Abstract

Under most conditions, increasing the intensity of a flickering light makes the flicker more conspicuous. For a light flickering at 15 times per second, however, increasing the intensity can cause the flicker to disappear before reappearing again at higher intensities [ Vision Res. 29, 1539,( 1989)]. This flicker disappearance or null is also evident in human electrophysiological recordings at the same intensity levels. These results point to a duality within the rod visual pathway, in which flicker signals travel through a slow and a fast pathway and then recombine at a later stage. At 15 Hz the slow rod flicker signals are delayed by half a cycle relative to the fast signals. Thus, when the two signals are recombined, they destructively interfere and diminish the perception of flicker. The dual-pathway interpretation is supported by both electroretinographic and psychophysical evidence showing a phase difference of half a cycle between 15-Hz rod signals just below and just above the null region. These effects are apparent not only in the normal observer but also in an achromat observer who lacks functioning cone vision.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. T. Sharpe, A. Stockman, D. I. A. MacLeod, “Rod flicker perception: scotopic duality, phase lags and destructive interference,” Vision Res. 29, 1539–1559 (1989).
    [CrossRef] [PubMed]
  2. W. McDougall, “The sensations excited by a single momentary stimulation of the eye,” Br. J. Psychol. 1, 279–301 (1904).
  3. F. Veringa, J. Roeloffs, “Electro-optical stimulation in the human retina,” Nature (London) 211, 321–322 (1966).
    [CrossRef]
  4. D. I. A. MacLeod, “Rods cancel cones in flicker,” Nature (London) 235, 173–174 (1972).
    [CrossRef]
  5. T. E. Frumkes, M. D. Sekuler, M. C. Barris, E. H. Reiss, L. M. Chalupa, “Rod–cone interaction in human scotopic vision–I. Temporal analysis,” Vision Res. 13, 1269–1282 (1973).
    [CrossRef] [PubMed]
  6. T. J. T. P. Van den Berg, H. J. Spekreijse, “Interaction between rod and cone signals studied with temporal sine wave stimulation,” J. Opt. Soc. Am. 67, 1210–1217 (1977).
    [CrossRef] [PubMed]
  7. S. Hecht, S. Shlaer, E. L. Smith, C. Haig, J. C. Peskin, “The visual functions of the complete colorblind,” J. Gen. Physiol. 31, 459–472 (1948).
    [CrossRef] [PubMed]
  8. J. D. Conner, D. I. A. MacLeod, “Rod photoreceptors detect rapid flicker,” Science 195, 689–699 (1977).
    [CrossRef]
  9. J. D. Conner, “The temporal properties of rod vision,” J. Physiol.(London) 332, 139–155 (1982).
  10. R. F. Hess, K. Nordby, “Spatial and temporal limits of vision in the achromat,” J. Physiol. (London) 371, 365–385 (1986).
  11. L. T. Sharpe, K. Nordby, “Total colour blindness: an introduction,” in Night Vision: Basic, Clinical and Applied Aspects, R. F. Hess, L. T. Sharpe, K. Nordby, eds. (Cambridge U. Press, Cambridge, 1990), pp. 253–289.
  12. L. T. Sharpe, K. Nordby, “The photoreceptors in the achromat,” in Night Vision: Basic, Clinical and Applied Aspects, R. F. Hess, L. T. Sharpe, K. Nordby, eds. (Cambridge U. Press, Cambridge, 1990), pp. 335–389.
  13. K. Nordby, L. T. Sharpe, “The directional sensitivity of the photoreceptors in the human achromat,” J. Physiol. (London) 399, 267–281 (1987).
  14. L. T. Sharpe, V. Volbrecht, “Estimating middle- and longwave cone sensitivity with large, long and tiny, brief targets,” Perception (to be published).
  15. M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
    [CrossRef]
  16. M. F. Marmor, G. B. Arden, S. E. G. Nilsson, E. Zrenner, “Standard for clinical electroretinography,” Arch. Ophthalmol. 107, 816–819 (1989).
    [CrossRef]
  17. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).
  18. W. S. Stiles, B. H. Crawford, “The luminous efficiency of monochromatic rays entering the eye pupil at different points,” Proc.R. Soc. London Ser. B 112, 428–450 (1933).
    [CrossRef]
  19. W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivities of the rods and cones,” Proc.R. Soc. London Ser. B 127, 64–105 (1939).
    [CrossRef]
  20. L. T. Sharpe, H. Collewijn, K. Nordby, “Fixation, pursuit and nystagmus in a complete achromat,” Clin. Vision Sci. 1, 39–49 (1986).
  21. L. T. Sharpe, C. C. Fach, A. Stockman, “Spectral properties of the two rod pathways,” submitted to Vision Res.
  22. H. Larsen, “Demonstration mikroskopischer Präparate von einem monochromatischen Auge,” Klin. Monatsbl. Augenheilk 67, 301–302 (1921).
  23. R. Harrison, D. Hoefnagel, J. N. Hayward, “Congenital total colour blindness, a clinico-pathological report,” Arch. Ophthalmol. 64, 685–692 (1960).
    [CrossRef]
  24. H. F. Falls, J. R. Wolter, M. Alpern, “Typical total monochromacy,” Arch. Ophthalmol. 74, 610–616 (1965).
    [CrossRef] [PubMed]
  25. M. Glickstein, G. G. Heath, “Receptors in the monochromat eye,” Vision Res. 15, 633–636 (1975).
    [CrossRef] [PubMed]
  26. S. H. Goldberg, T. E. Frumkes, R. W. Nygaard, “Inhibitory influence of unstimulated rods in the human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
    [CrossRef] [PubMed]
  27. K. R. Alexander, G. A. Fishman, “Rod–cone interaction in flicker perimetry,” Br.J. Ophthalmol. 68, 303–309 (1984).
    [CrossRef]
  28. N. J. Coletta, A. J. Adams, “Rod–cone interaction in flicker detection,” Vision Res. 24, 1333–1340 (1984).
    [CrossRef]
  29. T. E. Frumkes, F. Naarendorp, S. H. Goldberg, “The influence of cone adaptation upon rod mediated flicker,” Vision Res. 26, 1167–1176 (1986).
    [CrossRef] [PubMed]
  30. H. Kolb, R. Nelson, “Rod pathways in the retina of the cat,” Vision Res. 23, 301–302 (1983).
    [CrossRef] [PubMed]
  31. P. Sterling, “Microcircuitry of the cat retina,” Ann. Rev. Neurosci. 6, 149–185 (1983).
    [CrossRef]
  32. P. Sterling, M. Freed, R. G. Smith, “Microcircuitry and functional architecture of the cat retina,” Trends Neurosci. 9, 186–192 (1986).
    [CrossRef]
  33. N. W. Daw, R. J. Jensen, W J. Brunken, “Rod pathways in mammalian retinae,” Trends Neurosci. 13, 110–115 (1990).
    [CrossRef] [PubMed]
  34. R. Nelson, “Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat,” J. Comp. Neurol. 172, 109–136 (1977).
    [CrossRef] [PubMed]
  35. X.-L. Yang, S. M. Wu, “Modulation of rod-cone coupling by light,” Science 244, 352–354 (1989).
    [CrossRef] [PubMed]
  36. L. Chase, J. E. Dowling, “A comparison of rod and cone pathways in the primate retina,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 207 (1990).
  37. U. Grünert, P. R. Martin, “Rod bipolar cells in the macaque monkey retina: light and electron microscopy,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 536 (1990).
  38. R. W. Rodieck, “Starburst amacrine cells of the primate retina,” J. Comp. Neurol. 285, 18–37 (1989).
    [CrossRef] [PubMed]
  39. A. P. Mariani, “Amacrine cells of the rhesus monkey retina,” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 198 (1988).
  40. H. Kolb, E. V. Famiglietti, “Rod and cone pathways in the inner plexiform layer of cat retina,” Science 186, 47–49 (1974).
    [CrossRef] [PubMed]
  41. E. V. Famiglietti, H. Kolb, “A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina,” Brain Res. 84, 293–300 (1975).
    [CrossRef] [PubMed]
  42. A. Hendrickson, M. A. Koontz, R. G. Pourcho, P. V. Sarthy, D. J. Goebel, “Localization of glycine-containing neurons in the macaca monkey retina,” J. Comp. Neurol. 273, 473–487 (1988).
    [CrossRef] [PubMed]
  43. E. Raviola, N. B. Gilula, “Gap junctions between photoreceptor cells in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 70, 1677–1681 (1973).
    [CrossRef] [PubMed]
  44. W. Müller-Limmroth, Elektrophysiologie des Gesichtssinns: Theorie und Praxis der Elektroretinographie (Springer-Verlag, Berlin, 1950), p. 114.
  45. H. Bornschein, G. Schubert, “Das photopische Flimmer-Elektroretinogramm des Menschen,” Z. Biol. 106, 229–238 (1953).
  46. E. Dodt, J. B. Walther, “Der photopische Dominator im Flimmer-ERG der Katze,” Pflügers Arch. 266, 175–186 (1958).
  47. P. Gouras, R. D. Gunkel, “The frequency response of normal, rod achromat and nyctalope ERG’s to sinusoidal monochromatic light stimulation,” Doc. Ophthalmol. 18, 137–150 (1964).
    [CrossRef]
  48. R. Granit, Sensory Mechanisms of Retina (Oxford U. Press, London, 1947).
  49. W. K. Noell, “The origin of the electroretinogram,” Am. J. Ophthalmol. 28, 78–90 (1954).
  50. D. S. Faber, “Analysis of the slow transretinal potentials in response to light,” Ph.D. dissertation (University of New York, Buffalo, Buffalo, N.Y., 1969).
  51. R. F. Miller, J. E. Dowling, “Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to the b-wave of the electroretinogram,” J. Neurophysiol. 33, 323–341 (1970).
    [PubMed]
  52. E. Dick, R. F. Miller, “Light-evoked potassium activity in mudpuppy retina: its relationship to the b-wave of the electroretinogram,” Brain Res. 154, 388–394 (1978).
    [CrossRef] [PubMed]
  53. L. Gurevich, R. A. Stockton, M. M. Slaughter, “Comparisons of the waveforms of the b-wave of the ERG and on bipolar cells,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 114 (1990).
  54. L. T. Sharpe, A. Stockman, “Dual rod pathways,” in From Pigments to Perception. Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, London, 1991), pp. 53–66.
    [CrossRef]

1990 (4)

N. W. Daw, R. J. Jensen, W J. Brunken, “Rod pathways in mammalian retinae,” Trends Neurosci. 13, 110–115 (1990).
[CrossRef] [PubMed]

L. Chase, J. E. Dowling, “A comparison of rod and cone pathways in the primate retina,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 207 (1990).

U. Grünert, P. R. Martin, “Rod bipolar cells in the macaque monkey retina: light and electron microscopy,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 536 (1990).

L. Gurevich, R. A. Stockton, M. M. Slaughter, “Comparisons of the waveforms of the b-wave of the ERG and on bipolar cells,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 114 (1990).

1989 (4)

X.-L. Yang, S. M. Wu, “Modulation of rod-cone coupling by light,” Science 244, 352–354 (1989).
[CrossRef] [PubMed]

R. W. Rodieck, “Starburst amacrine cells of the primate retina,” J. Comp. Neurol. 285, 18–37 (1989).
[CrossRef] [PubMed]

L. T. Sharpe, A. Stockman, D. I. A. MacLeod, “Rod flicker perception: scotopic duality, phase lags and destructive interference,” Vision Res. 29, 1539–1559 (1989).
[CrossRef] [PubMed]

M. F. Marmor, G. B. Arden, S. E. G. Nilsson, E. Zrenner, “Standard for clinical electroretinography,” Arch. Ophthalmol. 107, 816–819 (1989).
[CrossRef]

1988 (2)

A. P. Mariani, “Amacrine cells of the rhesus monkey retina,” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 198 (1988).

A. Hendrickson, M. A. Koontz, R. G. Pourcho, P. V. Sarthy, D. J. Goebel, “Localization of glycine-containing neurons in the macaca monkey retina,” J. Comp. Neurol. 273, 473–487 (1988).
[CrossRef] [PubMed]

1987 (1)

K. Nordby, L. T. Sharpe, “The directional sensitivity of the photoreceptors in the human achromat,” J. Physiol. (London) 399, 267–281 (1987).

1986 (4)

R. F. Hess, K. Nordby, “Spatial and temporal limits of vision in the achromat,” J. Physiol. (London) 371, 365–385 (1986).

L. T. Sharpe, H. Collewijn, K. Nordby, “Fixation, pursuit and nystagmus in a complete achromat,” Clin. Vision Sci. 1, 39–49 (1986).

P. Sterling, M. Freed, R. G. Smith, “Microcircuitry and functional architecture of the cat retina,” Trends Neurosci. 9, 186–192 (1986).
[CrossRef]

T. E. Frumkes, F. Naarendorp, S. H. Goldberg, “The influence of cone adaptation upon rod mediated flicker,” Vision Res. 26, 1167–1176 (1986).
[CrossRef] [PubMed]

1984 (2)

K. R. Alexander, G. A. Fishman, “Rod–cone interaction in flicker perimetry,” Br.J. Ophthalmol. 68, 303–309 (1984).
[CrossRef]

N. J. Coletta, A. J. Adams, “Rod–cone interaction in flicker detection,” Vision Res. 24, 1333–1340 (1984).
[CrossRef]

1983 (3)

H. Kolb, R. Nelson, “Rod pathways in the retina of the cat,” Vision Res. 23, 301–302 (1983).
[CrossRef] [PubMed]

P. Sterling, “Microcircuitry of the cat retina,” Ann. Rev. Neurosci. 6, 149–185 (1983).
[CrossRef]

S. H. Goldberg, T. E. Frumkes, R. W. Nygaard, “Inhibitory influence of unstimulated rods in the human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
[CrossRef] [PubMed]

1982 (1)

J. D. Conner, “The temporal properties of rod vision,” J. Physiol.(London) 332, 139–155 (1982).

1978 (1)

E. Dick, R. F. Miller, “Light-evoked potassium activity in mudpuppy retina: its relationship to the b-wave of the electroretinogram,” Brain Res. 154, 388–394 (1978).
[CrossRef] [PubMed]

1977 (3)

T. J. T. P. Van den Berg, H. J. Spekreijse, “Interaction between rod and cone signals studied with temporal sine wave stimulation,” J. Opt. Soc. Am. 67, 1210–1217 (1977).
[CrossRef] [PubMed]

J. D. Conner, D. I. A. MacLeod, “Rod photoreceptors detect rapid flicker,” Science 195, 689–699 (1977).
[CrossRef]

R. Nelson, “Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat,” J. Comp. Neurol. 172, 109–136 (1977).
[CrossRef] [PubMed]

1975 (2)

M. Glickstein, G. G. Heath, “Receptors in the monochromat eye,” Vision Res. 15, 633–636 (1975).
[CrossRef] [PubMed]

E. V. Famiglietti, H. Kolb, “A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina,” Brain Res. 84, 293–300 (1975).
[CrossRef] [PubMed]

1974 (1)

H. Kolb, E. V. Famiglietti, “Rod and cone pathways in the inner plexiform layer of cat retina,” Science 186, 47–49 (1974).
[CrossRef] [PubMed]

1973 (2)

T. E. Frumkes, M. D. Sekuler, M. C. Barris, E. H. Reiss, L. M. Chalupa, “Rod–cone interaction in human scotopic vision–I. Temporal analysis,” Vision Res. 13, 1269–1282 (1973).
[CrossRef] [PubMed]

E. Raviola, N. B. Gilula, “Gap junctions between photoreceptor cells in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 70, 1677–1681 (1973).
[CrossRef] [PubMed]

1972 (1)

D. I. A. MacLeod, “Rods cancel cones in flicker,” Nature (London) 235, 173–174 (1972).
[CrossRef]

1970 (1)

R. F. Miller, J. E. Dowling, “Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to the b-wave of the electroretinogram,” J. Neurophysiol. 33, 323–341 (1970).
[PubMed]

1966 (1)

F. Veringa, J. Roeloffs, “Electro-optical stimulation in the human retina,” Nature (London) 211, 321–322 (1966).
[CrossRef]

1965 (1)

H. F. Falls, J. R. Wolter, M. Alpern, “Typical total monochromacy,” Arch. Ophthalmol. 74, 610–616 (1965).
[CrossRef] [PubMed]

1964 (1)

P. Gouras, R. D. Gunkel, “The frequency response of normal, rod achromat and nyctalope ERG’s to sinusoidal monochromatic light stimulation,” Doc. Ophthalmol. 18, 137–150 (1964).
[CrossRef]

1960 (1)

R. Harrison, D. Hoefnagel, J. N. Hayward, “Congenital total colour blindness, a clinico-pathological report,” Arch. Ophthalmol. 64, 685–692 (1960).
[CrossRef]

1958 (1)

E. Dodt, J. B. Walther, “Der photopische Dominator im Flimmer-ERG der Katze,” Pflügers Arch. 266, 175–186 (1958).

1954 (2)

W. K. Noell, “The origin of the electroretinogram,” Am. J. Ophthalmol. 28, 78–90 (1954).

M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
[CrossRef]

1953 (1)

H. Bornschein, G. Schubert, “Das photopische Flimmer-Elektroretinogramm des Menschen,” Z. Biol. 106, 229–238 (1953).

1948 (1)

S. Hecht, S. Shlaer, E. L. Smith, C. Haig, J. C. Peskin, “The visual functions of the complete colorblind,” J. Gen. Physiol. 31, 459–472 (1948).
[CrossRef] [PubMed]

1939 (1)

W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivities of the rods and cones,” Proc.R. Soc. London Ser. B 127, 64–105 (1939).
[CrossRef]

1933 (1)

W. S. Stiles, B. H. Crawford, “The luminous efficiency of monochromatic rays entering the eye pupil at different points,” Proc.R. Soc. London Ser. B 112, 428–450 (1933).
[CrossRef]

1921 (1)

H. Larsen, “Demonstration mikroskopischer Präparate von einem monochromatischen Auge,” Klin. Monatsbl. Augenheilk 67, 301–302 (1921).

1904 (1)

W. McDougall, “The sensations excited by a single momentary stimulation of the eye,” Br. J. Psychol. 1, 279–301 (1904).

Adams, A. J.

N. J. Coletta, A. J. Adams, “Rod–cone interaction in flicker detection,” Vision Res. 24, 1333–1340 (1984).
[CrossRef]

Aguilar, M.

M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
[CrossRef]

Alexander, K. R.

K. R. Alexander, G. A. Fishman, “Rod–cone interaction in flicker perimetry,” Br.J. Ophthalmol. 68, 303–309 (1984).
[CrossRef]

Alpern, M.

H. F. Falls, J. R. Wolter, M. Alpern, “Typical total monochromacy,” Arch. Ophthalmol. 74, 610–616 (1965).
[CrossRef] [PubMed]

Arden, G. B.

M. F. Marmor, G. B. Arden, S. E. G. Nilsson, E. Zrenner, “Standard for clinical electroretinography,” Arch. Ophthalmol. 107, 816–819 (1989).
[CrossRef]

Barris, M. C.

T. E. Frumkes, M. D. Sekuler, M. C. Barris, E. H. Reiss, L. M. Chalupa, “Rod–cone interaction in human scotopic vision–I. Temporal analysis,” Vision Res. 13, 1269–1282 (1973).
[CrossRef] [PubMed]

Bornschein, H.

H. Bornschein, G. Schubert, “Das photopische Flimmer-Elektroretinogramm des Menschen,” Z. Biol. 106, 229–238 (1953).

Brunken, W J.

N. W. Daw, R. J. Jensen, W J. Brunken, “Rod pathways in mammalian retinae,” Trends Neurosci. 13, 110–115 (1990).
[CrossRef] [PubMed]

Chalupa, L. M.

T. E. Frumkes, M. D. Sekuler, M. C. Barris, E. H. Reiss, L. M. Chalupa, “Rod–cone interaction in human scotopic vision–I. Temporal analysis,” Vision Res. 13, 1269–1282 (1973).
[CrossRef] [PubMed]

Chase, L.

L. Chase, J. E. Dowling, “A comparison of rod and cone pathways in the primate retina,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 207 (1990).

Coletta, N. J.

N. J. Coletta, A. J. Adams, “Rod–cone interaction in flicker detection,” Vision Res. 24, 1333–1340 (1984).
[CrossRef]

Collewijn, H.

L. T. Sharpe, H. Collewijn, K. Nordby, “Fixation, pursuit and nystagmus in a complete achromat,” Clin. Vision Sci. 1, 39–49 (1986).

Conner, J. D.

J. D. Conner, “The temporal properties of rod vision,” J. Physiol.(London) 332, 139–155 (1982).

J. D. Conner, D. I. A. MacLeod, “Rod photoreceptors detect rapid flicker,” Science 195, 689–699 (1977).
[CrossRef]

Crawford, B. H.

W. S. Stiles, B. H. Crawford, “The luminous efficiency of monochromatic rays entering the eye pupil at different points,” Proc.R. Soc. London Ser. B 112, 428–450 (1933).
[CrossRef]

Daw, N. W.

N. W. Daw, R. J. Jensen, W J. Brunken, “Rod pathways in mammalian retinae,” Trends Neurosci. 13, 110–115 (1990).
[CrossRef] [PubMed]

Dick, E.

E. Dick, R. F. Miller, “Light-evoked potassium activity in mudpuppy retina: its relationship to the b-wave of the electroretinogram,” Brain Res. 154, 388–394 (1978).
[CrossRef] [PubMed]

Dodt, E.

E. Dodt, J. B. Walther, “Der photopische Dominator im Flimmer-ERG der Katze,” Pflügers Arch. 266, 175–186 (1958).

Dowling, J. E.

L. Chase, J. E. Dowling, “A comparison of rod and cone pathways in the primate retina,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 207 (1990).

R. F. Miller, J. E. Dowling, “Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to the b-wave of the electroretinogram,” J. Neurophysiol. 33, 323–341 (1970).
[PubMed]

Faber, D. S.

D. S. Faber, “Analysis of the slow transretinal potentials in response to light,” Ph.D. dissertation (University of New York, Buffalo, Buffalo, N.Y., 1969).

Fach, C. C.

L. T. Sharpe, C. C. Fach, A. Stockman, “Spectral properties of the two rod pathways,” submitted to Vision Res.

Falls, H. F.

H. F. Falls, J. R. Wolter, M. Alpern, “Typical total monochromacy,” Arch. Ophthalmol. 74, 610–616 (1965).
[CrossRef] [PubMed]

Famiglietti, E. V.

E. V. Famiglietti, H. Kolb, “A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina,” Brain Res. 84, 293–300 (1975).
[CrossRef] [PubMed]

H. Kolb, E. V. Famiglietti, “Rod and cone pathways in the inner plexiform layer of cat retina,” Science 186, 47–49 (1974).
[CrossRef] [PubMed]

Fishman, G. A.

K. R. Alexander, G. A. Fishman, “Rod–cone interaction in flicker perimetry,” Br.J. Ophthalmol. 68, 303–309 (1984).
[CrossRef]

Freed, M.

P. Sterling, M. Freed, R. G. Smith, “Microcircuitry and functional architecture of the cat retina,” Trends Neurosci. 9, 186–192 (1986).
[CrossRef]

Frumkes, T. E.

T. E. Frumkes, F. Naarendorp, S. H. Goldberg, “The influence of cone adaptation upon rod mediated flicker,” Vision Res. 26, 1167–1176 (1986).
[CrossRef] [PubMed]

S. H. Goldberg, T. E. Frumkes, R. W. Nygaard, “Inhibitory influence of unstimulated rods in the human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
[CrossRef] [PubMed]

T. E. Frumkes, M. D. Sekuler, M. C. Barris, E. H. Reiss, L. M. Chalupa, “Rod–cone interaction in human scotopic vision–I. Temporal analysis,” Vision Res. 13, 1269–1282 (1973).
[CrossRef] [PubMed]

Gilula, N. B.

E. Raviola, N. B. Gilula, “Gap junctions between photoreceptor cells in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 70, 1677–1681 (1973).
[CrossRef] [PubMed]

Glickstein, M.

M. Glickstein, G. G. Heath, “Receptors in the monochromat eye,” Vision Res. 15, 633–636 (1975).
[CrossRef] [PubMed]

Goebel, D. J.

A. Hendrickson, M. A. Koontz, R. G. Pourcho, P. V. Sarthy, D. J. Goebel, “Localization of glycine-containing neurons in the macaca monkey retina,” J. Comp. Neurol. 273, 473–487 (1988).
[CrossRef] [PubMed]

Goldberg, S. H.

T. E. Frumkes, F. Naarendorp, S. H. Goldberg, “The influence of cone adaptation upon rod mediated flicker,” Vision Res. 26, 1167–1176 (1986).
[CrossRef] [PubMed]

S. H. Goldberg, T. E. Frumkes, R. W. Nygaard, “Inhibitory influence of unstimulated rods in the human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
[CrossRef] [PubMed]

Gouras, P.

P. Gouras, R. D. Gunkel, “The frequency response of normal, rod achromat and nyctalope ERG’s to sinusoidal monochromatic light stimulation,” Doc. Ophthalmol. 18, 137–150 (1964).
[CrossRef]

Granit, R.

R. Granit, Sensory Mechanisms of Retina (Oxford U. Press, London, 1947).

Grünert, U.

U. Grünert, P. R. Martin, “Rod bipolar cells in the macaque monkey retina: light and electron microscopy,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 536 (1990).

Gunkel, R. D.

P. Gouras, R. D. Gunkel, “The frequency response of normal, rod achromat and nyctalope ERG’s to sinusoidal monochromatic light stimulation,” Doc. Ophthalmol. 18, 137–150 (1964).
[CrossRef]

Gurevich, L.

L. Gurevich, R. A. Stockton, M. M. Slaughter, “Comparisons of the waveforms of the b-wave of the ERG and on bipolar cells,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 114 (1990).

Haig, C.

S. Hecht, S. Shlaer, E. L. Smith, C. Haig, J. C. Peskin, “The visual functions of the complete colorblind,” J. Gen. Physiol. 31, 459–472 (1948).
[CrossRef] [PubMed]

Harrison, R.

R. Harrison, D. Hoefnagel, J. N. Hayward, “Congenital total colour blindness, a clinico-pathological report,” Arch. Ophthalmol. 64, 685–692 (1960).
[CrossRef]

Hayward, J. N.

R. Harrison, D. Hoefnagel, J. N. Hayward, “Congenital total colour blindness, a clinico-pathological report,” Arch. Ophthalmol. 64, 685–692 (1960).
[CrossRef]

Heath, G. G.

M. Glickstein, G. G. Heath, “Receptors in the monochromat eye,” Vision Res. 15, 633–636 (1975).
[CrossRef] [PubMed]

Hecht, S.

S. Hecht, S. Shlaer, E. L. Smith, C. Haig, J. C. Peskin, “The visual functions of the complete colorblind,” J. Gen. Physiol. 31, 459–472 (1948).
[CrossRef] [PubMed]

Hendrickson, A.

A. Hendrickson, M. A. Koontz, R. G. Pourcho, P. V. Sarthy, D. J. Goebel, “Localization of glycine-containing neurons in the macaca monkey retina,” J. Comp. Neurol. 273, 473–487 (1988).
[CrossRef] [PubMed]

Hess, R. F.

R. F. Hess, K. Nordby, “Spatial and temporal limits of vision in the achromat,” J. Physiol. (London) 371, 365–385 (1986).

Hoefnagel, D.

R. Harrison, D. Hoefnagel, J. N. Hayward, “Congenital total colour blindness, a clinico-pathological report,” Arch. Ophthalmol. 64, 685–692 (1960).
[CrossRef]

Jensen, R. J.

N. W. Daw, R. J. Jensen, W J. Brunken, “Rod pathways in mammalian retinae,” Trends Neurosci. 13, 110–115 (1990).
[CrossRef] [PubMed]

Kolb, H.

H. Kolb, R. Nelson, “Rod pathways in the retina of the cat,” Vision Res. 23, 301–302 (1983).
[CrossRef] [PubMed]

E. V. Famiglietti, H. Kolb, “A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina,” Brain Res. 84, 293–300 (1975).
[CrossRef] [PubMed]

H. Kolb, E. V. Famiglietti, “Rod and cone pathways in the inner plexiform layer of cat retina,” Science 186, 47–49 (1974).
[CrossRef] [PubMed]

Koontz, M. A.

A. Hendrickson, M. A. Koontz, R. G. Pourcho, P. V. Sarthy, D. J. Goebel, “Localization of glycine-containing neurons in the macaca monkey retina,” J. Comp. Neurol. 273, 473–487 (1988).
[CrossRef] [PubMed]

Larsen, H.

H. Larsen, “Demonstration mikroskopischer Präparate von einem monochromatischen Auge,” Klin. Monatsbl. Augenheilk 67, 301–302 (1921).

MacLeod, D. I. A.

L. T. Sharpe, A. Stockman, D. I. A. MacLeod, “Rod flicker perception: scotopic duality, phase lags and destructive interference,” Vision Res. 29, 1539–1559 (1989).
[CrossRef] [PubMed]

J. D. Conner, D. I. A. MacLeod, “Rod photoreceptors detect rapid flicker,” Science 195, 689–699 (1977).
[CrossRef]

D. I. A. MacLeod, “Rods cancel cones in flicker,” Nature (London) 235, 173–174 (1972).
[CrossRef]

Mariani, A. P.

A. P. Mariani, “Amacrine cells of the rhesus monkey retina,” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 198 (1988).

Marmor, M. F.

M. F. Marmor, G. B. Arden, S. E. G. Nilsson, E. Zrenner, “Standard for clinical electroretinography,” Arch. Ophthalmol. 107, 816–819 (1989).
[CrossRef]

Martin, P. R.

U. Grünert, P. R. Martin, “Rod bipolar cells in the macaque monkey retina: light and electron microscopy,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 536 (1990).

McDougall, W.

W. McDougall, “The sensations excited by a single momentary stimulation of the eye,” Br. J. Psychol. 1, 279–301 (1904).

Miller, R. F.

E. Dick, R. F. Miller, “Light-evoked potassium activity in mudpuppy retina: its relationship to the b-wave of the electroretinogram,” Brain Res. 154, 388–394 (1978).
[CrossRef] [PubMed]

R. F. Miller, J. E. Dowling, “Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to the b-wave of the electroretinogram,” J. Neurophysiol. 33, 323–341 (1970).
[PubMed]

Müller-Limmroth, W.

W. Müller-Limmroth, Elektrophysiologie des Gesichtssinns: Theorie und Praxis der Elektroretinographie (Springer-Verlag, Berlin, 1950), p. 114.

Naarendorp, F.

T. E. Frumkes, F. Naarendorp, S. H. Goldberg, “The influence of cone adaptation upon rod mediated flicker,” Vision Res. 26, 1167–1176 (1986).
[CrossRef] [PubMed]

Nelson, R.

H. Kolb, R. Nelson, “Rod pathways in the retina of the cat,” Vision Res. 23, 301–302 (1983).
[CrossRef] [PubMed]

R. Nelson, “Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat,” J. Comp. Neurol. 172, 109–136 (1977).
[CrossRef] [PubMed]

Nilsson, S. E. G.

M. F. Marmor, G. B. Arden, S. E. G. Nilsson, E. Zrenner, “Standard for clinical electroretinography,” Arch. Ophthalmol. 107, 816–819 (1989).
[CrossRef]

Noell, W. K.

W. K. Noell, “The origin of the electroretinogram,” Am. J. Ophthalmol. 28, 78–90 (1954).

Nordby, K.

K. Nordby, L. T. Sharpe, “The directional sensitivity of the photoreceptors in the human achromat,” J. Physiol. (London) 399, 267–281 (1987).

R. F. Hess, K. Nordby, “Spatial and temporal limits of vision in the achromat,” J. Physiol. (London) 371, 365–385 (1986).

L. T. Sharpe, H. Collewijn, K. Nordby, “Fixation, pursuit and nystagmus in a complete achromat,” Clin. Vision Sci. 1, 39–49 (1986).

L. T. Sharpe, K. Nordby, “Total colour blindness: an introduction,” in Night Vision: Basic, Clinical and Applied Aspects, R. F. Hess, L. T. Sharpe, K. Nordby, eds. (Cambridge U. Press, Cambridge, 1990), pp. 253–289.

L. T. Sharpe, K. Nordby, “The photoreceptors in the achromat,” in Night Vision: Basic, Clinical and Applied Aspects, R. F. Hess, L. T. Sharpe, K. Nordby, eds. (Cambridge U. Press, Cambridge, 1990), pp. 335–389.

Nygaard, R. W.

S. H. Goldberg, T. E. Frumkes, R. W. Nygaard, “Inhibitory influence of unstimulated rods in the human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
[CrossRef] [PubMed]

Peskin, J. C.

S. Hecht, S. Shlaer, E. L. Smith, C. Haig, J. C. Peskin, “The visual functions of the complete colorblind,” J. Gen. Physiol. 31, 459–472 (1948).
[CrossRef] [PubMed]

Pourcho, R. G.

A. Hendrickson, M. A. Koontz, R. G. Pourcho, P. V. Sarthy, D. J. Goebel, “Localization of glycine-containing neurons in the macaca monkey retina,” J. Comp. Neurol. 273, 473–487 (1988).
[CrossRef] [PubMed]

Raviola, E.

E. Raviola, N. B. Gilula, “Gap junctions between photoreceptor cells in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 70, 1677–1681 (1973).
[CrossRef] [PubMed]

Reiss, E. H.

T. E. Frumkes, M. D. Sekuler, M. C. Barris, E. H. Reiss, L. M. Chalupa, “Rod–cone interaction in human scotopic vision–I. Temporal analysis,” Vision Res. 13, 1269–1282 (1973).
[CrossRef] [PubMed]

Rodieck, R. W.

R. W. Rodieck, “Starburst amacrine cells of the primate retina,” J. Comp. Neurol. 285, 18–37 (1989).
[CrossRef] [PubMed]

Roeloffs, J.

F. Veringa, J. Roeloffs, “Electro-optical stimulation in the human retina,” Nature (London) 211, 321–322 (1966).
[CrossRef]

Sarthy, P. V.

A. Hendrickson, M. A. Koontz, R. G. Pourcho, P. V. Sarthy, D. J. Goebel, “Localization of glycine-containing neurons in the macaca monkey retina,” J. Comp. Neurol. 273, 473–487 (1988).
[CrossRef] [PubMed]

Schubert, G.

H. Bornschein, G. Schubert, “Das photopische Flimmer-Elektroretinogramm des Menschen,” Z. Biol. 106, 229–238 (1953).

Sekuler, M. D.

T. E. Frumkes, M. D. Sekuler, M. C. Barris, E. H. Reiss, L. M. Chalupa, “Rod–cone interaction in human scotopic vision–I. Temporal analysis,” Vision Res. 13, 1269–1282 (1973).
[CrossRef] [PubMed]

Sharpe, L. T.

L. T. Sharpe, A. Stockman, D. I. A. MacLeod, “Rod flicker perception: scotopic duality, phase lags and destructive interference,” Vision Res. 29, 1539–1559 (1989).
[CrossRef] [PubMed]

K. Nordby, L. T. Sharpe, “The directional sensitivity of the photoreceptors in the human achromat,” J. Physiol. (London) 399, 267–281 (1987).

L. T. Sharpe, H. Collewijn, K. Nordby, “Fixation, pursuit and nystagmus in a complete achromat,” Clin. Vision Sci. 1, 39–49 (1986).

L. T. Sharpe, C. C. Fach, A. Stockman, “Spectral properties of the two rod pathways,” submitted to Vision Res.

L. T. Sharpe, V. Volbrecht, “Estimating middle- and longwave cone sensitivity with large, long and tiny, brief targets,” Perception (to be published).

L. T. Sharpe, K. Nordby, “The photoreceptors in the achromat,” in Night Vision: Basic, Clinical and Applied Aspects, R. F. Hess, L. T. Sharpe, K. Nordby, eds. (Cambridge U. Press, Cambridge, 1990), pp. 335–389.

L. T. Sharpe, K. Nordby, “Total colour blindness: an introduction,” in Night Vision: Basic, Clinical and Applied Aspects, R. F. Hess, L. T. Sharpe, K. Nordby, eds. (Cambridge U. Press, Cambridge, 1990), pp. 253–289.

L. T. Sharpe, A. Stockman, “Dual rod pathways,” in From Pigments to Perception. Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, London, 1991), pp. 53–66.
[CrossRef]

Shlaer, S.

S. Hecht, S. Shlaer, E. L. Smith, C. Haig, J. C. Peskin, “The visual functions of the complete colorblind,” J. Gen. Physiol. 31, 459–472 (1948).
[CrossRef] [PubMed]

Slaughter, M. M.

L. Gurevich, R. A. Stockton, M. M. Slaughter, “Comparisons of the waveforms of the b-wave of the ERG and on bipolar cells,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 114 (1990).

Smith, E. L.

S. Hecht, S. Shlaer, E. L. Smith, C. Haig, J. C. Peskin, “The visual functions of the complete colorblind,” J. Gen. Physiol. 31, 459–472 (1948).
[CrossRef] [PubMed]

Smith, R. G.

P. Sterling, M. Freed, R. G. Smith, “Microcircuitry and functional architecture of the cat retina,” Trends Neurosci. 9, 186–192 (1986).
[CrossRef]

Spekreijse, H. J.

Sterling, P.

P. Sterling, M. Freed, R. G. Smith, “Microcircuitry and functional architecture of the cat retina,” Trends Neurosci. 9, 186–192 (1986).
[CrossRef]

P. Sterling, “Microcircuitry of the cat retina,” Ann. Rev. Neurosci. 6, 149–185 (1983).
[CrossRef]

Stiles, W. S.

M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
[CrossRef]

W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivities of the rods and cones,” Proc.R. Soc. London Ser. B 127, 64–105 (1939).
[CrossRef]

W. S. Stiles, B. H. Crawford, “The luminous efficiency of monochromatic rays entering the eye pupil at different points,” Proc.R. Soc. London Ser. B 112, 428–450 (1933).
[CrossRef]

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Stockman, A.

L. T. Sharpe, A. Stockman, D. I. A. MacLeod, “Rod flicker perception: scotopic duality, phase lags and destructive interference,” Vision Res. 29, 1539–1559 (1989).
[CrossRef] [PubMed]

L. T. Sharpe, C. C. Fach, A. Stockman, “Spectral properties of the two rod pathways,” submitted to Vision Res.

L. T. Sharpe, A. Stockman, “Dual rod pathways,” in From Pigments to Perception. Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, London, 1991), pp. 53–66.
[CrossRef]

Stockton, R. A.

L. Gurevich, R. A. Stockton, M. M. Slaughter, “Comparisons of the waveforms of the b-wave of the ERG and on bipolar cells,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 114 (1990).

Van den Berg, T. J. T. P.

Veringa, F.

F. Veringa, J. Roeloffs, “Electro-optical stimulation in the human retina,” Nature (London) 211, 321–322 (1966).
[CrossRef]

Volbrecht, V.

L. T. Sharpe, V. Volbrecht, “Estimating middle- and longwave cone sensitivity with large, long and tiny, brief targets,” Perception (to be published).

Walther, J. B.

E. Dodt, J. B. Walther, “Der photopische Dominator im Flimmer-ERG der Katze,” Pflügers Arch. 266, 175–186 (1958).

Wolter, J. R.

H. F. Falls, J. R. Wolter, M. Alpern, “Typical total monochromacy,” Arch. Ophthalmol. 74, 610–616 (1965).
[CrossRef] [PubMed]

Wu, S. M.

X.-L. Yang, S. M. Wu, “Modulation of rod-cone coupling by light,” Science 244, 352–354 (1989).
[CrossRef] [PubMed]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Yang, X.-L.

X.-L. Yang, S. M. Wu, “Modulation of rod-cone coupling by light,” Science 244, 352–354 (1989).
[CrossRef] [PubMed]

Zrenner, E.

M. F. Marmor, G. B. Arden, S. E. G. Nilsson, E. Zrenner, “Standard for clinical electroretinography,” Arch. Ophthalmol. 107, 816–819 (1989).
[CrossRef]

Am. J. Ophthalmol. (1)

W. K. Noell, “The origin of the electroretinogram,” Am. J. Ophthalmol. 28, 78–90 (1954).

Ann. Rev. Neurosci. (1)

P. Sterling, “Microcircuitry of the cat retina,” Ann. Rev. Neurosci. 6, 149–185 (1983).
[CrossRef]

Arch. Ophthalmol. (3)

R. Harrison, D. Hoefnagel, J. N. Hayward, “Congenital total colour blindness, a clinico-pathological report,” Arch. Ophthalmol. 64, 685–692 (1960).
[CrossRef]

H. F. Falls, J. R. Wolter, M. Alpern, “Typical total monochromacy,” Arch. Ophthalmol. 74, 610–616 (1965).
[CrossRef] [PubMed]

M. F. Marmor, G. B. Arden, S. E. G. Nilsson, E. Zrenner, “Standard for clinical electroretinography,” Arch. Ophthalmol. 107, 816–819 (1989).
[CrossRef]

Br. J. Psychol. (1)

W. McDougall, “The sensations excited by a single momentary stimulation of the eye,” Br. J. Psychol. 1, 279–301 (1904).

Br.J. Ophthalmol. (1)

K. R. Alexander, G. A. Fishman, “Rod–cone interaction in flicker perimetry,” Br.J. Ophthalmol. 68, 303–309 (1984).
[CrossRef]

Brain Res. (2)

E. Dick, R. F. Miller, “Light-evoked potassium activity in mudpuppy retina: its relationship to the b-wave of the electroretinogram,” Brain Res. 154, 388–394 (1978).
[CrossRef] [PubMed]

E. V. Famiglietti, H. Kolb, “A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina,” Brain Res. 84, 293–300 (1975).
[CrossRef] [PubMed]

Clin. Vision Sci. (1)

L. T. Sharpe, H. Collewijn, K. Nordby, “Fixation, pursuit and nystagmus in a complete achromat,” Clin. Vision Sci. 1, 39–49 (1986).

Doc. Ophthalmol. (1)

P. Gouras, R. D. Gunkel, “The frequency response of normal, rod achromat and nyctalope ERG’s to sinusoidal monochromatic light stimulation,” Doc. Ophthalmol. 18, 137–150 (1964).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. Suppl. (4)

L. Gurevich, R. A. Stockton, M. M. Slaughter, “Comparisons of the waveforms of the b-wave of the ERG and on bipolar cells,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 114 (1990).

L. Chase, J. E. Dowling, “A comparison of rod and cone pathways in the primate retina,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 207 (1990).

U. Grünert, P. R. Martin, “Rod bipolar cells in the macaque monkey retina: light and electron microscopy,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 536 (1990).

A. P. Mariani, “Amacrine cells of the rhesus monkey retina,” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 198 (1988).

J. Comp. Neurol. (3)

R. W. Rodieck, “Starburst amacrine cells of the primate retina,” J. Comp. Neurol. 285, 18–37 (1989).
[CrossRef] [PubMed]

A. Hendrickson, M. A. Koontz, R. G. Pourcho, P. V. Sarthy, D. J. Goebel, “Localization of glycine-containing neurons in the macaca monkey retina,” J. Comp. Neurol. 273, 473–487 (1988).
[CrossRef] [PubMed]

R. Nelson, “Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat,” J. Comp. Neurol. 172, 109–136 (1977).
[CrossRef] [PubMed]

J. Gen. Physiol. (1)

S. Hecht, S. Shlaer, E. L. Smith, C. Haig, J. C. Peskin, “The visual functions of the complete colorblind,” J. Gen. Physiol. 31, 459–472 (1948).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

R. F. Miller, J. E. Dowling, “Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to the b-wave of the electroretinogram,” J. Neurophysiol. 33, 323–341 (1970).
[PubMed]

J. Opt. Soc. Am. (1)

J. Physiol. (London) (2)

R. F. Hess, K. Nordby, “Spatial and temporal limits of vision in the achromat,” J. Physiol. (London) 371, 365–385 (1986).

K. Nordby, L. T. Sharpe, “The directional sensitivity of the photoreceptors in the human achromat,” J. Physiol. (London) 399, 267–281 (1987).

J. Physiol.(London) (1)

J. D. Conner, “The temporal properties of rod vision,” J. Physiol.(London) 332, 139–155 (1982).

Klin. Monatsbl. Augenheilk (1)

H. Larsen, “Demonstration mikroskopischer Präparate von einem monochromatischen Auge,” Klin. Monatsbl. Augenheilk 67, 301–302 (1921).

Nature (London) (2)

F. Veringa, J. Roeloffs, “Electro-optical stimulation in the human retina,” Nature (London) 211, 321–322 (1966).
[CrossRef]

D. I. A. MacLeod, “Rods cancel cones in flicker,” Nature (London) 235, 173–174 (1972).
[CrossRef]

Opt. Acta (1)

M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
[CrossRef]

Pflügers Arch. (1)

E. Dodt, J. B. Walther, “Der photopische Dominator im Flimmer-ERG der Katze,” Pflügers Arch. 266, 175–186 (1958).

Proc. Natl. Acad. Sci. U.S.A. (1)

E. Raviola, N. B. Gilula, “Gap junctions between photoreceptor cells in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 70, 1677–1681 (1973).
[CrossRef] [PubMed]

Proc.R. Soc. London Ser. B (2)

W. S. Stiles, B. H. Crawford, “The luminous efficiency of monochromatic rays entering the eye pupil at different points,” Proc.R. Soc. London Ser. B 112, 428–450 (1933).
[CrossRef]

W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivities of the rods and cones,” Proc.R. Soc. London Ser. B 127, 64–105 (1939).
[CrossRef]

Science (4)

S. H. Goldberg, T. E. Frumkes, R. W. Nygaard, “Inhibitory influence of unstimulated rods in the human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
[CrossRef] [PubMed]

X.-L. Yang, S. M. Wu, “Modulation of rod-cone coupling by light,” Science 244, 352–354 (1989).
[CrossRef] [PubMed]

J. D. Conner, D. I. A. MacLeod, “Rod photoreceptors detect rapid flicker,” Science 195, 689–699 (1977).
[CrossRef]

H. Kolb, E. V. Famiglietti, “Rod and cone pathways in the inner plexiform layer of cat retina,” Science 186, 47–49 (1974).
[CrossRef] [PubMed]

Trends Neurosci. (2)

P. Sterling, M. Freed, R. G. Smith, “Microcircuitry and functional architecture of the cat retina,” Trends Neurosci. 9, 186–192 (1986).
[CrossRef]

N. W. Daw, R. J. Jensen, W J. Brunken, “Rod pathways in mammalian retinae,” Trends Neurosci. 13, 110–115 (1990).
[CrossRef] [PubMed]

Vision Res. (6)

N. J. Coletta, A. J. Adams, “Rod–cone interaction in flicker detection,” Vision Res. 24, 1333–1340 (1984).
[CrossRef]

T. E. Frumkes, F. Naarendorp, S. H. Goldberg, “The influence of cone adaptation upon rod mediated flicker,” Vision Res. 26, 1167–1176 (1986).
[CrossRef] [PubMed]

H. Kolb, R. Nelson, “Rod pathways in the retina of the cat,” Vision Res. 23, 301–302 (1983).
[CrossRef] [PubMed]

M. Glickstein, G. G. Heath, “Receptors in the monochromat eye,” Vision Res. 15, 633–636 (1975).
[CrossRef] [PubMed]

L. T. Sharpe, A. Stockman, D. I. A. MacLeod, “Rod flicker perception: scotopic duality, phase lags and destructive interference,” Vision Res. 29, 1539–1559 (1989).
[CrossRef] [PubMed]

T. E. Frumkes, M. D. Sekuler, M. C. Barris, E. H. Reiss, L. M. Chalupa, “Rod–cone interaction in human scotopic vision–I. Temporal analysis,” Vision Res. 13, 1269–1282 (1973).
[CrossRef] [PubMed]

Z. Biol. (1)

H. Bornschein, G. Schubert, “Das photopische Flimmer-Elektroretinogramm des Menschen,” Z. Biol. 106, 229–238 (1953).

Other (9)

R. Granit, Sensory Mechanisms of Retina (Oxford U. Press, London, 1947).

L. T. Sharpe, A. Stockman, “Dual rod pathways,” in From Pigments to Perception. Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, London, 1991), pp. 53–66.
[CrossRef]

D. S. Faber, “Analysis of the slow transretinal potentials in response to light,” Ph.D. dissertation (University of New York, Buffalo, Buffalo, N.Y., 1969).

