Abstract

The concept of propagation invariance in partially coherent optics is introduced. Explicit expressions are given for the cross-spectral density and the angular correlation function (cross-angular spectrum) characterizing a class of fields that are propagation invariant in the sense that their correlation properties in the space-frequency domain are exactly the same in every transverse plane. The so-called diffraction-free beams are shown to be members of this new, wider class of wave fields, which itself is a subset of a generalized class of partially coherent self-imaging fields. The existence of partially coherent propagation-invariant fields with a sharp correlation peak is verified experimentally by considering radiation from a planar J0 Bessel-correlated source.

© 1991 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatially partially coherent Fabry–Perot modes

Ari T. Friberg and Jari Turunen
J. Opt. Soc. Am. A 11(1) 227-235 (1994)

Space-time coherence of polychromatic propagation-invariant fields

Jari Turunen
Opt. Express 16(25) 20283-20294 (2008)

Generalized propagation-invariant wave fields

Rafael Piestun and Joseph Shamir
J. Opt. Soc. Am. A 15(12) 3039-3044 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription