Abstract

The effects of chromatic adaptation on the opponent interactions of cone mechanisms were investigated by using increment-threshold spectral-sensitivity (ITSS) functions and threshold-versus-radiance (TVR) curves in rhesus monkey subjects. The TVR curves showed shape- and field-sensitivity invariance for both 580-and 500-nm adapting backgrounds and indicated that three cone mechanisms were mediating detection over moderate adapting-field intensity levels. Differential adaptation between the long-wavelength-sensitive (L) and the middle-wavelength-sensitive (M) opponent (L − M) and nonopponent (L + M) channels and the short-wavelength-sensitive (S) channel caused changes in the shape of the ITSS function as the adapting-field intensity was increased without changes in the level of cone interaction. Chromatic adaptation also resulted in significant changes in the shape of the ITSS functions, but it still exhibited characteristic L–M opponent interactions. Converting ITSS data to cone-contrast coordinates for R–G adapting fields indicated that the relative contribution of the L and M cones at the second site was approximately equal (detection contour slope ≈1). Consequently, most of the changes in the shape of ITSS functions under chromatic adaptation are explained by the von Kries adaptation principle. ITSS functions on a green background also exhibited opponent interactions between S cones and longer-wavelength cones. The cone-contrast coordinates, when expressed for S cones, showed that the inhibitory interactions occur because the S-cone signal subtracts from both M and L cones.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W S. Stiles, B. H. Crawford, “The liminal brightness increment as a function of wave-length for different conditions of the foveal and parafoveal retina,” Proc. R. Soc. London Ser. B 113, 496–530 (1933).
    [CrossRef]
  2. W B. Brown, G. Wald, “Visual pigments in single rods and cones of the human retina,” Science 144, 45–52 (1964).
    [CrossRef] [PubMed]
  3. G. Wald, “Molecular basis of visual excitation,” Science 162, 230–239 (1968).
    [CrossRef] [PubMed]
  4. G. Wald, “The receptors of human color vision,” Science 145, 1007–1016 (1964).
    [CrossRef] [PubMed]
  5. H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
    [CrossRef] [PubMed]
  6. P. E. King-Smith, D. Carden, “Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
    [CrossRef] [PubMed]
  7. T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the protanomalous observer,” Vision Res. 13, 2033–2047 (1973).
    [CrossRef] [PubMed]
  8. T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the deuteranomalous observer,” Vision Res. 13, 2049–2058 (1973).
    [CrossRef] [PubMed]
  9. M. Marre, “The investigation of acquired colour vision deficiencies,” in Colour 73 (Hilger, Bristol, UK, 1973), pp. 99–135.
  10. M. Marre, E. Marre, “Different types of acquired colour vision deficiencies on the base of CVM patters is dependent upon the fixation mode of the diseased eye,” Mod. Prob. Ophthalmol. 13, 248–252 (1978).
  11. A. J. Adams, “Chromatic and luminosity processing in retinal disease,” Am. J. Optom. Phys. Opt. 59, 954–960 (1982).
    [CrossRef]
  12. S. L. Alvarez, P. E. King-Smith, S. K. Bhargava, “Spectral thresholds in macular degeneration,” Brit. J. Ophthalmol. 67, 508–511 (1983).
    [CrossRef]
  13. R. S. Harwerth, M. L. J. Crawford, E. L. Smith, R. L. Boltz, “Behavioral studies of stimulus deprivation amblyopia in monkeys,” Vision Res. 21, 779–789 (1981).
    [CrossRef] [PubMed]
  14. R. S. Harwerth, E. L. Smith, G. C. Duncan, M. L. J. Crawford, G. K. von Noorden, “Multiple sensitivity periods in the development of the primate visual system,” Science 232, 235–238 (1986).
    [CrossRef] [PubMed]
  15. N. A. Sidley, H. G. Sperling, “Photopic spectral sensitivity in the rhesus monkey,” J. Opt. Soc. Am. 57, 816–818 (1967).
    [CrossRef] [PubMed]
  16. P. E. King-Smith, “Visual detection analyzed in terms of luminance and chromatic signals,” Nature (London) 255, 69–70 (1975).
    [CrossRef]
  17. K. Kranda, P. E. King-Smith, “Detection of colored stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
    [CrossRef]
  18. W. S. Stiles, “Introductory essay–increment thresholds in the analysis of colour-sensitive mechanisms of vision: historical retrospect and comment on recent developments,” in Mechanisms of Colour Vision (Academic, London, 1978), pp. 1–35.
  19. W. S. Stiles, “The determination of the spectral sensitivities of the retinal mechanisms by sensory methods,” Ned. Tijdschr. Natuurk. 15, 125–145 (1949).
  20. W. S. Stiles, “Further studies of visual mechanisms by the two-colour threshold method,” Coloq. Sobre Probl. Opt. Vis., Madrid, Union Int. Phys. Pure Appl. 1, 65–103 (1953).
  21. W S. Stiles, “Color vision: the approach through increment threshold sensitivity,” Proc. Natl. Acad. Sci. USA 45, 100–114 (1959).
    [CrossRef]
  22. W S. Stiles, “Appendix by W S. Stiles: foveal threshold sensitivity on fields of different colors,” Science 145, 1016–1017 (1964).
    [CrossRef] [PubMed]
  23. M. Kalloniatis, R. S. Harwerth, “The spectral sensitivity and adaptation characteristics of cone mechanisms under white light adaptation,” J. Opt. Soc. Am. A 7, 1912–1928 (1990).
    [CrossRef] [PubMed]
  24. R. M. Boynton, “Rapid chromatic adaptation and the sensitivity functions of human color vision,” J. Opt. Soc. Am. 46, 172–179 (1956).
    [CrossRef] [PubMed]
  25. R. M. Boynton, “Contribution of threshold measurements to color-discrimination theory,” J. Opt. Soc. Am. 53, 165–178 (1963).
    [CrossRef]
  26. R. M. Boynton, G. Kandel, J. W. Onley, “Rapid chromatic adaptation of normal and dichromatic observers,” J. Opt. Soc. Am. 49, 654–666 (1959).
    [CrossRef] [PubMed]
  27. M. Ikeda, R. M. Boynton, “Effect of test-flash duration upon the spectral sensitivity of the eye,” J. Opt. Soc. Am. 52, 697–699 (1962).
    [CrossRef]
  28. M. Ikeda, “Study of interrelations between mechanisms at threshold,” J. Opt. Soc. Am. 53, 1305–1313 (1963).
    [CrossRef] [PubMed]
  29. M. Ikeda, “Further use of the summation index for the study of color vision,” J. Opt. Soc. Am. 54, 89–94 (1964).
    [CrossRef] [PubMed]
  30. W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivities of the rods and cones,” Proc. R. Soc. London Ser. B 127, 64–105 (1939).
    [CrossRef]
  31. A. Stockman, J. D. Mollon, “The spectral sensitivities of the middle- and long-wavelength cones: an extension of the two-colour threshold technique of Stiles,” Perception 15, 729–754 (1986).
    [CrossRef]
  32. W S. Stiles, “Mechanism, concept in colour theory–Newton lecture,” J. Colour Group11, 106–123 (1967);in Mechanisms of Colour Vision (Academic, London, 1978), pp. 272–290.
  33. E. N. Pugh, D. B. Kirk, “The πmechanisms of W S. Stiles: an historical review,” Perception 15, 705–728 (1986).
    [CrossRef]
  34. C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
    [CrossRef]
  35. C. R. Ingling, E. Martinez, “Stiles’s π5 mechanism: failure to show univariance is caused by opponent-channel input,” J. Opt. Soc. Am. 71, 1134–1137 (1981).
    [CrossRef]
  36. A. Reeves, “Field additivity of Stiles’s pi-4 color mechanism,” J. Opt. Soc. Am. A 4, 525–529 (1987).
    [CrossRef] [PubMed]
  37. R. M. Boynton, S. R. Das, J. Gardiner, “Interactions between photopic visual mechanisms revealed by mixing conditioning fields,” J. Opt. Soc. Am. 56, 1775–1780 (1966).
    [CrossRef]
  38. R. M. Boynton, S. R. Das, “Visual adaptation: increased efficiency resulting from spectrally distributed mixtures of stimuli,” Science 154, 1581–1583 (1966).
    [CrossRef] [PubMed]
  39. M. Ikeda, T. Uetsuki, W. S. Stiles, “Interrelation among Stiles πmechanisms,” J. Opt. Soc. Am. 60, 406–415 (1970).
    [CrossRef] [PubMed]
  40. B. A. Wandell, E. N. Pugh, “Detection of long-duration, long-wavelength incremental flashes by a chromatically coded pathway,” Vision Res. 20, 625–636 (1980).
    [CrossRef] [PubMed]
  41. P. E. King-Smith, K. Kranda, “Photopic adaptation in the red–green spectral range,” Vision Res. 21, 565–572 (1981).
    [CrossRef]
  42. C. R. Ingling, “A tetrachromatic hypothesis for human color vision,” Vision Res. 9, 1131–1148.
    [PubMed]
  43. J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
    [CrossRef] [PubMed]
  44. J. E. Thornton, E. N. Pugh, “Relationship of opponent colours cancellation measures to cone-antagonistic signals deduced from increment threshold data,” in Colour VisionJ. D. Mollon, L. T. Sharpe, eds. (Academic, London1983), pp. 361–373.
  45. H. G. Sperling, “Flash blindness as a function of wavelength specificity,” in Proceedings of the First Annual Conference on Biologic Effects of Laser Radiation (Federation of American Societies for Experimental Biology, Washington, D.C., 1965), pp. S-73–S-77.
  46. R. M. Boynton, M. Ikeda, W S. Stiles, “Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds,” Vision Res. 4, 87–117 (1964).
    [CrossRef] [PubMed]
  47. B. A. Wandell, J. Sanchez, B. Quinn, “Detection/discrimination in the long-wavelength pathways,” Vision Res. 22, 1061–1069 (1982).
    [CrossRef] [PubMed]
  48. M. Ikeda, Y. Nakano, “The Stiles summation index applied to heterochromatic brightness matching,” Perception 15, 765–776 (1986).
    [CrossRef] [PubMed]
  49. C. F. Stromeyer, J. Lee, “Adaptation effects of short wave cone signals on red–green detection,” Vision Res. 28, 931–940 (1988).
    [CrossRef]
  50. P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Applic. 12, 73–80.
  51. E. N. Pugh, “The nature of the π-1 colour mechanism of W S. Stiles,” J. Physiol. 257, 713–747 (1976).
    [PubMed]
  52. C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
    [CrossRef] [PubMed]
  53. E. N. Pugh, J. D. Mollon, “A theory of the π-1 and π-3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
    [CrossRef]
  54. E. N. Pugh, J. E. Thornton, L. J. Friedman, M. H. Yim, “Stiles’s π-1 and π-2 colour mechanisms: isolation of a blue/yellow pathway in normals and dichromats,” in Central and Peripheral Mechanisms of Colour Vision, D. Ottoson, S. Zeki, eds. (Macmillan, London, 1985), pp. 117–137.
  55. J. D. Mollon, P. G. Polden, “Saturation of a retinal cone mechanism,” Nature 265, 243–246 (1977).
    [CrossRef] [PubMed]
  56. E. N. Pugh, J. Larimer, “Test of the identity of the site of blue/yellow hue cancellation and the site of chromatic antagonism in the π-1 pathway,” Vision Res. 20, 779–788 (1980).
    [CrossRef]
  57. B. Drum, “Color scaling of chromatic increments on achromatic backgrounds: implications for hue signals from individual classes of cones,” Color Res. Applic. 14, 293–308 (1989).
    [CrossRef]
  58. M. Kalloniatis, “Psychophysical studies of color vision processing in the monkey visual system,” Ph.D. dissertation (University of Houston, Houston, Tex., 1988).
  59. L. L. Sloan, “The effect of intensity of light, state of adaptation of the eye, and size of photometric field on the visibility curve—a study of the Purkinje phenomenon,” Psychol. Monogr. 38, 1–87 (1928).
  60. Y. Hsia, C. H. Graham, “Spectral sensitivity of the cones in the dark adapted human eye,” Proc. Natl. Acad. Sci. USA 38, 80–85 (1952).
    [CrossRef] [PubMed]
  61. H. G. Sperling, W G. Lewis, “Some comparisons between foveal spectral sensitivity data obtained at high brightness and absolute threshold,” J. Opt. Soc. Am. 49, 983–989 (1959).
    [CrossRef] [PubMed]
  62. C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
    [CrossRef] [PubMed]
  63. C. F. Stromeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanisms controlling sensitivity to red–green chromatic flashes,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London1983), pp. 313–330.
  64. R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, New York, 1979).
  65. R. S. Harwerth, R. L. Boltz, E. L. Smith, “Psychophysical evidence for sustained and transient channels in the monkey visual system,” Vision Res. 20, 15–22 (1980).
    [CrossRef] [PubMed]
  66. D. A. Baylor, “Photoreceptor signals and vision–Proctor lecture,” Invest. Ophthalmol. Vis. Sci. 28, 34–49 (1987).
    [PubMed]
  67. D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).
  68. R. S. Harwerth, E. L. Smith, “The rhesus monkey as a model for normal vision of humans,” Am. J. Optom. Physiol. Opt. 62, 633–641 (1985).
    [CrossRef] [PubMed]
  69. G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).
  70. L. M. Hurvieh, Color Vision (Sinauer, Sunderland, Mass., 1981).
  71. S. L. Guth, R. W. Massof, T. C. Benzschawal, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980).
    [CrossRef] [PubMed]
  72. C. R. Ingling, B. H.-P. Tsou, “Orthogonal combinations of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
    [CrossRef]
  73. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
    [CrossRef] [PubMed]
  74. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
    [CrossRef] [PubMed]
  75. C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
    [CrossRef]
  76. C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Sensitivity to spatiotemporal combined luminance and chromaticity contrast,” J. Opt. Soc. Am. 71, 453–459 (1981).
    [CrossRef] [PubMed]
  77. J. S. Werner, J. Walraven, “Effects of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–943 (1982).
    [CrossRef]
  78. B. A. Wandell, E. N. Pugh, “A field-additive pathway detects brief-duration, long-wavelength incremental flashes,” Vision Res. 20, 613–624 (1980).
    [CrossRef] [PubMed]
  79. C. F. Stromeyer, C. E. Sternheim, “Visibility of red and green spatial patterns upon spectrally mixed adapting fields,” Vision Res. 21, 397–407 (1981).
    [CrossRef] [PubMed]
  80. J. Kirk, J. Larimer, “Yellow–blue cancellation on yellow fields: its relevance to the two-process theory,” in Colour VisionJ. D. Mollon, L. T. sharpe, eds. (Academic, London, 1983), pp. 375–383.
  81. H. B. Barlow, “Increment thresholds at low intensities considered as signal/noise discriminations,” J. Physiol. (London) 136, 469–488 (1957).
  82. H. B. Barlow, “Intrinsic noise of cones,” Nat. Phys. Lab. (UK) Symp. 8, 615–637 (1958).
  83. W S. Stiles, “Separation of the ‘blue’ and ‘green’ mechanisms of foveal vision by measurements of increment thresholds,” Proc. R. Soc. London Ser. B 133, 418–434 (1946).
    [CrossRef]
  84. J. D. Mollon, “Color vision,” Ann. Rev. Psychol. 33, 41–85 (1982).
    [CrossRef]
  85. J. J. Wisowaty, R. M. Boynton, “Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation,” Vision Res. 20, 895–909 (1980).
    [CrossRef] [PubMed]
  86. S. Takahashi, Y. Ejima, M. Akita, “Effect of light adaptation on the perceptual red–green and yellow–blue opponent-color responses,” J. Opt. Soc. Am. A 2, 705–712 (1985).
    [CrossRef] [PubMed]
  87. J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
    [CrossRef] [PubMed]
  88. D. Jameson, L. M. Hurvieh, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc. Am. 45, 546–552 (1955).
    [CrossRef]
  89. L. M. Hurvieh, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
    [CrossRef]
  90. J. D. Mollon, C. R. Cavonius, “The chromatic antagonisms of opponent process theory are not the same as those revealed in studies of detection and discrimination,” in Colour Vision Deficiencies VIIIG. Verriest, ed. (Junk, Dordrecht, The Netherlands, 1987), pp. 473–483.
    [CrossRef]
  91. S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
    [CrossRef] [PubMed]
  92. F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,” J. Physiol. (London) 251, 167–195 (1975).
  93. F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. (London) 251, 217–229 (1975).
  94. P. L. Pease, “Spectral properties of monkey lateral geniculate cells,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., 1975).
  95. J. Walraven, “Perceived colour under conditions of chromatic adaptation: evidence for gain control by πmechanisms,” Vision Res. 21, 611–620 (1981).
    [CrossRef]
  96. C. Fach, J. D. Mollon, “Predicting the position of Sloan’s notch,” Inv. Ophthalmol. Vis. Sci. Suppl. 28, 212 (1987).
  97. C. Sigel, L. Brousseau, “Pi-4: adaptation of more than one class of cone,” J. Opt. Soc. Am. 72, 237–246 (1982).
    [CrossRef] [PubMed]
  98. D. H. Foster, “Changes in field spectral sensitivities or red-, green-, and blue-sensitive colour background fields,” Vision Res. 21, 1131–1148 (1969).
  99. D. H. Foster, R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour process?” Vision Res. 23, 787–797 (1983).
    [CrossRef]
  100. C. Sigel, E. N. Pugh, “Stiles’s π-5 color mechanism: tests of field displacement and field additivity properties,” J. Opt. Soc. Am. 70, 71–81 (1980).
    [CrossRef] [PubMed]
  101. N. J. Coletta, A. J. Adams, “Adaptation of a color-opponent mechanism increases parafoveal sensitivity to luminance flicker,” Vision Res. 26, 1241–1248 (1986).
    [CrossRef] [PubMed]
  102. C. E. Sternheim, R. Gorinson, N. Markovitz, “Visual sensitivity during successive chromatic contrast: evidence for interactions between photopic mechanisms,” Vision Res. 17, 45–49 (1977).
    [CrossRef] [PubMed]

