Abstract

The solution of the scalar wave equation in the parabolic approximation is considered through the finite-difference and the Fourier-transform (i.e., beam propagation method) techniques. Examples are taken from the field of integrated optics and include propagation in straight, tapered, Y-branched, and coupled waveguides. A comparison of numerical results obtained by the two methods is presented, and a comparison with other analytical or numerical methods is also given. In the numerous cases studied it is shown that the finite-difference method yields a large, order-of-magnitude range improvement in accuracy or computational speed when compared with the Fourier-transform method.

© 1991 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evaluation of finite difference and FFT-based solutions of the transport of intensity equation

Hongbo Zhang, Wen-Jing Zhou, Ying Liu, Donald Leber, Partha Banerjee, Mahmudunnabi Basunia, and Ting-Chung Poon
Appl. Opt. 57(1) A222-A228 (2018)

Computationally efficient finite-difference modal method for the solution of Maxwell’s equations

Igor Semenikhin and Mauro Zanuccoli
J. Opt. Soc. Am. A 30(12) 2531-2538 (2013)

Comparison of highly efficient absorbing boundary conditions for the beam propagation method

David Jiménez and Francesc Pérez-Murano
J. Opt. Soc. Am. A 18(8) 2015-2025 (2001)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription