Abstract

The photon-scanning tunneling microscope is the photon analog to the electron-scanning tunneling microscope. It uses the evanescent field due to the total internal reflection of a light beam in a prism, modulated by a sample attached to the prism. The exponential decay of the evanescent field is characterized by the penetration depth dp and depends on the angle of incidence θ, the wavelength, and the polarization of the incident beam. The 1/e decay lengths range from 150 to 265 nm as deduced from the expression of the electric-field intensity in the rarer medium for θ = π/2. If we place another optically transparent medium near the surface, frustrated total reflection occurs. It is shown theoretically and experimentally that, if we choose an appropriate angle of incidence θ(θπ/2) and change the index of refraction of one of the media, the decay length of the electric field can be extremely small, so that images with an improved resolution can be produced.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Binnig, H. Rohrer, C. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982);“Tunneling through a controllable vacuum gap,” Appl. Phys. Lett. 40, 178–180 (1982).
    [CrossRef]
  2. G. Binning, H. Rohrer, “Scanning tunneling microscopy,” Surf. Sci. 126, 236–244 (1983).
    [CrossRef]
  3. The photon-scanning tunneling microscope (principles and applications) and the photon-scanning tunneling spectroscope (principles and applications) have been patented [Spiral-Dijon (France), “Photon scanning tunneling microscope,” U.S. Patent 5,018,865, 21, 1988].
  4. R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New form of scanning optical microcopy,” Phys. Rev. B 39, 767–770 (1989).
    [CrossRef]
  5. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967), Chap. 2, p. 30.
  6. H. Arzelies, “Propriétés de l’onde évanescente obtenue par réflexion totale,” Rev. Opt. 27, 205–245 (1948).
  7. F. De Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).
    [CrossRef]
  8. D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
    [CrossRef]

1989 (2)

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New form of scanning optical microcopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

1983 (1)

G. Binning, H. Rohrer, “Scanning tunneling microscopy,” Surf. Sci. 126, 236–244 (1983).
[CrossRef]

1982 (1)

G. Binnig, H. Rohrer, C. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982);“Tunneling through a controllable vacuum gap,” Appl. Phys. Lett. 40, 178–180 (1982).
[CrossRef]

1948 (1)

H. Arzelies, “Propriétés de l’onde évanescente obtenue par réflexion totale,” Rev. Opt. 27, 205–245 (1948).

Arzelies, H.

H. Arzelies, “Propriétés de l’onde évanescente obtenue par réflexion totale,” Rev. Opt. 27, 205–245 (1948).

Binnig, G.

G. Binnig, H. Rohrer, C. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982);“Tunneling through a controllable vacuum gap,” Appl. Phys. Lett. 40, 178–180 (1982).
[CrossRef]

Binning, G.

G. Binning, H. Rohrer, “Scanning tunneling microscopy,” Surf. Sci. 126, 236–244 (1983).
[CrossRef]

Courjon, D.

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

De Fornel, F.

F. De Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).
[CrossRef]

Ferrell, T. L.

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New form of scanning optical microcopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Gerber, C.

G. Binnig, H. Rohrer, C. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982);“Tunneling through a controllable vacuum gap,” Appl. Phys. Lett. 40, 178–180 (1982).
[CrossRef]

Goudonnet, J. P.

F. De Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).
[CrossRef]

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967), Chap. 2, p. 30.

Lesniewska, E.

F. De Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).
[CrossRef]

Reddick, R. C.

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New form of scanning optical microcopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Rohrer, H.

G. Binning, H. Rohrer, “Scanning tunneling microscopy,” Surf. Sci. 126, 236–244 (1983).
[CrossRef]

G. Binnig, H. Rohrer, C. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982);“Tunneling through a controllable vacuum gap,” Appl. Phys. Lett. 40, 178–180 (1982).
[CrossRef]

Salomon, L.

F. De Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).
[CrossRef]

Sarayeddine, K.

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Spajer, M.

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Warmack, R. J.