W. Müller-Limmroth, Elektrophysiologie des Gesichtssinns: Theorie und Praxis der Elektroretinographie (Springer-Verlag, Berlin, 1950), p. 114.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

L. T. Sharpe, V. Volbrecht, “Estimating middle- and longwave cone sensitivity with large, long and tiny, brief targets,” Perception (to be published).

L. T. Sharpe, K. Nordby, “Total colour blindness: an introduction,” in Night Vision: Basic, Clinical and Applied Aspects, R. F. Hess, L. T. Sharpe, K. Nordby, eds. (Cambridge U. Press, Cambridge, 1990), pp. 253–289.

L. T. Sharpe, K. Nordby, “The photoreceptors in the achromat,” in Night Vision: Basic, Clinical and Applied Aspects, R. F. Hess, L. T. Sharpe, K. Nordby, eds. (Cambridge U. Press, Cambridge, 1990), pp. 335–389.

L. T. Sharpe, C. C. Fach, A. Stockman, “Spectral properties of the two rod pathways,” submitted to Vision Res.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Self-cancellation of 15-Hz rod flicker. The flicker signal produced by a single stimulus (INPUT) travels through either a slow or a fast pathway. At 15 Hz the signal emerging from the slow pathway is delayed by half a cycle relative to the signal emerging from the fast pathway. If the outputs from the two pathways are of equal amplitude, they will cancel each other and produce a steady, nonflickering signal when recombined. Thus the light will appear nulled to later stages of the visual system. To explain the restricted range of luminances within which the null is found (see Figs. 2 and 3), we assume that the luminance dependencies of the slow and fast signals differ, such that the former predominates at luminances below the null and the latter at luminances above the null, the two being approximately equal at luminances within the null. (The higher sinusoidal harmonics of 15-Hz square-wave flicker have frequencies higher than the rod visual system can follow8 and are not shown here.)

Fig. 2
Fig. 2

Right-hand side: 8-Hz (upper panel) and 15-Hz (lower panel) flicker detectability data for a normal observer LTS plotted as the logarithm of the background retinal illuminance (scot. Td). The squares represent conventional rod flicker thresholds measured as a function of background retinal illuminance. The open circles are cone thresholds measured during the cone phase of recovery following a 7.7 log10 phot. Td s (3100- K) bleach. At both 8 and 15 Hz, there is a break in the curve at approximately 0.0 log10 scot. Td. In the lower panel (15 Hz) the dashed lines delimit a region within which 15-Hz flicker was invisible. Data points designating the lower and upper limits of this nulled region are indicated by filled circles and diamonds, respectively. No nulled region was found at 8 Hz. Psychophysical data points are averaged from six settings made during each of two experimental sessions. The test retinal illuminances refer to the amplitudes of the flickering stimuli (the mean illuminances would be 0.3 log10 unit lower). Left-hand side: 8-Hz (upper panel) and 15-Hz (lower panel) Ganzfeld electroretinogram recordings for the same normal observer, LTS. In each panel the flicker intensity increases upward in steps of approximately 0.3 log10 unit. The arrows point to the retinal illuminances in the flicker detectability diagram for which the mean scotopic retinal illuminances (discounting the red background) correspond to the mean ERG flicker retinal illuminances. There was no background present in the ERG experiment. At 15 Hz the ERG response decreases as the retinal illuminance corresponding to the perceptual null is approached and then increases after the null. Across the null the ERG response reverses in phase (as indicated by the dashed lines). In contrast, at 8 Hz neither a null nor a phase reversal is found with increasing stimulus amplitude. The vertical scale in microvolts is indicated in each ERG panel. Note that the vertical scale for the 8-Hz ERG recordings is half that for the 15-Hz records.

Fig. 3
Fig. 3

Left-hand panel: 15-Hz ERG records for normal trichromat LTS before rod bleach. As before (Fig. 2, right-hand panel), there is a clear flicker null and a phase reversal. We attribute these phenomena to the rod system. Right-hand panel: ERG records made at the same retinal illuminances but during the cone plateau of dark adaptation (4–10 min) following a full-field, bright bleaching light (see the text for details). For this condition there are no responses at those retinal illuminances for which we find the phase reversal and null in the unbleached eye. In both panels the flicker intensity increases upward in steps of approximately 0.2 log10 unit.

Fig. 4
Fig. 4

Right-hand panel: 14-Hz flicker detectability data for a typical, complete achromat observer KN. Details are like those for Fig. 2. These data have many features in common with the data for the normal observer. The flicker threshold curve is double branched, and there is an adjoining region within which the flicker is invisible. The only important differences are that the nulled region and the transition from the lower branch to the upper branch are found at higher scotopic retinal illuminances for the achromat than for the normal observer. Left-hand panel: 14-Hz electroretinogram recordings for the achromat KN. Details are like those for Fig. 2, left-hand panel. For the achromat KN, as for the normal observer LTS (Fig. 2), the ERG signal reaches a minimum at retinal illuminances associated with the perceptual null and reverses in phase as the null is traversed. In accordance with the psychophysical results, the ERG null is found at higher retinal illuminances for the achromat than for the normal.

Fig. 5
Fig. 5

Left-hand panel: ERG recordings for the achromat KN made at a retinal illuminance below his perceptual null (left recordings) and at a retinal illuminance above the null (right recordings) at frequencies ranging from 5 to 17 Hz. The vertical line in each trace is an estimate of the peak in the ERG record corresponding to the flash that occurred at time zero. For the slow pathway there is a delay of 90–115 ms between the flash and the ERG response; for the fast pathway the delay is 70–80 ms. Right-hand panel: Squares are the phase differences in degrees between the slow and fast rod signals for the achromat KN estimated from the ERG records shown in the left-hand panel. The filled circles are similar data for the normal subject, also estimated from ERG recordings (not shown). The open circles are phase differences between the slow and fast rod signals for the normal subject estimated psychophysically. These were obtained by subtracting the rod-cone phase differences measured just below the null (at a time-averaged retinal illuminance of −0.43 log10 scot. Td) from those measured just above the null (at 0.45 log10 scot. Td). (See Fig. 6 of Ref. 1.)

Metrics