1990 (1)

1989 (1)

B. Drum, “Color scaling of chromatic increments on achromatic backgrounds: implications for hue signals from individual classes of cones,” Color Res. Applic. 14, 293–308 (1989).
[CrossRef]

1988 (1)

C. F. Stromeyer, J. Lee, “Adaptation effects of short wave cone signals on red–green detection,” Vision Res. 28, 931–940 (1988).
[CrossRef]

1987 (5)

D. A. Baylor, “Photoreceptor signals and vision–Proctor lecture,” Invest. Ophthalmol. Vis. Sci. 28, 34–49 (1987).
[PubMed]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
[CrossRef] [PubMed]

C. Fach, J. D. Mollon, “Predicting the position of Sloan’s notch,” Inv. Ophthalmol. Vis. Sci. Suppl. 28, 212 (1987).

A. Reeves, “Field additivity of Stiles’s pi-4 color mechanism,” J. Opt. Soc. Am. A 4, 525–529 (1987).
[CrossRef] [PubMed]

1986 (5)

N. J. Coletta, A. J. Adams, “Adaptation of a color-opponent mechanism increases parafoveal sensitivity to luminance flicker,” Vision Res. 26, 1241–1248 (1986).
[CrossRef] [PubMed]

M. Ikeda, Y. Nakano, “The Stiles summation index applied to heterochromatic brightness matching,” Perception 15, 765–776 (1986).
[CrossRef] [PubMed]

A. Stockman, J. D. Mollon, “The spectral sensitivities of the middle- and long-wavelength cones: an extension of the two-colour threshold technique of Stiles,” Perception 15, 729–754 (1986).
[CrossRef]

E. N. Pugh, D. B. Kirk, “The πmechanisms of W S. Stiles: an historical review,” Perception 15, 705–728 (1986).
[CrossRef]

R. S. Harwerth, E. L. Smith, G. C. Duncan, M. L. J. Crawford, G. K. von Noorden, “Multiple sensitivity periods in the development of the primate visual system,” Science 232, 235–238 (1986).
[CrossRef] [PubMed]

1985 (3)

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef]

R. S. Harwerth, E. L. Smith, “The rhesus monkey as a model for normal vision of humans,” Am. J. Optom. Physiol. Opt. 62, 633–641 (1985).
[CrossRef] [PubMed]

S. Takahashi, Y. Ejima, M. Akita, “Effect of light adaptation on the perceptual red–green and yellow–blue opponent-color responses,” J. Opt. Soc. Am. A 2, 705–712 (1985).
[CrossRef] [PubMed]

