Abstract

Parallel pickup of optical digital data is attractive in optical memory applications. In order to construct a parallel pickup device with integrated optics, the use of a linearly focusing grating coupling (LFGC) was proposed and discussed. A guided wave in a slab waveguide is diffracted by the LFGC to be focused to a line in the air. The linearly focused wave is reflected by a recorded medium, such as an optical card, and is coupled by the same LFGC back into the waveguide. The backcoupling of the LFGC was discussed for parallel pickup of 8-μm-sized marks, and it was experimentally confirmed that the virtual images of the marks can be formed in the waveguide.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Suhara, S. Ura, H. Nishihara, J. Koyama, “An integrated-optic disc pickup device,” in 5th International Conference on Integrated Optics and Optical Fibre Communication–11th European Conference on Optical Communication Technical Digest (Istituto Internazionale delle Comunicazioni, Genova, 1985), Vol. 1, pp. 117–120.
  2. S. Ura, T. Suhara, H. Nishihara, “Integrated-optic disc pickup using a grating/objective compound lens,” in Technical Digest of 1st Microoptics Conference (Japan Society of Applied Optics, Tokyo, 1987), pp. 202–205.
  3. H. Sunagawa, S. Ura, T. Suhara, H. Nishihara, “An integrated optic detection device for magnetooptical disk pickup,” in International Symposium on Optical Memory Technical Digest (Japan Society of Applied Optics, Tokyo, 1987), pp. 247–250.
  4. T. Suhara, H. Ishimaru, S. Ura, H. Nishihara, “Integration of detection optics for magnetooptical disk pickup,” in 7th International Conference on Integrated Optics and Optical Fiber Communication Technical Digest (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1989), Vol. 2, pp. 80–81.
  5. A. Katzir, A. C. Livanos, J. B. Shellan, A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. QE-13, 296–304 (1977).
    [CrossRef]
  6. P. K. Tien, “Method of forming novel curved-line gratings and their use as reflectors and resonators in integrated optics,” Opt. Lett. 1, 64–66 (1977).
    [CrossRef] [PubMed]
  7. M. Miler, M. Skalsky, “Chirped and curved grating coupler focusing both outgoing beam and guided wave,” Opt. Commun. 33, 13–16 (1980).
    [CrossRef]
  8. D. Heitmann, C. Ortiz, “Calculation and experimental verification of two-dimensional focusing grating couplers,” IEEE J. Quantum Electron. QE-17, 1257–1263 (1981).
    [CrossRef]
  9. T. Suhara, H. Nishihara, J. Koyama, “High-performance focusing grating coupler fabricated by electron-beam writing,” Digest of Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1984), pp. ThD4-1-ThD4-4.
  10. S. Ura, T. Suhara, H. Nishihara, “Linearly focusing grating coupler for integrated-optic parallel data pickup,” in International Symposium on Optical Memory Technical Digest (Japan Society of Applied Optics, Tokyo, 1989), pp. 93–94.
  11. M. Born, E. Wolf, Principles of Optics (Pergmon, New York, 1970).
  12. S. Ura, T. Suhara, H. Nishihara, “Aberration characterizations of focusing grating coupler in integrated-optic disk pickup device,” Appl. Opt. 26, 4777–4782 (1987).
    [CrossRef] [PubMed]
  13. S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” IEEE J. Lightwave Technol. LT-4, 913–918 (1986).
    [CrossRef]

1987 (1)

1986 (1)

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” IEEE J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

1981 (1)

D. Heitmann, C. Ortiz, “Calculation and experimental verification of two-dimensional focusing grating couplers,” IEEE J. Quantum Electron. QE-17, 1257–1263 (1981).
[CrossRef]

1980 (1)

M. Miler, M. Skalsky, “Chirped and curved grating coupler focusing both outgoing beam and guided wave,” Opt. Commun. 33, 13–16 (1980).
[CrossRef]

1977 (2)

A. Katzir, A. C. Livanos, J. B. Shellan, A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. QE-13, 296–304 (1977).
[CrossRef]

P. K. Tien, “Method of forming novel curved-line gratings and their use as reflectors and resonators in integrated optics,” Opt. Lett. 1, 64–66 (1977).
[CrossRef] [PubMed]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergmon, New York, 1970).

Heitmann, D.

D. Heitmann, C. Ortiz, “Calculation and experimental verification of two-dimensional focusing grating couplers,” IEEE J. Quantum Electron. QE-17, 1257–1263 (1981).
[CrossRef]

Ishimaru, H.

T. Suhara, H. Ishimaru, S. Ura, H. Nishihara, “Integration of detection optics for magnetooptical disk pickup,” in 7th International Conference on Integrated Optics and Optical Fiber Communication Technical Digest (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1989), Vol. 2, pp. 80–81.

Katzir, A.

A. Katzir, A. C. Livanos, J. B. Shellan, A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. QE-13, 296–304 (1977).
[CrossRef]

Koyama, J.

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” IEEE J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

T. Suhara, H. Nishihara, J. Koyama, “High-performance focusing grating coupler fabricated by electron-beam writing,” Digest of Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1984), pp. ThD4-1-ThD4-4.

T. Suhara, S. Ura, H. Nishihara, J. Koyama, “An integrated-optic disc pickup device,” in 5th International Conference on Integrated Optics and Optical Fibre Communication–11th European Conference on Optical Communication Technical Digest (Istituto Internazionale delle Comunicazioni, Genova, 1985), Vol. 1, pp. 117–120.

Livanos, A. C.

A. Katzir, A. C. Livanos, J. B. Shellan, A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. QE-13, 296–304 (1977).
[CrossRef]

Miler, M.

M. Miler, M. Skalsky, “Chirped and curved grating coupler focusing both outgoing beam and guided wave,” Opt. Commun. 33, 13–16 (1980).
[CrossRef]

Nishihara, H.

S. Ura, T. Suhara, H. Nishihara, “Aberration characterizations of focusing grating coupler in integrated-optic disk pickup device,” Appl. Opt. 26, 4777–4782 (1987).
[CrossRef] [PubMed]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” IEEE J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

T. Suhara, H. Ishimaru, S. Ura, H. Nishihara, “Integration of detection optics for magnetooptical disk pickup,” in 7th International Conference on Integrated Optics and Optical Fiber Communication Technical Digest (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1989), Vol. 2, pp. 80–81.

S. Ura, T. Suhara, H. Nishihara, “Linearly focusing grating coupler for integrated-optic parallel data pickup,” in International Symposium on Optical Memory Technical Digest (Japan Society of Applied Optics, Tokyo, 1989), pp. 93–94.

T. Suhara, S. Ura, H. Nishihara, J. Koyama, “An integrated-optic disc pickup device,” in 5th International Conference on Integrated Optics and Optical Fibre Communication–11th European Conference on Optical Communication Technical Digest (Istituto Internazionale delle Comunicazioni, Genova, 1985), Vol. 1, pp. 117–120.

H. Sunagawa, S. Ura, T. Suhara, H. Nishihara, “An integrated optic detection device for magnetooptical disk pickup,” in International Symposium on Optical Memory Technical Digest (Japan Society of Applied Optics, Tokyo, 1987), pp. 247–250.

T. Suhara, H. Nishihara, J. Koyama, “High-performance focusing grating coupler fabricated by electron-beam writing,” Digest of Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1984), pp. ThD4-1-ThD4-4.

S. Ura, T. Suhara, H. Nishihara, “Integrated-optic disc pickup using a grating/objective compound lens,” in Technical Digest of 1st Microoptics Conference (Japan Society of Applied Optics, Tokyo, 1987), pp. 202–205.

Ortiz, C.

D. Heitmann, C. Ortiz, “Calculation and experimental verification of two-dimensional focusing grating couplers,” IEEE J. Quantum Electron. QE-17, 1257–1263 (1981).
[CrossRef]

Shellan, J. B.

A. Katzir, A. C. Livanos, J. B. Shellan, A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. QE-13, 296–304 (1977).
[CrossRef]

Skalsky, M.

M. Miler, M. Skalsky, “Chirped and curved grating coupler focusing both outgoing beam and guided wave,” Opt. Commun. 33, 13–16 (1980).
[CrossRef]

Suhara, T.

S. Ura, T. Suhara, H. Nishihara, “Aberration characterizations of focusing grating coupler in integrated-optic disk pickup device,” Appl. Opt. 26, 4777–4782 (1987).
[CrossRef] [PubMed]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” IEEE J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

T. Suhara, H. Ishimaru, S. Ura, H. Nishihara, “Integration of detection optics for magnetooptical disk pickup,” in 7th International Conference on Integrated Optics and Optical Fiber Communication Technical Digest (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1989), Vol. 2, pp. 80–81.

S. Ura, T. Suhara, H. Nishihara, “Linearly focusing grating coupler for integrated-optic parallel data pickup,” in International Symposium on Optical Memory Technical Digest (Japan Society of Applied Optics, Tokyo, 1989), pp. 93–94.

H. Sunagawa, S. Ura, T. Suhara, H. Nishihara, “An integrated optic detection device for magnetooptical disk pickup,” in International Symposium on Optical Memory Technical Digest (Japan Society of Applied Optics, Tokyo, 1987), pp. 247–250.

T. Suhara, S. Ura, H. Nishihara, J. Koyama, “An integrated-optic disc pickup device,” in 5th International Conference on Integrated Optics and Optical Fibre Communication–11th European Conference on Optical Communication Technical Digest (Istituto Internazionale delle Comunicazioni, Genova, 1985), Vol. 1, pp. 117–120.

T. Suhara, H. Nishihara, J. Koyama, “High-performance focusing grating coupler fabricated by electron-beam writing,” Digest of Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1984), pp. ThD4-1-ThD4-4.

S. Ura, T. Suhara, H. Nishihara, “Integrated-optic disc pickup using a grating/objective compound lens,” in Technical Digest of 1st Microoptics Conference (Japan Society of Applied Optics, Tokyo, 1987), pp. 202–205.

Sunagawa, H.

H. Sunagawa, S. Ura, T. Suhara, H. Nishihara, “An integrated optic detection device for magnetooptical disk pickup,” in International Symposium on Optical Memory Technical Digest (Japan Society of Applied Optics, Tokyo, 1987), pp. 247–250.

Tien, P. K.

Ura, S.

S. Ura, T. Suhara, H. Nishihara, “Aberration characterizations of focusing grating coupler in integrated-optic disk pickup device,” Appl. Opt. 26, 4777–4782 (1987).
[CrossRef] [PubMed]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” IEEE J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

T. Suhara, H. Ishimaru, S. Ura, H. Nishihara, “Integration of detection optics for magnetooptical disk pickup,” in 7th International Conference on Integrated Optics and Optical Fiber Communication Technical Digest (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1989), Vol. 2, pp. 80–81.

S. Ura, T. Suhara, H. Nishihara, “Linearly focusing grating coupler for integrated-optic parallel data pickup,” in International Symposium on Optical Memory Technical Digest (Japan Society of Applied Optics, Tokyo, 1989), pp. 93–94.

H. Sunagawa, S. Ura, T. Suhara, H. Nishihara, “An integrated optic detection device for magnetooptical disk pickup,” in International Symposium on Optical Memory Technical Digest (Japan Society of Applied Optics, Tokyo, 1987), pp. 247–250.

T. Suhara, S. Ura, H. Nishihara, J. Koyama, “An integrated-optic disc pickup device,” in 5th International Conference on Integrated Optics and Optical Fibre Communication–11th European Conference on Optical Communication Technical Digest (Istituto Internazionale delle Comunicazioni, Genova, 1985), Vol. 1, pp. 117–120.

S. Ura, T. Suhara, H. Nishihara, “Integrated-optic disc pickup using a grating/objective compound lens,” in Technical Digest of 1st Microoptics Conference (Japan Society of Applied Optics, Tokyo, 1987), pp. 202–205.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergmon, New York, 1970).

Yariv, A.

