valberg, A.

T. Seim, A. Valberg, “Towards a uniform color space: a better formula to describe the Munsell and OSA color scales,” Color Res. Appl. 11, 11–24 (1986).
[Crossref]

von Helmholtz, H.

H. von Helmholtz, Handbook der Physiologischen Optik, 2nd ed. (Voss, Hamburg, 1896).

von Kries, J.

J. von Kries, “Chromatic adaptation,” in Festschrift der Albrecht-Ludwigs Universitat(1902). [English translation, D. L. MacAdam, in Sources of ColorScience (MIT Press, Cambridge, Mass., 1970)], pp. 109–119.

Vos, J. J.

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[Crossref]

Walraven, J.

J. S. Werner, J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–943 (1982).
[Crossref] [PubMed]

J. Walraven, “No additive effect of backgrounds in chromatic induction,” Vision Res. 19, 1061–1063 (1979).
[Crossref] [PubMed]

J. Walraven, “Discounting the background—the missing link in the explanation of chromatic induction,” Vision Res. 16, 289–295 (1976).
[Crossref]

Werner, J. S.

J. S. Werner, J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–943 (1982).
[Crossref] [PubMed]

Wright, W. D.

W. D. Wright, comments in Color Metrics, J. J. Vos, L. F. C. Friele, P. L. Walraven, eds. (AIC/Holland, Soesterberg, The Netherlands, 1972), p. 158.

Wyszecki, G.

P. K. Kaiser, G. Wyszecki, “Additivity failures in heterochromatic brightness matching,” Color Res. Appl. 3, 177–182 (1978).
[Crossref]

G. Wyszecki, W. S. Stiles, Color Science, 2nd ed. (Wiley, New York, 1982).

Zaidi, Q.

Q. Zaidi, D. Hood, A. Shapiro, “The time course of sensitivity change in s-cone color mechanisms,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 221 (1989).

Am. J. Psychol. (2)

F. L. Dimmick, M. R. Hubbard, “The spectral locations of psychologically unique yellow, green and blue,” Am. J. Psychol. 52, 242–254 (1939).
[Crossref]

D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
[Crossref]

Color Res. Appl. (6)

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[Crossref]

Y. Nayatani, K. Takahama, H. Sobagaki, “Prediction of color appearance under various adapting conditions,” Color Res. Appl. 11, 62–71 (1986).
[Crossref]

R. W. G. Hunt, “A model of colour vision for predicting colour appearance,” Color Res. Appl. 7, 95–112 (1982).
[Crossref]

T. Seim, A. Valberg, “Towards a uniform color space: a better formula to describe the Munsell and OSA color scales,” Color Res. Appl. 11, 11–24 (1986).
[Crossref]

T. Benzschawel, S. L. Guth, “ATDN: toward a uniform color space,” Color Res. Appl. 9, 133–141 (1984).
[Crossref]

P. K. Kaiser, G. Wyszecki, “Additivity failures in heterochromatic brightness matching,” Color Res. Appl. 3, 177–182 (1978).
[Crossref]

Invest. Ophthalmol. Vis. Sci. Suppl. (3)

S. L. Guth, “White-chromatic interactions,” Invest. Ophthalmol. Vis. Sci. Suppl. 24, 205 (1983).

Q. Zaidi, D. Hood, A. Shapiro, “The time course of sensitivity change in s-cone color mechanisms,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 221 (1989).

S. L. Guth, “Model for color vision and adaptation,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 219 (1989).

J. Opt. Soc. Am. (7)

J. Opt. Soc. Am. A (1)

J. Physiol. (London) (2)

W. S. Geisler, “Effects of bleaching and backgrounds on the flash response of the cone system,” J. Physiol. (London) 312, 413–434 (1981).

K. I. Naka, W. A. H. Rushton, “S-potentials from luminosity units in the retina of fish (cyprinidae),” J. Physiol. (London) 185, 587–599 (1966).