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New form of scanning optical microcopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Weibel, E.

G. Binnig, H. Rohrer, C. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982);“Tunneling through a controllable vacuum gap,” Appl. Phys. Lett. 40, 178–180 (1982).
[CrossRef]

Opt. Commun. (1)

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Phys. Rev. B (1)

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New form of scanning optical microcopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Phys. Rev. Lett. (1)

G. Binnig, H. Rohrer, C. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982);“Tunneling through a controllable vacuum gap,” Appl. Phys. Lett. 40, 178–180 (1982).
[CrossRef]

Rev. Opt. (1)

H. Arzelies, “Propriétés de l’onde évanescente obtenue par réflexion totale,” Rev. Opt. 27, 205–245 (1948).

Surf. Sci. (1)

G. Binning, H. Rohrer, “Scanning tunneling microscopy,” Surf. Sci. 126, 236–244 (1983).
[CrossRef]

Other (3)

The photon-scanning tunneling microscope (principles and applications) and the photon-scanning tunneling spectroscope (principles and applications) have been patented [Spiral-Dijon (France), “Photon scanning tunneling microscope,” U.S. Patent 5,018,865, 21, 1988].

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967), Chap. 2, p. 30.

F. De Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

TIR prism. Ep and Es, respectively, represent the electric field for p and s polarizations; Ki and Kr are the wave vectors of the incident and reflected beams.

Fig. 2
Fig. 2

Intensity of the electromagnetic field in the rarer medium (n2) calculated as a function of the angle of incidence for n1 = 1.458 and n1 = 2.5. For n1 = 1.458,p (Ip) and s(Is) polarizations have been considered. θc is the critical angle.

Fig. 3
Fig. 3

Penetration depth dp calculated as a function of the angle of incidence for λ1 = 6328 Å and λ1 = 2500 Å. The index of refraction of the prism is n1 = 1.458. dp is smaller when λ decreases.

Fig. 4
Fig. 4

Penetration depth dp calculated as a function of the angle of incidence for two values of the index of refraction n1 = 1.458 and n1 = 2.5 of the prism. Note that dp decreases when the index of refraction becomes larger.

Fig. 5
Fig. 5

Field intensity in medium 3 (n3 = n1) calculated as a function of the distance to the prism and p and s polarizations. For θ = θI = 53°, the intensity is the same for both polarizations. For the calculations, the following values of the parameters have been used: n1 = n3 = 1.458, n2 = 1, θc = 43°30, θI = 53°.

Fig. 6
Fig. 6

Photograph of the end of a chemically etched optical fiber taken with a scanning electron microscope (the segment size is 0.1 μm).

Fig. 7
Fig. 7

Models used to determine the influence of the shape of the fiber optic on the frustrated optical field: (a) chemically etched fiber optic, (b) cut fiber optic.

Fig. 8
Fig. 8

Field intensity in a parabolic-shaped end of a fiber optic plotted for several values of the shape parameter. The fiber sharpens as a becomes larger. The solid curve (a = 0) represents the intensity of light collected by an infinite plane.

Fig. 9
Fig. 9

Intensity of light collected by the three models of tip: plane tip, sharp tip (paraboloid), cut tip (θ = 5°), cut tip (θ = 10°).

Fig. 10
Fig. 10

Experimental setup. The evanescent field near the sample surface is probed by a fiber tip that is scanned by a piezotransducer.

Fig. 11
Fig. 11

(a) z(t) axial dependence of the tip. (b) Intensity recorded on a computer.

Fig. 12
Fig. 12

Field intensity as a function of the tip distance to the sample for experimental values, values calculated from Eq. (10) with a shape parameter a = 0 (flat fiber), and values calculated from Eq. (10) with a shape parameter a = 4.107 (sharp fiber).

Fig. 13
Fig. 13

Field intensity as a function of the tip–sample distance measured for s polarization and several angles of incidence.

Fig. 14
Fig. 14

Field intensity as a function of the tip–sample distance measured for p polarization and several angles of incidence.