1983 (3)

D. H. Foster, R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour process?” Vision Res. 23, 787–797 (1983).
[CrossRef]

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

S. L. Alvarez, P. E. King-Smith, S. K. Bhargava, “Spectral thresholds in macular degeneration,” Brit. J. Ophthalmol. 67, 508–511 (1983).
[CrossRef]

1982 (5)

A. J. Adams, “Chromatic and luminosity processing in retinal disease,” Am. J. Optom. Phys. Opt. 59, 954–960 (1982).
[CrossRef]

B. A. Wandell, J. Sanchez, B. Quinn, “Detection/discrimination in the long-wavelength pathways,” Vision Res. 22, 1061–1069 (1982).
[CrossRef] [PubMed]

J. D. Mollon, “Color vision,” Ann. Rev. Psychol. 33, 41–85 (1982).
[CrossRef]

J. S. Werner, J. Walraven, “Effects of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–943 (1982).
[CrossRef]

C. Sigel, L. Brousseau, “Pi-4: adaptation of more than one class of cone,” J. Opt. Soc. Am. 72, 237–246 (1982).
[CrossRef] [PubMed]

1981 (6)

C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Sensitivity to spatiotemporal combined luminance and chromaticity contrast,” J. Opt. Soc. Am. 71, 453–459 (1981).
[CrossRef] [PubMed]

C. R. Ingling, E. Martinez, “Stiles’s π5 mechanism: failure to show univariance is caused by opponent-channel input,” J. Opt. Soc. Am. 71, 1134–1137 (1981).
[CrossRef]

C. F. Stromeyer, C. E. Sternheim, “Visibility of red and green spatial patterns upon spectrally mixed adapting fields,” Vision Res. 21, 397–407 (1981).
[CrossRef] [PubMed]

J. Walraven, “Perceived colour under conditions of chromatic adaptation: evidence for gain control by πmechanisms,” Vision Res. 21, 611–620 (1981).
[CrossRef]

P. E. King-Smith, K. Kranda, “Photopic adaptation in the red–green spectral range,” Vision Res. 21, 565–572 (1981).
[CrossRef]

R. S. Harwerth, M. L. J. Crawford, E. L. Smith, R. L. Boltz, “Behavioral studies of stimulus deprivation amblyopia in monkeys,” Vision Res. 21, 779–789 (1981).
[CrossRef] [PubMed]

1980 (7)

B. A. Wandell, E. N. Pugh, “Detection of long-duration, long-wavelength incremental flashes by a chromatically coded pathway,” Vision Res. 20, 625–636 (1980).
[CrossRef] [PubMed]

J. J. Wisowaty, R. M. Boynton, “Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation,” Vision Res. 20, 895–909 (1980).
[CrossRef] [PubMed]

B. A. Wandell, E. N. Pugh, “A field-additive pathway detects brief-duration, long-wavelength incremental flashes,” Vision Res. 20, 613–624 (1980).
[CrossRef] [PubMed]

R. S. Harwerth, R. L. Boltz, E. L. Smith, “Psychophysical evidence for sustained and transient channels in the monkey visual system,” Vision Res. 20, 15–22 (1980).
[CrossRef] [PubMed]

E. N. Pugh, J. Larimer, “Test of the identity of the site of blue/yellow hue cancellation and the site of chromatic antagonism in the π-1 pathway,” Vision Res. 20, 779–788 (1980).
[CrossRef]

C. Sigel, E. N. Pugh, “Stiles’s π-5 color mechanism: tests of field displacement and field additivity properties,” J. Opt. Soc. Am. 70, 71–81 (1980).
[CrossRef] [PubMed]

S. L. Guth, R. W. Massof, T. C. Benzschawal, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980).
[CrossRef] [PubMed]

1979 (4)

J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
[CrossRef] [PubMed]

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[CrossRef] [PubMed]

E. N. Pugh, J. D. Mollon, “A theory of the π-1 and π-3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[CrossRef]

K. Kranda, P. E. King-Smith, “Detection of colored stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
[CrossRef]

1978 (2)

M. Marre, E. Marre, “Different types of acquired colour vision deficiencies on the base of CVM patters is dependent upon the fixation mode of the diseased eye,” Mod. Prob. Ophthalmol. 13, 248–252 (1978).

S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
[CrossRef] [PubMed]

1977 (3)

C. E. Sternheim, R. Gorinson, N. Markovitz, “Visual sensitivity during successive chromatic contrast: evidence for interactions between photopic mechanisms,” Vision Res. 17, 45–49 (1977).
[CrossRef] [PubMed]

C. R. Ingling, B. H.-P. Tsou, “Orthogonal combinations of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef]

J. D. Mollon, P. G. Polden, “Saturation of a retinal cone mechanism,” Nature 265, 243–246 (1977).
[CrossRef] [PubMed]

1976 (2)

1975 (5)

P. E. King-Smith, “Visual detection analyzed in terms of luminance and chromatic signals,” Nature (London) 255, 69–70 (1975).
[CrossRef]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[CrossRef]

F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,” J. Physiol. (London) 251, 167–195 (1975).

F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. (London) 251, 217–229 (1975).

1974 (1)

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

1973 (2)

T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the protanomalous observer,” Vision Res. 13, 2033–2047 (1973).
[CrossRef] [PubMed]

T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the deuteranomalous observer,” Vision Res. 13, 2049–2058 (1973).
[CrossRef] [PubMed]

1971 (1)

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

1970 (1)

1969 (1)

D. H. Foster, “Changes in field spectral sensitivities or red-, green-, and blue-sensitive colour background fields,” Vision Res. 21, 1131–1148 (1969).

1968 (1)

G. Wald, “Molecular basis of visual excitation,” Science 162, 230–239 (1968).
[CrossRef] [PubMed]

1967 (1)

1966 (2)

R. M. Boynton, S. R. Das, J. Gardiner, “Interactions between photopic visual mechanisms revealed by mixing conditioning fields,” J. Opt. Soc. Am. 56, 1775–1780 (1966).
[CrossRef]

R. M. Boynton, S. R. Das, “Visual adaptation: increased efficiency resulting from spectrally distributed mixtures of stimuli,” Science 154, 1581–1583 (1966).
[CrossRef] [PubMed]

1964 (5)

W B. Brown, G. Wald, “Visual pigments in single rods and cones of the human retina,” Science 144, 45–52 (1964).
[CrossRef] [PubMed]

R. M. Boynton, M. Ikeda, W S. Stiles, “Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds,” Vision Res. 4, 87–117 (1964).
[CrossRef] [PubMed]

G. Wald, “The receptors of human color vision,” Science 145, 1007–1016 (1964).
[CrossRef] [PubMed]

W S. Stiles, “Appendix by W S. Stiles: foveal threshold sensitivity on fields of different colors,” Science 145, 1016–1017 (1964).
[CrossRef] [PubMed]

M. Ikeda, “Further use of the summation index for the study of color vision,” J. Opt. Soc. Am. 54, 89–94 (1964).
[CrossRef] [PubMed]

1963 (2)

1962 (1)

1959 (3)

1958 (1)

H. B. Barlow, “Intrinsic noise of cones,” Nat. Phys. Lab. (UK) Symp. 8, 615–637 (1958).

1957 (2)

L. M. Hurvieh, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[CrossRef]

H. B. Barlow, “Increment thresholds at low intensities considered as signal/noise discriminations,” J. Physiol. (London) 136, 469–488 (1957).

1956 (1)

1955 (1)

1953 (1)

W. S. Stiles, “Further studies of visual mechanisms by the two-colour threshold method,” Coloq. Sobre Probl. Opt. Vis., Madrid, Union Int. Phys. Pure Appl. 1, 65–103 (1953).

1952 (1)

Y. Hsia, C. H. Graham, “Spectral sensitivity of the cones in the dark adapted human eye,” Proc. Natl. Acad. Sci. USA 38, 80–85 (1952).
[CrossRef] [PubMed]

1949 (1)

W. S. Stiles, “The determination of the spectral sensitivities of the retinal mechanisms by sensory methods,” Ned. Tijdschr. Natuurk. 15, 125–145 (1949).

1946 (1)

W S. Stiles, “Separation of the ‘blue’ and ‘green’ mechanisms of foveal vision by measurements of increment thresholds,” Proc. R. Soc. London Ser. B 133, 418–434 (1946).
[CrossRef]

1939 (1)

W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivities of the rods and cones,” Proc. R. Soc. London Ser. B 127, 64–105 (1939).
[CrossRef]

1933 (1)

W S. Stiles, B. H. Crawford, “The liminal brightness increment as a function of wave-length for different conditions of the foveal and parafoveal retina,” Proc. R. Soc. London Ser. B 113, 496–530 (1933).
[CrossRef]

1928 (1)

L. L. Sloan, “The effect of intensity of light, state of adaptation of the eye, and size of photometric field on the visibility curve—a study of the Purkinje phenomenon,” Psychol. Monogr. 38, 1–87 (1928).

Adams, A. J.

N. J. Coletta, A. J. Adams, “Adaptation of a color-opponent mechanism increases parafoveal sensitivity to luminance flicker,” Vision Res. 26, 1241–1248 (1986).
[CrossRef] [PubMed]

A. J. Adams, “Chromatic and luminosity processing in retinal disease,” Am. J. Optom. Phys. Opt. 59, 954–960 (1982).
[CrossRef]

Akita, M.

Alvarez, S. L.

S. L. Alvarez, P. E. King-Smith, S. K. Bhargava, “Spectral thresholds in macular degeneration,” Brit. J. Ophthalmol. 67, 508–511 (1983).
[CrossRef]

Barlow, H. B.

H. B. Barlow, “Intrinsic noise of cones,” Nat. Phys. Lab. (UK) Symp. 8, 615–637 (1958).

H. B. Barlow, “Increment thresholds at low intensities considered as signal/noise discriminations,” J. Physiol. (London) 136, 469–488 (1957).

Baylor, D. A.

D. A. Baylor, “Photoreceptor signals and vision–Proctor lecture,” Invest. Ophthalmol. Vis. Sci. 28, 34–49 (1987).
[PubMed]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

Benes, S. C.

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Applic. 12, 73–80.

Benzschawal, T. C.

Bhargava, S. K.

S. L. Alvarez, P. E. King-Smith, S. K. Bhargava, “Spectral thresholds in macular degeneration,” Brit. J. Ophthalmol. 67, 508–511 (1983).
[CrossRef]

Boltz, R. L.

R. S. Harwerth, M. L. J. Crawford, E. L. Smith, R. L. Boltz, “Behavioral studies of stimulus deprivation amblyopia in monkeys,” Vision Res. 21, 779–789 (1981).
[CrossRef] [PubMed]

R. S. Harwerth, R. L. Boltz, E. L. Smith, “Psychophysical evidence for sustained and transient channels in the monkey visual system,” Vision Res. 20, 15–22 (1980).
[CrossRef] [PubMed]

Boynton, R. M.

J. J. Wisowaty, R. M. Boynton, “Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation,” Vision Res. 20, 895–909 (1980).
[CrossRef] [PubMed]

R. M. Boynton, S. R. Das, “Visual adaptation: increased efficiency resulting from spectrally distributed mixtures of stimuli,” Science 154, 1581–1583 (1966).
[CrossRef] [PubMed]

R. M. Boynton, S. R. Das, J. Gardiner, “Interactions between photopic visual mechanisms revealed by mixing conditioning fields,” J. Opt. Soc. Am. 56, 1775–1780 (1966).
[CrossRef]

R. M. Boynton, M. Ikeda, W S. Stiles, “Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds,” Vision Res. 4, 87–117 (1964).
[CrossRef] [PubMed]

R. M. Boynton, “Contribution of threshold measurements to color-discrimination theory,” J. Opt. Soc. Am. 53, 165–178 (1963).
[CrossRef]

M. Ikeda, R. M. Boynton, “Effect of test-flash duration upon the spectral sensitivity of the eye,” J. Opt. Soc. Am. 52, 697–699 (1962).
[CrossRef]

R. M. Boynton, G. Kandel, J. W. Onley, “Rapid chromatic adaptation of normal and dichromatic observers,” J. Opt. Soc. Am. 49, 654–666 (1959).
[CrossRef] [PubMed]

R. M. Boynton, “Rapid chromatic adaptation and the sensitivity functions of human color vision,” J. Opt. Soc. Am. 46, 172–179 (1956).
[CrossRef] [PubMed]

R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, New York, 1979).

Brousseau, L.

Brown, W B.

W B. Brown, G. Wald, “Visual pigments in single rods and cones of the human retina,” Science 144, 45–52 (1964).
[CrossRef] [PubMed]

Carden, D.

Cavonius, C. R.

J. D. Mollon, C. R. Cavonius, “The chromatic antagonisms of opponent process theory are not the same as those revealed in studies of detection and discrimination,” in Colour Vision Deficiencies VIIIG. Verriest, ed. (Junk, Dordrecht, The Netherlands, 1987), pp. 473–483.
[CrossRef]

Cicerone, C. M.

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[CrossRef]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

Cole, G. R.

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
[CrossRef] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef]

C. F. Stromeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanisms controlling sensitivity to red–green chromatic flashes,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London1983), pp. 313–330.

Coletta, N. J.

N. J. Coletta, A. J. Adams, “Adaptation of a color-opponent mechanism increases parafoveal sensitivity to luminance flicker,” Vision Res. 26, 1241–1248 (1986).
[CrossRef] [PubMed]

Crawford, B. H.

W S. Stiles, B. H. Crawford, “The liminal brightness increment as a function of wave-length for different conditions of the foveal and parafoveal retina,” Proc. R. Soc. London Ser. B 113, 496–530 (1933).
[CrossRef]

Crawford, M. L. J.

R. S. Harwerth, E. L. Smith, G. C. Duncan, M. L. J. Crawford, G. K. von Noorden, “Multiple sensitivity periods in the development of the primate visual system,” Science 232, 235–238 (1986).
[CrossRef] [PubMed]

R. S. Harwerth, M. L. J. Crawford, E. L. Smith, R. L. Boltz, “Behavioral studies of stimulus deprivation amblyopia in monkeys,” Vision Res. 21, 779–789 (1981).
[CrossRef] [PubMed]

Das, S. R.

R. M. Boynton, S. R. Das, “Visual adaptation: increased efficiency resulting from spectrally distributed mixtures of stimuli,” Science 154, 1581–1583 (1966).
[CrossRef] [PubMed]

R. M. Boynton, S. R. Das, J. Gardiner, “Interactions between photopic visual mechanisms revealed by mixing conditioning fields,” J. Opt. Soc. Am. 56, 1775–1780 (1966).
[CrossRef]

de Monasterio, F. M.

F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,” J. Physiol. (London) 251, 167–195 (1975).

F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. (London) 251, 217–229 (1975).

Drum, B.

B. Drum, “Color scaling of chromatic increments on achromatic backgrounds: implications for hue signals from individual classes of cones,” Color Res. Applic. 14, 293–308 (1989).
[CrossRef]

Duncan, G. C.

R. S. Harwerth, E. L. Smith, G. C. Duncan, M. L. J. Crawford, G. K. von Noorden, “Multiple sensitivity periods in the development of the primate visual system,” Science 232, 235–238 (1986).
[CrossRef] [PubMed]

Ejima, Y.

Fach, C.

C. Fach, J. D. Mollon, “Predicting the position of Sloan’s notch,” Inv. Ophthalmol. Vis. Sci. Suppl. 28, 212 (1987).

Foster, D. H.

D. H. Foster, R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour process?” Vision Res. 23, 787–797 (1983).
[CrossRef]

D. H. Foster, “Changes in field spectral sensitivities or red-, green-, and blue-sensitive colour background fields,” Vision Res. 21, 1131–1148 (1969).

Friedman, L. J.

E. N. Pugh, J. E. Thornton, L. J. Friedman, M. H. Yim, “Stiles’s π-1 and π-2 colour mechanisms: isolation of a blue/yellow pathway in normals and dichromats,” in Central and Peripheral Mechanisms of Colour Vision, D. Ottoson, S. Zeki, eds. (Macmillan, London, 1985), pp. 117–137.

Gardiner, J.

Gorinson, R.

C. E. Sternheim, R. Gorinson, N. Markovitz, “Visual sensitivity during successive chromatic contrast: evidence for interactions between photopic mechanisms,” Vision Res. 17, 45–49 (1977).
[CrossRef] [PubMed]

Gouras, P.

F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. (London) 251, 217–229 (1975).

F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,” J. Physiol. (London) 251, 167–195 (1975).

Graham, C. H.

Y. Hsia, C. H. Graham, “Spectral sensitivity of the cones in the dark adapted human eye,” Proc. Natl. Acad. Sci. USA 38, 80–85 (1952).
[CrossRef] [PubMed]

Guth, S. L.

Harwerth, R. S.

M. Kalloniatis, R. S. Harwerth, “The spectral sensitivity and adaptation characteristics of cone mechanisms under white light adaptation,” J. Opt. Soc. Am. A 7, 1912–1928 (1990).
[CrossRef] [PubMed]

R. S. Harwerth, E. L. Smith, G. C. Duncan, M. L. J. Crawford, G. K. von Noorden, “Multiple sensitivity periods in the development of the primate visual system,” Science 232, 235–238 (1986).
[CrossRef] [PubMed]

R. S. Harwerth, E. L. Smith, “The rhesus monkey as a model for normal vision of humans,” Am. J. Optom. Physiol. Opt. 62, 633–641 (1985).
[CrossRef] [PubMed]

R. S. Harwerth, M. L. J. Crawford, E. L. Smith, R. L. Boltz, “Behavioral studies of stimulus deprivation amblyopia in monkeys,” Vision Res. 21, 779–789 (1981).
[CrossRef] [PubMed]

R. S. Harwerth, R. L. Boltz, E. L. Smith, “Psychophysical evidence for sustained and transient channels in the monkey visual system,” Vision Res. 20, 15–22 (1980).
[CrossRef] [PubMed]

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Heuts, M. J. G.

Hsia, Y.

Y. Hsia, C. H. Graham, “Spectral sensitivity of the cones in the dark adapted human eye,” Proc. Natl. Acad. Sci. USA 38, 80–85 (1952).
[CrossRef] [PubMed]

Hurvieh, L. M.

L. M. Hurvieh, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[CrossRef]

D. Jameson, L. M. Hurvieh, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc. Am. 45, 546–552 (1955).
[CrossRef]

L. M. Hurvieh, Color Vision (Sinauer, Sunderland, Mass., 1981).

Ikeda, M.

Ingling, C. R.

C. R. Ingling, E. Martinez, “Stiles’s π5 mechanism: failure to show univariance is caused by opponent-channel input,” J. Opt. Soc. Am. 71, 1134–1137 (1981).
[CrossRef]

C. R. Ingling, B. H.-P. Tsou, “Orthogonal combinations of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef]

C. R. Ingling, “A tetrachromatic hypothesis for human color vision,” Vision Res. 9, 1131–1148.
[PubMed]

Jameson, D.

Kalloniatis, M.

M. Kalloniatis, R. S. Harwerth, “The spectral sensitivity and adaptation characteristics of cone mechanisms under white light adaptation,” J. Opt. Soc. Am. A 7, 1912–1928 (1990).
[CrossRef] [PubMed]

M. Kalloniatis, “Psychophysical studies of color vision processing in the monkey visual system,” Ph.D. dissertation (University of Houston, Houston, Tex., 1988).

Kandel, G.

King-Smith, P. E.

S. L. Alvarez, P. E. King-Smith, S. K. Bhargava, “Spectral thresholds in macular degeneration,” Brit. J. Ophthalmol. 67, 508–511 (1983).
[CrossRef]

P. E. King-Smith, K. Kranda, “Photopic adaptation in the red–green spectral range,” Vision Res. 21, 565–572 (1981).
[CrossRef]

K. Kranda, P. E. King-Smith, “Detection of colored stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
[CrossRef]

P. E. King-Smith, D. Carden, “Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
[CrossRef] [PubMed]

P. E. King-Smith, “Visual detection analyzed in terms of luminance and chromatic signals,” Nature (London) 255, 69–70 (1975).
[CrossRef]

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Applic. 12, 73–80.

Kirk, D. B.

E. N. Pugh, D. B. Kirk, “The πmechanisms of W S. Stiles: an historical review,” Perception 15, 705–728 (1986).
[CrossRef]

Kirk, J.

J. Kirk, J. Larimer, “Yellow–blue cancellation on yellow fields: its relevance to the two-process theory,” in Colour VisionJ. D. Mollon, L. T. sharpe, eds. (Academic, London, 1983), pp. 375–383.

Koenderink, J. J.

Kranda, K.

P. E. King-Smith, K. Kranda, “Photopic adaptation in the red–green spectral range,” Vision Res. 21, 565–572 (1981).
[CrossRef]

K. Kranda, P. E. King-Smith, “Detection of colored stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
[CrossRef]

Krantz, D. H.

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[CrossRef]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

Kronauer, R. E.

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
[CrossRef] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef]

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[CrossRef] [PubMed]

C. F. Stromeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanisms controlling sensitivity to red–green chromatic flashes,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London1983), pp. 313–330.

Larimer, J.

E. N. Pugh, J. Larimer, “Test of the identity of the site of blue/yellow hue cancellation and the site of chromatic antagonism in the π-1 pathway,” Vision Res. 20, 779–788 (1980).
[CrossRef]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[CrossRef]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

J. Kirk, J. Larimer, “Yellow–blue cancellation on yellow fields: its relevance to the two-process theory,” in Colour VisionJ. D. Mollon, L. T. sharpe, eds. (Academic, London, 1983), pp. 375–383.

Lee, J.

C. F. Stromeyer, J. Lee, “Adaptation effects of short wave cone signals on red–green detection,” Vision Res. 28, 931–940 (1988).
[CrossRef]

Lewis, W G.

Madsen, J. C.

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[CrossRef] [PubMed]

Markovitz, N.

C. E. Sternheim, R. Gorinson, N. Markovitz, “Visual sensitivity during successive chromatic contrast: evidence for interactions between photopic mechanisms,” Vision Res. 17, 45–49 (1977).
[CrossRef] [PubMed]

Marre, E.

M. Marre, E. Marre, “Different types of acquired colour vision deficiencies on the base of CVM patters is dependent upon the fixation mode of the diseased eye,” Mod. Prob. Ophthalmol. 13, 248–252 (1978).

Marre, M.

M. Marre, E. Marre, “Different types of acquired colour vision deficiencies on the base of CVM patters is dependent upon the fixation mode of the diseased eye,” Mod. Prob. Ophthalmol. 13, 248–252 (1978).

M. Marre, “The investigation of acquired colour vision deficiencies,” in Colour 73 (Hilger, Bristol, UK, 1973), pp. 99–135.

Martinez, E.

Massof, R. W.

Mollon, J. D.

C. Fach, J. D. Mollon, “Predicting the position of Sloan’s notch,” Inv. Ophthalmol. Vis. Sci. Suppl. 28, 212 (1987).

A. Stockman, J. D. Mollon, “The spectral sensitivities of the middle- and long-wavelength cones: an extension of the two-colour threshold technique of Stiles,” Perception 15, 729–754 (1986).
[CrossRef]

J. D. Mollon, “Color vision,” Ann. Rev. Psychol. 33, 41–85 (1982).
[CrossRef]

E. N. Pugh, J. D. Mollon, “A theory of the π-1 and π-3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[CrossRef]

J. D. Mollon, P. G. Polden, “Saturation of a retinal cone mechanism,” Nature 265, 243–246 (1977).
[CrossRef] [PubMed]

J. D. Mollon, C. R. Cavonius, “The chromatic antagonisms of opponent process theory are not the same as those revealed in studies of detection and discrimination,” in Colour Vision Deficiencies VIIIG. Verriest, ed. (Junk, Dordrecht, The Netherlands, 1987), pp. 473–483.
[CrossRef]

Nakano, Y.

M. Ikeda, Y. Nakano, “The Stiles summation index applied to heterochromatic brightness matching,” Perception 15, 765–776 (1986).
[CrossRef] [PubMed]

Noorlander, C.

Nunn, B. J.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

Onley, J. W.

Pease, P. L.

P. L. Pease, “Spectral properties of monkey lateral geniculate cells,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., 1975).

Piantanida, T. P.

T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the protanomalous observer,” Vision Res. 13, 2033–2047 (1973).
[CrossRef] [PubMed]

T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the deuteranomalous observer,” Vision Res. 13, 2049–2058 (1973).
[CrossRef] [PubMed]

Polden, P. G.

J. D. Mollon, P. G. Polden, “Saturation of a retinal cone mechanism,” Nature 265, 243–246 (1977).
[CrossRef] [PubMed]

Pugh, E. N.

E. N. Pugh, D. B. Kirk, “The πmechanisms of W S. Stiles: an historical review,” Perception 15, 705–728 (1986).
[CrossRef]

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

B. A. Wandell, E. N. Pugh, “Detection of long-duration, long-wavelength incremental flashes by a chromatically coded pathway,” Vision Res. 20, 625–636 (1980).
[CrossRef] [PubMed]

E. N. Pugh, J. Larimer, “Test of the identity of the site of blue/yellow hue cancellation and the site of chromatic antagonism in the π-1 pathway,” Vision Res. 20, 779–788 (1980).
[CrossRef]

B. A. Wandell, E. N. Pugh, “A field-additive pathway detects brief-duration, long-wavelength incremental flashes,” Vision Res. 20, 613–624 (1980).
[CrossRef] [PubMed]

C. Sigel, E. N. Pugh, “Stiles’s π-5 color mechanism: tests of field displacement and field additivity properties,” J. Opt. Soc. Am. 70, 71–81 (1980).
[CrossRef] [PubMed]

E. N. Pugh, J. D. Mollon, “A theory of the π-1 and π-3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[CrossRef]

E. N. Pugh, “The nature of the π-1 colour mechanism of W S. Stiles,” J. Physiol. 257, 713–747 (1976).
[PubMed]

E. N. Pugh, J. E. Thornton, L. J. Friedman, M. H. Yim, “Stiles’s π-1 and π-2 colour mechanisms: isolation of a blue/yellow pathway in normals and dichromats,” in Central and Peripheral Mechanisms of Colour Vision, D. Ottoson, S. Zeki, eds. (Macmillan, London, 1985), pp. 117–137.

J. E. Thornton, E. N. Pugh, “Relationship of opponent colours cancellation measures to cone-antagonistic signals deduced from increment threshold data,” in Colour VisionJ. D. Mollon, L. T. Sharpe, eds. (Academic, London1983), pp. 361–373.

Quinn, B.

B. A. Wandell, J. Sanchez, B. Quinn, “Detection/discrimination in the long-wavelength pathways,” Vision Res. 22, 1061–1069 (1982).
[CrossRef] [PubMed]

Reeves, A.

Sanchez, J.

B. A. Wandell, J. Sanchez, B. Quinn, “Detection/discrimination in the long-wavelength pathways,” Vision Res. 22, 1061–1069 (1982).
[CrossRef] [PubMed]

Schnapf, J. L.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

Shevell, S. K.

S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
[CrossRef] [PubMed]

Sidley, N. A.

Sigel, C.

Sloan, L. L.

L. L. Sloan, “The effect of intensity of light, state of adaptation of the eye, and size of photometric field on the visibility curve—a study of the Purkinje phenomenon,” Psychol. Monogr. 38, 1–87 (1928).

Smith, E. L.

R. S. Harwerth, E. L. Smith, G. C. Duncan, M. L. J. Crawford, G. K. von Noorden, “Multiple sensitivity periods in the development of the primate visual system,” Science 232, 235–238 (1986).
[CrossRef] [PubMed]

R. S. Harwerth, E. L. Smith, “The rhesus monkey as a model for normal vision of humans,” Am. J. Optom. Physiol. Opt. 62, 633–641 (1985).
[CrossRef] [PubMed]

R. S. Harwerth, M. L. J. Crawford, E. L. Smith, R. L. Boltz, “Behavioral studies of stimulus deprivation amblyopia in monkeys,” Vision Res. 21, 779–789 (1981).
[CrossRef] [PubMed]

R. S. Harwerth, R. L. Boltz, E. L. Smith, “Psychophysical evidence for sustained and transient channels in the monkey visual system,” Vision Res. 20, 15–22 (1980).
[CrossRef] [PubMed]

Snelgar, R. S.

D. H. Foster, R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour process?” Vision Res. 23, 787–797 (1983).
[CrossRef]

Sperling, H. G.

T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the deuteranomalous observer,” Vision Res. 13, 2049–2058 (1973).
[CrossRef] [PubMed]

T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the protanomalous observer,” Vision Res. 13, 2033–2047 (1973).
[CrossRef] [PubMed]

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

N. A. Sidley, H. G. Sperling, “Photopic spectral sensitivity in the rhesus monkey,” J. Opt. Soc. Am. 57, 816–818 (1967).
[CrossRef] [PubMed]

H. G. Sperling, W G. Lewis, “Some comparisons between foveal spectral sensitivity data obtained at high brightness and absolute threshold,” J. Opt. Soc. Am. 49, 983–989 (1959).
[CrossRef] [PubMed]

H. G. Sperling, “Flash blindness as a function of wavelength specificity,” in Proceedings of the First Annual Conference on Biologic Effects of Laser Radiation (Federation of American Societies for Experimental Biology, Washington, D.C., 1965), pp. S-73–S-77.

Sternheim, C. E.

C. F. Stromeyer, C. E. Sternheim, “Visibility of red and green spatial patterns upon spectrally mixed adapting fields,” Vision Res. 21, 397–407 (1981).
[CrossRef] [PubMed]

C. E. Sternheim, R. Gorinson, N. Markovitz, “Visual sensitivity during successive chromatic contrast: evidence for interactions between photopic mechanisms,” Vision Res. 17, 45–49 (1977).
[CrossRef] [PubMed]

Stiles, W S.

R. M. Boynton, M. Ikeda, W S. Stiles, “Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds,” Vision Res. 4, 87–117 (1964).
[CrossRef] [PubMed]

W S. Stiles, “Appendix by W S. Stiles: foveal threshold sensitivity on fields of different colors,” Science 145, 1016–1017 (1964).
[CrossRef] [PubMed]

W S. Stiles, “Color vision: the approach through increment threshold sensitivity,” Proc. Natl. Acad. Sci. USA 45, 100–114 (1959).
[CrossRef]

W S. Stiles, “Separation of the ‘blue’ and ‘green’ mechanisms of foveal vision by measurements of increment thresholds,” Proc. R. Soc. London Ser. B 133, 418–434 (1946).
[CrossRef]

W S. Stiles, B. H. Crawford, “The liminal brightness increment as a function of wave-length for different conditions of the foveal and parafoveal retina,” Proc. R. Soc. London Ser. B 113, 496–530 (1933).
[CrossRef]

W S. Stiles, “Mechanism, concept in colour theory–Newton lecture,” J. Colour Group11, 106–123 (1967);in Mechanisms of Colour Vision (Academic, London, 1978), pp. 272–290.