J. Res. Natl. Bur. Stand. (1)

D. B. Judd, “Response functions for types of vision according to the Müller theory,”J. Res. Natl. Bur. Stand. 42, 1–16 (1949).
[Crossref]

Psychol. Rev. (1)

T. Indow, “Multidimensional studies of Munsell color solid,” Psychol. Rev. 95, 456–470 (1988).
[Crossref] [PubMed]

Vision Res. (13)

P. Padmos, D. V. Norren, “Increment spectral sensitivity and colour discrimination in the primate, studied by means of graded potentials from the striate cortex,” Vision Res. 15, 1103–1113 (1975).
[Crossref] [PubMed]

R. S. Harwerth, D. M. Levi, “Increment threshold spectral sensitivity in anisometropic amblyopia,” Vision Res. 17, 585–590 (1977).
[Crossref] [PubMed]

J. S. Werner, J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–943 (1982).
[Crossref] [PubMed]

J. Walraven, “Discounting the background—the missing link in the explanation of chromatic induction,” Vision Res. 16, 289–295 (1976).
[Crossref]

J. Walraven, “No additive effect of backgrounds in chromatic induction,” Vision Res. 19, 1061–1063 (1979).
[Crossref] [PubMed]

S. K. Shevell, “Unambiguous evidence for the additive effect in chromatic adaptation,” Vision Res. 20, 637–639 (1980).
[Crossref] [PubMed]

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[Crossref] [PubMed]

W. S. Geisler, “Adaptation, afterimages and cone saturation,” Vision Res. 18, 279–289 (1978).
[Crossref] [PubMed]

D. C. Hood, M. A. Finkelstein, E. Buckingham, “Psychophysical tests of models of the response function,” Vision Res. 19, 401–406 (1979).
[Crossref] [PubMed]

M. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time-course of multiplicative and subtractive adaptation process,” Vision Res. 27, 1981–1996 (1987).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972); “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

J. D. Cohen, “Temporal independence of the Bezold–Brücke hue shift,” Vision Res. 15, 341–351 (1975).
[Crossref] [PubMed]

Other (18)

W. deW. Abney, Researches in Colour Vision (Longmans, Green, London, 1913).

D. C. Hood, “Psychophysical and physiological tests of proposed mechanisms of light adaptation,” in Visual Psychophysics: Its Physiological Basis, J. Armington, J. Krauskopf, B. Wooten, eds. (Academic, New York, 1978), pp. 141–155.
[Crossref]

D. B. Judd, “Colorimetry and artificial daylight,” in Proceedings of the Commission International de l’Éclairage I (Commission International de l’Éclairage, Paris, 1951), Part 7, p. 11.

G. Wyszecki, W. S. Stiles, Color Science, 2nd ed. (Wiley, New York, 1982).

W. D. Wright, comments in Color Metrics, J. J. Vos, L. F. C. Friele, P. L. Walraven, eds. (AIC/Holland, Soesterberg, The Netherlands, 1972), p. 158.

D. B. Judd, comments in Color Metrics, J. J. Vos, L. F. C. Friele, P. L. Walraven, eds. (AIC/Holland, Soesterberg, The Netherlands, 1972), p. 158.

W. S. Geisler, “Visual adaptation and inhibition,” Ph.D. dissertation, University Microfilm No. 76-2816, Vol. 137 (Indiana University, Bloomington, Ind., 1975).

G. T. Fechner, Elemente der Psychophysik (Breitkopf and Harterl, Leipzig, 1860) [English translation of Vol. 1, H. E. Adler; D. H. Howes, E. G. Boring, eds. (Holt, Rinehart & Winston, New York, 1966)].

S. L. Guth, “Unified model for human color perception and visual adaptatin,” in Human Vision, Visual Processing, and Digital Display, B. E. Rogowitz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1077, 370–390 (1989). (This is a rough draft of a prototype model, and it contains many errors.)
[Crossref]

E. Hering, Outlines of a Theory of the Light Sense [English translation, L. M. Hurvich and D. Jameson (Harvard U. Press, Cambridge, Mass., 1964)].

H. von Helmholtz, Handbook der Physiologischen Optik, 2nd ed. (Voss, Hamburg, 1896).

J. von Kries, “Chromatic adaptation,” in Festschrift der Albrecht-Ludwigs Universitat(1902). [English translation, D. L. MacAdam, in Sources of ColorScience (MIT Press, Cambridge, Mass., 1970)], pp. 109–119.

S. L. Guth, “Photometric and calorimetric additivity at various intensities,” in AIC Proceedings Color 69, Stockholm, 1969 (Muster-Schmidt, Göttingen, 1970), pp. 172–180.