Fig. 15
Fig. 15

Field intensity as a function of the tip–sample distance measured for p and s polarizations and two angles of incidence. There is an angle of incidence θI for which variations of intensities Ip and Is for the two polarizations are the same.

Fig. 16
Fig. 16

Field intensity measured as a function of the tip–sample distance forp and s polarizations at θ = 75°, dp = 50 nm.

Fig. 17
Fig. 17

Field intensity measured as a function of the tip–sample distance for p and s polarizations at θ = 85°, dp = 45 nm.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

E s i = E o x i x exp j ( ω t K i · r ) ,
E p i = { E o y i y exp j ( ω t K i · r ) E o z i z exp j ( ω t K i · r ) ,
E s t = 2 n i cos θ ( n 1 2 n 2 2 ) 1 / 2 E o x i e K z exp j ( ω t n 1 y ω c sin θ + ϕ ) x ,
K = 2 π λ 0 ( n 1 2 sin 2 θ n 2 2 ) 1 / 2 , tan ϕ = ( n 1 2 sin 2 θ n 2 2 ) 1 / 2 n 1 cos θ ,
I s E = 2 n 1 cos θ ( n 1 2 n 2 2 ) 1 / 2 e 2 K z ( E o x i ) 2 .
E p t = { E y t exp [ ω t n 2 y ( ω / c ) sin θ + ϕ π / 2 ] E z t exp j [ ω t n 2 y ( ω / c ) sin θ + ϕ ] ,
E y t = 2 cos θ ( sin 2 θ n 21 2 ) 1 / 2 e K z E p i ( n 21 4 cos 2 θ + sin 2 θ n 21 2 ) 1 / 2 , E z t = 2 cos θ sin θ ( n 21 4 cos 2 θ + sin 2 θ n 21 2 ) 1 / 2 e K z E p i , tan ϕ = n 1 ( n 1 2 sin 2 θ n 2 2 ) 1 / 2 n 2 2 cos θ .
E p i = ( E o y i E o y i * + E o z i E o z i * ) 1 / 2 ,
K s p t = { 0 n 1 ( ω / c ) sin θ n 1 ( ω / c ) ( sin 2 θ n 21 2 ) 1 / 2 .
I p = 4 cos 2 θ ( 2 sin 2 θ n 21 2 ) ( n 21 4 cos 2 θ + sin 2 θ n 21 2 ) e 2 K z E p i 2 .
E = E 0 exp ( z / d p ) ,
E s , p t = E o s , p t exp [ ( 2 π / λ 0 ) z ( n 1 2 sin 2 θ n 2 2 ) 1 / 2 ] , d p = λ 0 2 π 1 ( n 1 2 sin 2 θ n 2 2 ) 1 / 2 .
E p , s 3 = ( cos h 2 K d + A p , s 2 sin h 2 K d ) 1 / 2 ,
A s = cotan 2 ϕ
A p = cotan 2 Φ
ϕ = archtan [ ( n 1 2 sin 2 θ n 2 2 ) 1 / 2 n 1 cos θ ] , Φ = archtan [ n 1 ( n 1 2 sin 2 θ n 2 2 ) 1 / 2 n 2 2 cos θ ] ,
K = 2 π λ 0 ( n 1 2 sin 2 θ n 2 2 ) 1 / 2 .
K t = { 0 K y t = n 1 ( ω / c ) sin θ K z t = n 1 ( ω / c ) cos θ .
θ l θ π / 2 ,
A p 2 A s 2 , E s t 2 E p t 2 .
θ c θ θ ,
A p 2 A p 2 , E p t 2 E s t 2 .
d ( x , y ) = a ( x 2 + y 2 ) ,
d ( x , y ) = ( x + R ) tan θ ,
x 2 + y 2 R 2 .
I p , s t = ( S ) E p , s t [ d ( x , y ) ] 2 d S ,
R x + R , x 2 + y 2 R 2 .

Metrics