Stiles, W. S.

M. Ikeda, T. Uetsuki, W. S. Stiles, “Interrelation among Stiles πmechanisms,” J. Opt. Soc. Am. 60, 406–415 (1970).
[CrossRef] [PubMed]

W. S. Stiles, “Further studies of visual mechanisms by the two-colour threshold method,” Coloq. Sobre Probl. Opt. Vis., Madrid, Union Int. Phys. Pure Appl. 1, 65–103 (1953).

W. S. Stiles, “The determination of the spectral sensitivities of the retinal mechanisms by sensory methods,” Ned. Tijdschr. Natuurk. 15, 125–145 (1949).

W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivities of the rods and cones,” Proc. R. Soc. London Ser. B 127, 64–105 (1939).
[CrossRef]

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

W. S. Stiles, “Introductory essay–increment thresholds in the analysis of colour-sensitive mechanisms of vision: historical retrospect and comment on recent developments,” in Mechanisms of Colour Vision (Academic, London, 1978), pp. 1–35.

Stockman, A.

A. Stockman, J. D. Mollon, “The spectral sensitivities of the middle- and long-wavelength cones: an extension of the two-colour threshold technique of Stiles,” Perception 15, 729–754 (1986).
[CrossRef]

Stromeyer, C. F.

C. F. Stromeyer, J. Lee, “Adaptation effects of short wave cone signals on red–green detection,” Vision Res. 28, 931–940 (1988).
[CrossRef]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
[CrossRef] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef]

C. F. Stromeyer, C. E. Sternheim, “Visibility of red and green spatial patterns upon spectrally mixed adapting fields,” Vision Res. 21, 397–407 (1981).
[CrossRef] [PubMed]

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[CrossRef] [PubMed]

C. F. Stromeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanisms controlling sensitivity to red–green chromatic flashes,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London1983), pp. 313–330.

Takahashi, S.

Thornton, J. E.

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

J. E. Thornton, E. N. Pugh, “Relationship of opponent colours cancellation measures to cone-antagonistic signals deduced from increment threshold data,” in Colour VisionJ. D. Mollon, L. T. Sharpe, eds. (Academic, London1983), pp. 361–373.

E. N. Pugh, J. E. Thornton, L. J. Friedman, M. H. Yim, “Stiles’s π-1 and π-2 colour mechanisms: isolation of a blue/yellow pathway in normals and dichromats,” in Central and Peripheral Mechanisms of Colour Vision, D. Ottoson, S. Zeki, eds. (Macmillan, London, 1985), pp. 117–137.

Tolhurst, D. J.

F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. (London) 251, 217–229 (1975).

Tsou, B. H.-P.

C. R. Ingling, B. H.-P. Tsou, “Orthogonal combinations of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef]

Uetsuki, T.

Vingrys, A. J.

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Applic. 12, 73–80.

von Noorden, G. K.

R. S. Harwerth, E. L. Smith, G. C. Duncan, M. L. J. Crawford, G. K. von Noorden, “Multiple sensitivity periods in the development of the primate visual system,” Science 232, 235–238 (1986).
[CrossRef] [PubMed]

Wald, G.

G. Wald, “Molecular basis of visual excitation,” Science 162, 230–239 (1968).
[CrossRef] [PubMed]

G. Wald, “The receptors of human color vision,” Science 145, 1007–1016 (1964).
[CrossRef] [PubMed]

W B. Brown, G. Wald, “Visual pigments in single rods and cones of the human retina,” Science 144, 45–52 (1964).
[CrossRef] [PubMed]

Walraven, J.

J. S. Werner, J. Walraven, “Effects of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–943 (1982).
[CrossRef]

J. Walraven, “Perceived colour under conditions of chromatic adaptation: evidence for gain control by πmechanisms,” Vision Res. 21, 611–620 (1981).
[CrossRef]

Wandell, B. A.

B. A. Wandell, J. Sanchez, B. Quinn, “Detection/discrimination in the long-wavelength pathways,” Vision Res. 22, 1061–1069 (1982).
[CrossRef] [PubMed]

B. A. Wandell, E. N. Pugh, “Detection of long-duration, long-wavelength incremental flashes by a chromatically coded pathway,” Vision Res. 20, 625–636 (1980).
[CrossRef] [PubMed]

B. A. Wandell, E. N. Pugh, “A field-additive pathway detects brief-duration, long-wavelength incremental flashes,” Vision Res. 20, 613–624 (1980).
[CrossRef] [PubMed]

Werner, J. S.

J. S. Werner, J. Walraven, “Effects of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–943 (1982).
[CrossRef]

J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
[CrossRef] [PubMed]

Wisowaty, J. J.

J. J. Wisowaty, R. M. Boynton, “Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation,” Vision Res. 20, 895–909 (1980).
[CrossRef] [PubMed]

Wooten, B. R.

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

Yim, M. H.

E. N. Pugh, J. E. Thornton, L. J. Friedman, M. H. Yim, “Stiles’s π-1 and π-2 colour mechanisms: isolation of a blue/yellow pathway in normals and dichromats,” in Central and Peripheral Mechanisms of Colour Vision, D. Ottoson, S. Zeki, eds. (Macmillan, London, 1985), pp. 117–137.

Am. J. Optom. Phys. Opt. (1)

A. J. Adams, “Chromatic and luminosity processing in retinal disease,” Am. J. Optom. Phys. Opt. 59, 954–960 (1982).
[CrossRef]

Am. J. Optom. Physiol. Opt. (1)

R. S. Harwerth, E. L. Smith, “The rhesus monkey as a model for normal vision of humans,” Am. J. Optom. Physiol. Opt. 62, 633–641 (1985).
[CrossRef] [PubMed]

Ann. Rev. Psychol. (1)

J. D. Mollon, “Color vision,” Ann. Rev. Psychol. 33, 41–85 (1982).
[CrossRef]

Brit. J. Ophthalmol. (1)

S. L. Alvarez, P. E. King-Smith, S. K. Bhargava, “Spectral thresholds in macular degeneration,” Brit. J. Ophthalmol. 67, 508–511 (1983).
[CrossRef]

Coloq. Sobre Probl. Opt. Vis., Madrid, Union Int. Phys. Pure Appl. (1)

W. S. Stiles, “Further studies of visual mechanisms by the two-colour threshold method,” Coloq. Sobre Probl. Opt. Vis., Madrid, Union Int. Phys. Pure Appl. 1, 65–103 (1953).

Color Res. Applic. (2)

B. Drum, “Color scaling of chromatic increments on achromatic backgrounds: implications for hue signals from individual classes of cones,” Color Res. Applic. 14, 293–308 (1989).
[CrossRef]

P. E. King-Smith, A. J. Vingrys, S. C. Benes, “Visual thresholds measured with color video monitors,” Color Res. Applic. 12, 73–80.

Inv. Ophthalmol. Vis. Sci. Suppl. (1)

C. Fach, J. D. Mollon, “Predicting the position of Sloan’s notch,” Inv. Ophthalmol. Vis. Sci. Suppl. 28, 212 (1987).

Invest. Ophthalmol. Vis. Sci. (1)

D. A. Baylor, “Photoreceptor signals and vision–Proctor lecture,” Invest. Ophthalmol. Vis. Sci. 28, 34–49 (1987).
[PubMed]

J. Opt. Soc. Am. (18)

S. L. Guth, R. W. Massof, T. C. Benzschawal, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980).
[CrossRef] [PubMed]

H. G. Sperling, W G. Lewis, “Some comparisons between foveal spectral sensitivity data obtained at high brightness and absolute threshold,” J. Opt. Soc. Am. 49, 983–989 (1959).
[CrossRef] [PubMed]

M. Ikeda, T. Uetsuki, W. S. Stiles, “Interrelation among Stiles πmechanisms,” J. Opt. Soc. Am. 60, 406–415 (1970).
[CrossRef] [PubMed]

R. M. Boynton, “Rapid chromatic adaptation and the sensitivity functions of human color vision,” J. Opt. Soc. Am. 46, 172–179 (1956).
[CrossRef] [PubMed]

R. M. Boynton, “Contribution of threshold measurements to color-discrimination theory,” J. Opt. Soc. Am. 53, 165–178 (1963).
[CrossRef]

R. M. Boynton, G. Kandel, J. W. Onley, “Rapid chromatic adaptation of normal and dichromatic observers,” J. Opt. Soc. Am. 49, 654–666 (1959).
[CrossRef] [PubMed]

M. Ikeda, R. M. Boynton, “Effect of test-flash duration upon the spectral sensitivity of the eye,” J. Opt. Soc. Am. 52, 697–699 (1962).
[CrossRef]

M. Ikeda, “Study of interrelations between mechanisms at threshold,” J. Opt. Soc. Am. 53, 1305–1313 (1963).
[CrossRef] [PubMed]

M. Ikeda, “Further use of the summation index for the study of color vision,” J. Opt. Soc. Am. 54, 89–94 (1964).
[CrossRef] [PubMed]

C. R. Ingling, E. Martinez, “Stiles’s π5 mechanism: failure to show univariance is caused by opponent-channel input,” J. Opt. Soc. Am. 71, 1134–1137 (1981).
[CrossRef]

R. M. Boynton, S. R. Das, J. Gardiner, “Interactions between photopic visual mechanisms revealed by mixing conditioning fields,” J. Opt. Soc. Am. 56, 1775–1780 (1966).
[CrossRef]

N. A. Sidley, H. G. Sperling, “Photopic spectral sensitivity in the rhesus monkey,” J. Opt. Soc. Am. 57, 816–818 (1967).
[CrossRef] [PubMed]

P. E. King-Smith, D. Carden, “Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
[CrossRef] [PubMed]

C. Sigel, L. Brousseau, “Pi-4: adaptation of more than one class of cone,” J. Opt. Soc. Am. 72, 237–246 (1982).
[CrossRef] [PubMed]

C. Sigel, E. N. Pugh, “Stiles’s π-5 color mechanism: tests of field displacement and field additivity properties,” J. Opt. Soc. Am. 70, 71–81 (1980).
[CrossRef] [PubMed]

C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Sensitivity to spatiotemporal combined luminance and chromaticity contrast,” J. Opt. Soc. Am. 71, 453–459 (1981).
[CrossRef] [PubMed]

J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
[CrossRef] [PubMed]

D. Jameson, L. M. Hurvieh, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc. Am. 45, 546–552 (1955).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Physiol. (1)

E. N. Pugh, “The nature of the π-1 colour mechanism of W S. Stiles,” J. Physiol. 257, 713–747 (1976).
[PubMed]

J. Physiol. (London) (4)

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,” J. Physiol. (London) 251, 167–195 (1975).