W. S. Stiles, Mechanisms of Colour Vision (Academic, New York, 1978).

Stiles’s conversion of his data into trolands, which he explains in a footnote on p. 100 of Ref. 43, produces increment threshold functions that are somewhat contrary to expectations. For example, a threshold-versus-intensity function for 580-nm increments flashed on 600-nm backgrounds might be expected to be similar to (or even flatter than) a white-on-white function, but the Stiles conversion has the effect of showing too much threshold elevation of the increments when the background is at, say, only 0 log Td.

Throughout much of Ref. 43, Stiles emphasizes individual differences, and an example of them is shown in Ref. 24, p. 538.

For predictions of the Werner and Walraven50 data, which used only a single stage, the initial S receptor weighting was changed to 0.90. Also, the first-stage [Eqs. (2)–(4)] mechanisms were changed so that the L and M receptor inputs to T1were 0.2948 and −0.2816, respectively, and the S receptor input to D1was 0.063.

Since observations were made with the natural pupil and since the luminances of adapting and (especially) test lights varied greatly, it was difficult to apply the model because of assumptions that must be made about the pupilary responses of the subjects when transforming the data into troland units. A rough approximation was made by noting that the mean luminances of all lights used in the experiment was ~60 ft-L, or ~1000 Td for an average subject. That same conversion factor (1000/60 = 16.67) was then applied to all the data to convert them into trolands. Also, the XYZvalues were used without transforming them into X′Y′Z′’s.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1
Fig. 1

Schematic diagram of the CA90 model.

Fig. 2
Fig. 2

Munsell value 5 loci of constant hue and saturation in NCA90 T2D2 space. The hue line that points directly north on the T2 = 0 axis is 5.0 PB.

Fig. 3
Fig. 3

Loci of NCA90 unique hues (curves with points) and equally separated radial lines from T2D2 space projected into xy′ space.

Fig. 4
Fig. 4

Data of Purdy35 and Cohen36 and NCA90 predictions regarding Bezold–Brücke wavelength shifts required to hue match spectral lights differing in luminance by 1.0 log unit. The abscissa shows the wavelength of the higher-luminance light.

Fig. 5
Fig. 5

Data37 and predictions (by NCA90 and a modified model) of Abney hue shifts. A point on the graph shows the wavelength shift (Δλ) of standard wavelength and then hue matches a light that is a mixture of the a comparisonlight (λ), which first identity matches a unit-luminance standard plus a white desaturant of 1.2 luminance units.

Fig. 6
Fig. 6

Prediction of NCA90 of a spectral-sensitivity function obtained by the method of heterochromatic brightness matching (solid curve). Dots show the limits of relevant data as summarized by Wyszecki and Stiles24 (p. 401).

Fig. 7
Fig. 7

NCA90 predictions of heterochromatic additivity results (curves with dashes). The functions show the brightnesses of spectral lights (in units defined by amounts of each required to brightness match a unit-brightness criterion light) that must be added to a 0.50-unit 520-nm light in order to make the mixture match the brightness of a criterion light of either 2.0 Td (dashed curve) or 100 Td (dashed-dotted curve). Ordinate values greater than 0.50 indicate subadditivity. Values less than 0.50 imply superadditivity. The solid curve shows data similar to those of the other two curves, except that spectral lights are added to a white field of 0.50 unit, and predictions are from a revised model.

Fig. 8
Fig. 8

Prediction by NCA90 of a spectral-sensitivity function obtained by the absolute threshold method (solid curve). Dotted curves show the limits of relevant data as summarized by Wyszecki and Stiles24 (p. 404).

Fig. 9
Fig. 9

Predictions by NCA90 of threshold-level heterochromatic additivity results. Each set of predictions (solid curves) is similar in concept to those shown in Fig. 7, except that the criterion response is absolute foveal threshold for the subfield wavelength shown at the right of each curve, and ordinate values show the amounts (in threshold units) of spectral lights that must be added to 0.50-unit subfields to bring the mixtures to threshold. Curves are vertically displaced for legibility, but each can be correctly positioned by setting its subfield wavelength to an absolute ordinate value of 0.50. Data points are similar to those shown in Guth et al.12 (p. 204), except that some additional results were added to the original data base, and data are expressed in threshold units.