A. Katzir, A. C. Livanos, J. B. Shellan, A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. QE-13, 296–304 (1977).
[CrossRef]

Appl. Opt. (1)

IEEE J. Lightwave Technol. (1)

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” IEEE J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. Katzir, A. C. Livanos, J. B. Shellan, A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. QE-13, 296–304 (1977).
[CrossRef]

D. Heitmann, C. Ortiz, “Calculation and experimental verification of two-dimensional focusing grating couplers,” IEEE J. Quantum Electron. QE-17, 1257–1263 (1981).
[CrossRef]

Opt. Commun. (1)

M. Miler, M. Skalsky, “Chirped and curved grating coupler focusing both outgoing beam and guided wave,” Opt. Commun. 33, 13–16 (1980).
[CrossRef]

Opt. Lett. (1)

Other (7)

T. Suhara, H. Nishihara, J. Koyama, “High-performance focusing grating coupler fabricated by electron-beam writing,” Digest of Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1984), pp. ThD4-1-ThD4-4.

S. Ura, T. Suhara, H. Nishihara, “Linearly focusing grating coupler for integrated-optic parallel data pickup,” in International Symposium on Optical Memory Technical Digest (Japan Society of Applied Optics, Tokyo, 1989), pp. 93–94.

M. Born, E. Wolf, Principles of Optics (Pergmon, New York, 1970).

T. Suhara, S. Ura, H. Nishihara, J. Koyama, “An integrated-optic disc pickup device,” in 5th International Conference on Integrated Optics and Optical Fibre Communication–11th European Conference on Optical Communication Technical Digest (Istituto Internazionale delle Comunicazioni, Genova, 1985), Vol. 1, pp. 117–120.

S. Ura, T. Suhara, H. Nishihara, “Integrated-optic disc pickup using a grating/objective compound lens,” in Technical Digest of 1st Microoptics Conference (Japan Society of Applied Optics, Tokyo, 1987), pp. 202–205.

H. Sunagawa, S. Ura, T. Suhara, H. Nishihara, “An integrated optic detection device for magnetooptical disk pickup,” in International Symposium on Optical Memory Technical Digest (Japan Society of Applied Optics, Tokyo, 1987), pp. 247–250.

T. Suhara, H. Ishimaru, S. Ura, H. Nishihara, “Integration of detection optics for magnetooptical disk pickup,” in 7th International Conference on Integrated Optics and Optical Fiber Communication Technical Digest (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1989), Vol. 2, pp. 80–81.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic view of proposed integrated-optic parallel pickup device. Point P (xP, yP, 0) indicates the virtual image of pit Q(xQ, f cos θ, f sin θ).

Fig. 2
Fig. 2

Trace of virtual image P for pit Q on focus line. The line expansion and curvature are due to the LFGC lens function along the x direction.

Fig. 3
Fig. 3

Calculated RMSD between spherical wave from point Q and diffracted wave of imaginary guided wave focusing to virtual image P.

Fig. 4
Fig. 4

Fabrication process of LFGC (OEBR, electron-beam resist; PCVD, plasma-enhanced chemical-vapor deposition; EB, electron beam; #7059, Corning #7059 glass).

Fig. 5
Fig. 5

Microphotographs of fabricated LFGC.

Fig. 6
Fig. 6

Photograph and intensity distribution of focus line in output coupling.

Fig. 7
Fig. 7

Experimental setup for measurement of input coupling characteristics (CCD, charge-coupled device; LD, laser diode).

Fig. 8
Fig. 8

Measured input coupling efficiency and −3-dB spot width of virtual image plotted against Q position on focus line.

Fig. 9
Fig. 9

Intensity distribution of virtual image of 10-pit pattern 8 μm in size with 16-μm separation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Φ G = Φ DF Φ IN = k [ ( y f sin θ ) 2 + ( f cos θ ) 2 ] 1 / 2 + N k [ x 2 + ( y + r ) 2 ] 1 / 2 = 2 m π + const ,
Φ A ( P ) = Φ G + N k [ ( x x P ) 2 + ( y y P ) 2 ] 1 / 2 k [ ( x x Q ) 2 + ( y f sin θ ) 2 + ( f cos θ ) 2 ] 1 / 2 k ( f + N r + N p f ) , p = ( x P 2 + y P 2 ) 1 / 2 , f = ( f 2 + x Q 2 ) 1 / 2 ,
Δ Φ P = λ 2 π { [ Φ A ( P ) ] 2 d x d y d x d y [ Φ A ( P ) d x d y d x d y ] 2 } .
N x P p = x Q f ,
N p + 1 f = N r .

Metrics