F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. (London) 251, 217–229 (1975).

H. B. Barlow, “Increment thresholds at low intensities considered as signal/noise discriminations,” J. Physiol. (London) 136, 469–488 (1957).

Mod. Prob. Ophthalmol. (1)

M. Marre, E. Marre, “Different types of acquired colour vision deficiencies on the base of CVM patters is dependent upon the fixation mode of the diseased eye,” Mod. Prob. Ophthalmol. 13, 248–252 (1978).

Nat. Phys. Lab. (UK) Symp. (1)

H. B. Barlow, “Intrinsic noise of cones,” Nat. Phys. Lab. (UK) Symp. 8, 615–637 (1958).

Nature (1)

J. D. Mollon, P. G. Polden, “Saturation of a retinal cone mechanism,” Nature 265, 243–246 (1977).
[CrossRef] [PubMed]

Nature (London) (1)

P. E. King-Smith, “Visual detection analyzed in terms of luminance and chromatic signals,” Nature (London) 255, 69–70 (1975).
[CrossRef]

Ned. Tijdschr. Natuurk. (1)

W. S. Stiles, “The determination of the spectral sensitivities of the retinal mechanisms by sensory methods,” Ned. Tijdschr. Natuurk. 15, 125–145 (1949).

Perception (3)

A. Stockman, J. D. Mollon, “The spectral sensitivities of the middle- and long-wavelength cones: an extension of the two-colour threshold technique of Stiles,” Perception 15, 729–754 (1986).
[CrossRef]

E. N. Pugh, D. B. Kirk, “The πmechanisms of W S. Stiles: an historical review,” Perception 15, 705–728 (1986).
[CrossRef]

M. Ikeda, Y. Nakano, “The Stiles summation index applied to heterochromatic brightness matching,” Perception 15, 765–776 (1986).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

Y. Hsia, C. H. Graham, “Spectral sensitivity of the cones in the dark adapted human eye,” Proc. Natl. Acad. Sci. USA 38, 80–85 (1952).
[CrossRef] [PubMed]

W S. Stiles, “Color vision: the approach through increment threshold sensitivity,” Proc. Natl. Acad. Sci. USA 45, 100–114 (1959).
[CrossRef]

Proc. R. Soc. London Ser. B (3)

W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivities of the rods and cones,” Proc. R. Soc. London Ser. B 127, 64–105 (1939).
[CrossRef]

W S. Stiles, B. H. Crawford, “The liminal brightness increment as a function of wave-length for different conditions of the foveal and parafoveal retina,” Proc. R. Soc. London Ser. B 113, 496–530 (1933).
[CrossRef]

W S. Stiles, “Separation of the ‘blue’ and ‘green’ mechanisms of foveal vision by measurements of increment thresholds,” Proc. R. Soc. London Ser. B 133, 418–434 (1946).
[CrossRef]

Psychol. Monogr. (1)

L. L. Sloan, “The effect of intensity of light, state of adaptation of the eye, and size of photometric field on the visibility curve—a study of the Purkinje phenomenon,” Psychol. Monogr. 38, 1–87 (1928).

Psychol. Rev. (1)

L. M. Hurvieh, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[CrossRef]

Science (8)

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

W B. Brown, G. Wald, “Visual pigments in single rods and cones of the human retina,” Science 144, 45–52 (1964).
[CrossRef] [PubMed]

G. Wald, “Molecular basis of visual excitation,” Science 162, 230–239 (1968).
[CrossRef] [PubMed]

G. Wald, “The receptors of human color vision,” Science 145, 1007–1016 (1964).
[CrossRef] [PubMed]

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

R. S. Harwerth, E. L. Smith, G. C. Duncan, M. L. J. Crawford, G. K. von Noorden, “Multiple sensitivity periods in the development of the primate visual system,” Science 232, 235–238 (1986).
[CrossRef] [PubMed]

W S. Stiles, “Appendix by W S. Stiles: foveal threshold sensitivity on fields of different colors,” Science 145, 1016–1017 (1964).
[CrossRef] [PubMed]

R. M. Boynton, S. R. Das, “Visual adaptation: increased efficiency resulting from spectrally distributed mixtures of stimuli,” Science 154, 1581–1583 (1966).
[CrossRef] [PubMed]

Vision Res. (30)

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef]

R. S. Harwerth, M. L. J. Crawford, E. L. Smith, R. L. Boltz, “Behavioral studies of stimulus deprivation amblyopia in monkeys,” Vision Res. 21, 779–789 (1981).
[CrossRef] [PubMed]

K. Kranda, P. E. King-Smith, “Detection of colored stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
[CrossRef]

T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the protanomalous observer,” Vision Res. 13, 2033–2047 (1973).
[CrossRef] [PubMed]

T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the deuteranomalous observer,” Vision Res. 13, 2049–2058 (1973).
[CrossRef] [PubMed]

R. M. Boynton, M. Ikeda, W S. Stiles, “Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds,” Vision Res. 4, 87–117 (1964).
[CrossRef] [PubMed]

B. A. Wandell, J. Sanchez, B. Quinn, “Detection/discrimination in the long-wavelength pathways,” Vision Res. 22, 1061–1069 (1982).
[CrossRef] [PubMed]

B. A. Wandell, E. N. Pugh, “Detection of long-duration, long-wavelength incremental flashes by a chromatically coded pathway,” Vision Res. 20, 625–636 (1980).
[CrossRef] [PubMed]

P. E. King-Smith, K. Kranda, “Photopic adaptation in the red–green spectral range,” Vision Res. 21, 565–572 (1981).
[CrossRef]

C. R. Ingling, “A tetrachromatic hypothesis for human color vision,” Vision Res. 9, 1131–1148.
[PubMed]

C. F. Stromeyer, J. Lee, “Adaptation effects of short wave cone signals on red–green detection,” Vision Res. 28, 931–940 (1988).
[CrossRef]

E. N. Pugh, J. Larimer, “Test of the identity of the site of blue/yellow hue cancellation and the site of chromatic antagonism in the π-1 pathway,” Vision Res. 20, 779–788 (1980).
[CrossRef]

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[CrossRef] [PubMed]

E. N. Pugh, J. D. Mollon, “A theory of the π-1 and π-3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[CrossRef]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
[CrossRef] [PubMed]

C. R. Ingling, B. H.-P. Tsou, “Orthogonal combinations of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[CrossRef]

R. S. Harwerth, R. L. Boltz, E. L. Smith, “Psychophysical evidence for sustained and transient channels in the monkey visual system,” Vision Res. 20, 15–22 (1980).
[CrossRef] [PubMed]

J. J. Wisowaty, R. M. Boynton, “Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation,” Vision Res. 20, 895–909 (1980).
[CrossRef] [PubMed]

J. S. Werner, J. Walraven, “Effects of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–943 (1982).
[CrossRef]

B. A. Wandell, E. N. Pugh, “A field-additive pathway detects brief-duration, long-wavelength incremental flashes,” Vision Res. 20, 613–624 (1980).
[CrossRef] [PubMed]

C. F. Stromeyer, C. E. Sternheim, “Visibility of red and green spatial patterns upon spectrally mixed adapting fields,” Vision Res. 21, 397–407 (1981).
[CrossRef] [PubMed]

N. J. Coletta, A. J. Adams, “Adaptation of a color-opponent mechanism increases parafoveal sensitivity to luminance flicker,” Vision Res. 26, 1241–1248 (1986).
[CrossRef] [PubMed]

C. E. Sternheim, R. Gorinson, N. Markovitz, “Visual sensitivity during successive chromatic contrast: evidence for interactions between photopic mechanisms,” Vision Res. 17, 45–49 (1977).
[CrossRef] [PubMed]

S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
[CrossRef] [PubMed]

J. Walraven, “Perceived colour under conditions of chromatic adaptation: evidence for gain control by πmechanisms,” Vision Res. 21, 611–620 (1981).
[CrossRef]

D. H. Foster, “Changes in field spectral sensitivities or red-, green-, and blue-sensitive colour background fields,” Vision Res. 21, 1131–1148 (1969).

D. H. Foster, R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour process?” Vision Res. 23, 787–797 (1983).
[CrossRef]

Other (14)

J. Kirk, J. Larimer, “Yellow–blue cancellation on yellow fields: its relevance to the two-process theory,” in Colour VisionJ. D. Mollon, L. T. sharpe, eds. (Academic, London, 1983), pp. 375–383.

P. L. Pease, “Spectral properties of monkey lateral geniculate cells,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., 1975).

J. D. Mollon, C. R. Cavonius, “The chromatic antagonisms of opponent process theory are not the same as those revealed in studies of detection and discrimination,” in Colour Vision Deficiencies VIIIG. Verriest, ed. (Junk, Dordrecht, The Netherlands, 1987), pp. 473–483.
[CrossRef]

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

L. M. Hurvieh, Color Vision (Sinauer, Sunderland, Mass., 1981).

C. F. Stromeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanisms controlling sensitivity to red–green chromatic flashes,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London1983), pp. 313–330.

R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, New York, 1979).

M. Kalloniatis, “Psychophysical studies of color vision processing in the monkey visual system,” Ph.D. dissertation (University of Houston, Houston, Tex., 1988).

E. N. Pugh, J. E. Thornton, L. J. Friedman, M. H. Yim, “Stiles’s π-1 and π-2 colour mechanisms: isolation of a blue/yellow pathway in normals and dichromats,” in Central and Peripheral Mechanisms of Colour Vision, D. Ottoson, S. Zeki, eds. (Macmillan, London, 1985), pp. 117–137.

J. E. Thornton, E. N. Pugh, “Relationship of opponent colours cancellation measures to cone-antagonistic signals deduced from increment threshold data,” in Colour VisionJ. D. Mollon, L. T. Sharpe, eds. (Academic, London1983), pp. 361–373.