Fig. 10
Fig. 10

The MacAdaM42 color-discrimination data shown (magnified by 15) in a T1D1 plane of NCA90.

Fig. 11
Fig. 11

Uniform circles around each center point of Fig. 10 projected (times 10) into xy′ space. Crosses are major and minor axes of ellipses that summarize the MacAdam42 data.

Fig. 12
Fig. 12

Like Fig. 10, except that the T1D1 plane is from a slightly revised version of the model.

Fig. 13
Fig. 13

Like Fig. 11, except that projections are from Fig. 12.

Fig. 14
Fig. 14

Prediction (solid curve) by NCA90 of the Geisler16 intensity discrimination data.

Fig. 15
Fig. 15

Predictions by NCA90 (solid curves) of increment threshold data for test lights of wavelengths show at the right of each curve, flashed on 600-nm backgrounds. Data are redrawn from Stiles43 (p. 187).

Fig. 16
Fig. 16

Predictions by NCA90 of spectral-sensitivity functions obtained by either the increment or the absolute threshold technique with the use of either achromatic or dark backgrounds. (The functions are not arbitrarily positioned relative to one another.)

Fig. 17
Fig. 17

Data48 (end points of solid lines) for subject DLM and CA90 predictions (filled circles and triangles at end points of dotted lines) showing xy′ coordinates of pairs of test lights that appear identical after preadaptation of each pair member with light shown by either open circles or open triangles in each diagram.

Fig. 18
Fig. 18

Like Fig. 17, except that another version of the model was used to predict two of the adaptation conditions.

Fig. 19
Fig. 19

Top row: data50 showing CIE xy coordinates of lights that appear achromatic when surrounded by spectral (or purple) adapting backgrounds of chromaticity coordinates indicated by intersections of radial lines with circumference of diagram. The achromatic-appearing mixtures of the background light plus an increment light with luminance of 0.20, 1.0, or 5.0 times the background luminance. lights were Bottom row: predictions by a revised model. The predictions assume that only the background lights contribute to adaptation.

Fig. 20
Fig. 20

Like Fig. 19, except chromaticity coordinates are shown for only the increments.

Fig. 21
Fig. 21

Like Fig. 20, except predictions assume that a portion of the luminance of the increments also contribute to adaptation.

Fig. 22
Fig. 22

Data from Geisler16 showing mean (five subjects) thresholds for white increments flashed on steady backgrounds (circles) or on flashed white backgrounds (crosses). Flashed backgrounds and increments were presented simultaneously to the dark-adapted eye, with the background remaining in view long enough to mask after-images. Curves show CA90 predictions as explained in the text.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

N = N - 0.99 ( N σ + N ) N = N [ 1 - 0.99 ( N σ + N ) ] ,
A 1 = 0.4200 L + 0.3108 M ,
T 1 = 0.8845 L - 0.7258 M ,
D 1 = - 0.0770 L + 0.0130 M + 0.0910 S .
A 2 = 0.10 A 1 ,
T 2 = 0.388 T 1 + D 1 ,
D 2 = D 1 .
F = F / ( 0.008 + F ) .
[ ( A 1 λ - A 1 n ) 2 + ( T 1 λ - T 1 n ) 2 + ( D 1 λ - D 1 n ) 2 ] 0.5 = 0.005.
N t = N t - 0.99 ( N t + a * σ + N t + a * ) N t = N t [ 1 - 0.99 ( N t + a * σ + N t + a * ) ] ,
N t = N t - 0.99 ( N p 1 t + p 2 a * σ + N p 1 t + p 2 a * ) N t = N t [ 1 - 0.99 ( N p 1 t + p 2 a * σ + N p 1 t + p 2 a * ) ] ,
N i + b = N i + b - 0.99 ( N p 1 i + p 2 b * σ + N p 1 i + p 2 b * ) N i + b = N i + b [ 1 - 0.99 ( N p 1 i + p 2 b * σ + N p 1 i + p 2 b * ) ] ,
[ ( A i b - A b ) 2 + ( T i b - T b ) 2 + ( D i b - T b ) 2 ] 0.5 = 0.005 ,

Metrics