H. G. Sperling, “Flash blindness as a function of wavelength specificity,” in Proceedings of the First Annual Conference on Biologic Effects of Laser Radiation (Federation of American Societies for Experimental Biology, Washington, D.C., 1965), pp. S-73–S-77.

M. Marre, “The investigation of acquired colour vision deficiencies,” in Colour 73 (Hilger, Bristol, UK, 1973), pp. 99–135.

W. S. Stiles, “Introductory essay–increment thresholds in the analysis of colour-sensitive mechanisms of vision: historical retrospect and comment on recent developments,” in Mechanisms of Colour Vision (Academic, London, 1978), pp. 1–35.

W S. Stiles, “Mechanism, concept in colour theory–Newton lecture,” J. Colour Group11, 106–123 (1967);in Mechanisms of Colour Vision (Academic, London, 1978), pp. 272–290.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

First-site adaptation in the L–M opponent and nonopponent channels for three adapting wavelengths of 500, 550, and 580 nm. The upper part of each figure shows the M- and L-cone photoreceptors, with the arrow indicating the spectral position of the adapting field and any relative spectrally invariant movement of one cone class. The end result of this movement is that both cone classes have the same sensitivity at the wavelength of the adapting field. Our fundamental set has the M and L cones equally sensitive at 550 nm. Consequently, a 550-nm background would stimulate both cone classes equally, and thus there would be no relative shift in sensitivity of the two cone classes. Conversely, both the 500- and 580-nm backgrounds would result in unequal stimulation of one cone class. The lower part of each figure shows the L–M opponent channel (solid curves) and the L–M nonopponent channel (dashed-dotted curves). Chromatic fields would adapt the most sensitive cone class so that both the L and M cones would have equal sensitivity at the adapting-field wavelength. This effect results in a shift of the neutral point of the L–M opponent channel to the wavelength of the adapting background. The interaction values predicted by first-site adaptation for our set of fundamentals would result in interaction values of |L −0.54M|, |L − M|, and |L − 1.86M| for the L–M opponent channel and (L + 0.54M), (L + M), and (L + 1.86M) for the L–M nonopponent channel for the three adapting wavelengths of 500, 550, and 580 nm. The sensitivity axis is in arbitrary units, and the cone spectral sensitivities and interaction constants were derived as described previously.23

Fig. 2
Fig. 2

TVR curves for different test wavelengths on a 580-nm adapting field. Note the flat portion of the pi-1 mechanism before adaptation begins and the lower field sensitivity for the pi-4 and pi-5 mechanisms (indicated by the small vertical arrows) (subject L). Under certain adaptation conditions, the pi-2 (dashed curves) and pi-3 mechanisms are indicated. The lower TVR curves for short test wavelengths belong to the rod mechanism (pi-0). For this and subsequent figures the TVR curves have been arbitrarily displaced along the ordinate axis for ease of viewing. The data points on this and subsequent TVR curves reflect the geometric mean of at least three thresholds, and error bars are ±1 standard error of the mean.

Fig. 3
Fig. 3

Same as Fig. 2 but for subject B2.

Fig. 4
Fig. 4

Summary of the background intensity required to raise the test threshold 1 log unit above absolute threshold (in log quanta per second per degree squared, log Q per s/deg2), for different test wavelengths on a 580-nm field. The data were derived from TVR curves for different test wavelengths on a 580-nm background. The mechanisms operating between the radiant intensity levels of approximately 7–11 log Q per s/deg2 are shown. Note the higher field intensity for the pi-1 mechanism and the lower field intensities for the pi-4 and pi-5 mechanisms.

Fig. 5
Fig. 5

TVR curves for a 500-nm background for several test wavelengths. Note the lower field sensitivity for the 500-nm test field compared with the longer wavelengths and the failure of shape invariance at several test wavelengths (subject B2).

Fig. 6
Fig. 6

Summary of the background intensity required to raise the test threshold 1 log unit above absolute threshold (in log Q per s/deg2), for different test wavelengths on a 500-nm background (subject B2). Note the lower field intensity of pi-4 and the two cone branches for the test fields of 580 and 600 nm.

Fig. 7
Fig. 7

ITSS functions on a yellow background (580 nm) of radiant intensity of 8, 9.5, and 10.5 log Q per s/deg2 (subject L). Note the relative increase in S-cone sensitivity and the depth of the notch with increases in the level of adaptation. The L–M opponent channel shows a fit predicted by first-site adaptation alone [model fit (MF, solid curves) with an interaction of |L − 1.86M| and with a floating parameter fit (FPF, dashed curves) of |L − 1.59M|, |L − 1.95M|, and |L − 1.45M| for the adapting levels of 8, 9.5, and 10.5 log Q per s/deg2]. The data at short wavelengths are fitted with the S-cone fundamental alone and at the low adapting intensity by the M-cone fundamental alone. Note that the L–M nonopponent channel operating at the notch position is not shown for the intensity level of 9.5 log Q per s/deg2. Data points for these and subsequent ITSS functions (expressed in reciprocal quantal units) reflect the geometric mean of a least 6 thresholds (but usually 12), and the error bars are ±1 standard error of the mean.

Fig. 8
Fig. 8

Same as for Fig. 7 but for subject B2 and an additional adapting background of 7 log Q per s/deg2. Note the need for S subtractive input into the L–M opponent channel at the 8 log Q per s/deg background. The MF for the L–M opponent chnnnol is as indicated in Fig. 7, and the FPF’s were |L − 1,26M|, 9S − |L − 1.78M|, |L − 1.78M|, and |L − 1.41M| for the intensity levels of 7, 8, 9.5, and 10.5 log Q per s/deg2. Note that the L–M nonopponent channel operating at the notch position is not shown for the 9.5 log Q–s/deg 2intensity level.

Fig. 9
Fig. 9

ITSS functions for four intensity levels shown in Fig. 8 (580-nm background) converted into cone contrasts for the spectral ranges of 590–680 nm (subject B2). The L − M detection contours are approximately parallel with a slope ≈1 for the four intensity levels.

Fig. 10
Fig. 10

ITSS functions on 9.02 and 10.32 log Q per s/deg2 of a 500-nm background for subject L. At longer test-field wavelengths, the dashed curves reflect a FPF for the L–M opponent channel (|L − 0.6M| and |L − 0.54M| for the 9.02 and 10.32 log Q per s/deg2 intensities) and the solid curves the fit of the model |L − 0.54M|. The data at short wavelengths are fitted with the S fundamental alone, and the solid curves in the middle part of the spectrum reflect inhibitory interactions between S cones and the L–M nonopponent channel, which had a set interaction between M and L cones of (L + 0.54M). Note the slightly higher subtractive S-cone interaction required at the higher adaptation level, i.e., 3S − (L + 0.54M) and 5S − (L + 0.54M) for the 9.02 and 10.32 log Q per s/deg2 intensity levels.

Fig. 11
Fig. 11

Same as for Fig. 10 but with an additional background of 8.02 log Q per s/deg2 (subject B2). The FPF’s for the L–M opponent channel were |L − 0.78M|, |L − 0.46M|, and |L − 0.46M| for the adapting intensities of 8.02, 9.02, and 10.32 log Q per s/deg2. The solid curves in the middle part of the spectrum reflect the L–M nonopponent channel with the following fits: 5S − (L + 0.54M), 8S − (L + 0.54M), and 10S − (L + 0.54M) for the three adapting-field intensities.

Fig. 12
Fig. 12

Cone-contrast transformations of the ITSS data on green backgrounds (spectral range between 500 and ≈540 nm). The detection contours in the 510–540-nm range have a positive slope (inhibitory interactions) for the S versus the M or L cones.

Fig. 13
Fig. 13

ITSS functions for four adapting wavelengths of 540, 560, 580, and 600 nm in the left eye of subject L. Note the broadening of the L peak and the shift in the L–M opponent crossover point as the adapting-field wavelengths are decreased. The dashed curves reflect a FPF and the solid curves the fit predicted by the model (first-site adaptation). The FPF’s were |L − 0.93M|, |L − 1.35M|, |L − 2.04M|, and |L − 0.275M|, and the MF’s were |L − 0.87M|, |L − 1.26M|, |L − 1.86M|, and |L − 3.02M| for the adapting wavelengths of 540, 560, 580, and 600 nm. The adapting intensity was kept constant at 9.5 log Q per s/deg2. The L–M. nonopponent channel operating at the notch position is not shown.

Fig. 14
Fig. 14

Same as for Fig. 13 but for subject B2. The MF’s were as indicated in Fig. 13, and the FPF’s were |L − 0.93M|, |L − 1.41M|, |L − 1.91M|, and |L − 2.88M| for the adapting wavelengths of 540, 560, 580, and 600 nm.

Fig. 15
Fig. 15

Cone-contrast transformations of the ITSS functions for different adapting wavelengths (subject B2). The 45-deg vector identifies the test wavelength indicating the L–M crossover point caused by first-site adaptation. The detection contours for the M − L and L − M components are parallel and approximately equidistant from the origin. For the 600-nm adapting field, the 510–590-nm range is being detected by M cones. Also note the sensitivity change of the opponent detection contours as a function of adaptation, i.e., second-site adaptation of the chromatic channel.34,63

Tables (2)

Tables Icon

Table 1 Slope of the L – M Detection Contours (590–680-nm Range) for the Different Intensity Levels

Tables Icon

Table 2 Slope of the L – M Detection Contours for Longer-Wavelength Test Fields on the Different Adapting-Field Wavelength

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Opp chan = Log ( ABS { [ L ( k 1 * M ) ] ± ( S 1 * S ) } ) + Log ( SS 1 ) ,
Nonopp Chan = Log ( ABS { [ L + ( k 2 * M ) ] ± ( S 2 * S ) } ) + Log ( S S 2 ) ,
S = Chan = Log ABS ( S ) + Log ( S S 3 ) ,
δ L L f ( λ ) = test threshold ( λ ) * L rqs ( λ ) field radiance ( μ ) * L rqs ( μ ) ,
δ M M f ( λ ) = test threshold ( λ ) * M rqs ( λ ) field radiance ( μ ) * M rqs ( μ ) ,
δ S S f ( λ ) = test threshold ( λ ) * S rqs ( λ ) field radiance ( μ ) * S rqs ( μ ) ,
k 1 = k 1 fs / slope of the L M or M L contours ,
k 2 = k 2 fs / ABS ( slope of the L + M contours )
δ I = A * ( 1 + I / I e ) n ,

Metrics